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ABSTRACT

Measuring risks in asset portfolios has been one of the central topics in the financial industry. Since the
introduction of coherent risk measures, studies on risk measurement have flourished and measures beyond
value-at-risk, such as expected shortfall, have been adopted by academics and practitioners. However, the
complexity of financial products makes it very difficult and time consuming to perform the numerical tasks
necessary to compute these risk measures. In this paper, we introduce a stochastic kriging metamodel-
based method for efficient estimation of risks and their sensitivities. In particular, this method uses gradient
estimators of assets in a portfolio and gives the best linear unbiased predictor of the risk sensitivities with
minimum mean squared error. Numerical comparisons of the proposed method with two other stochastic
kriging based approaches demonstrate the promising role that the proposed method can play in the estimation
of financial risk.

1 INTRODUCTION

The importance of quantification and estimation of risks in the financial industry cannot be exaggerated.
From daily operations at banks to regulatory oversight, valid and efficient risk measurement practices
are required in today’s volatile markets. Since the publication of value-at-risk (VaR) methodology by
J.P. Morgan in 1994, adequate risk measures have been the focus of academic and practical debates.
Artzner et al. (1999) proposed the now widely known concept of coherent risk measures, and many others
popularized related concepts and built theoretical foundations. There also has been a stream of research
that focuses on computational aspects of risk measures. In particular, much research has dealt with the
so-called conditional value-at-risk (CVaR) or expected shortfall (ES) of asset portfolios as well as VaR in
the past decade.

Often, portfolio profits or losses are computed via Monte Carlo simulation when dimensions are high
and analytic solutions are not available. Glasserman et al. (2000) is one among many papers that study
efficient procedures for simulation based estimation of VaR, where the authors approximate the portfolio loss
via the delta-gamma method. However, when we deal with portfolios of complex derivatives, sometimes
we have to resort to two-level simulation, in which we estimate the random loss based on inner-level
simulations under each outer simulation path. We refer the reader to Gordy and Juneja (2010) for details
of this nested simulation scheme. In the paper, the authors apply their proposed method to estimate the
probability of a large loss, VaR, and CVaR. Related works followed and they include Lan et al. (2010),
Broadie et al. (2011a), and Broadie et al. (2011b), for example.

In practice, we are not only interested in estimating risk measures but also in estimating their sensitivities
with respect to parameters of interest. In the literature, the knowledge of sensitivities is argued to be
useful in conducting marginal analysis of portfolios, computing optimal portfolios under VaR constraint
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(Gourieroux et al. 2000) or in reducing computational time to re-evaluate ES when the portfolio weight
is moved slightly (Scaillet 2004). It is also helpful to assess the current portfolio position and to make
re-allocation decisions. We note that in the Monte Carlo simulation context the sensitivity estimation of
CVaR is studied in Hong and Liu (2009).

In this paper, we are interested in obtaining global approximations to risk measures and their sensitivities.
Due to computational workloads coming from the complexity of derivatives products, it would not be
practically plausible to conduct an estimation procedure for too many scenarios. We thus propose to use
stochastic kriging based metamodeling techniques, in which we build a metamodel based on estimates at
only a small number of design points. In addition, we utilize the information of gradients when (pathwise)
gradient estimators are available. More details on stochastic kriging can be found in Ankenman et al. (2010)
and Chen et al. (2011). We note that an application of stochastic kriging to the estimation of CVaR is
also done in Liu and Staum (2010). Our work differs from theirs in that we build metamodels to predict
CVaR and its sensitivities simultaneously, and in that we apply stochastic kriging with gradient estimators
as formulated in Chen et al. (2011).

The rest of the paper is organized as follows. In Section 2, we briefly introduce VaR and CVaR. Then,
the proposed metamodeling techniques are explained in Section 3, and numerical tests with three examples
are reported in Section 4. Section 5 concludes.

2 RISK MEASUREMENT

This section presents a very brief introduction to popular risk measures VaR and CVaR. These measures
have been widely studied, and there is a large literature available. The material here is mostly based on
works like Acerbi and Tasche (2002) and Hong and Liu (2009). In this section, X is the random variable
that represents the random profit of a financial portfolio (hence, −X is the random loss), and we assume
that X is integrable in this paper. When X has a dependence on a parameter vector q , we write X(q). For
a random variable X , quantiles of X are defined as follows.

Definition 1 (Acerbi and Tasche 2002) The lower p-quantile of X is inf{x : P(X ≤ x) ≥ p} = sup{x :
P(X ≤ x) < p} and denoted by qp(X). Similarly, the upper p-quantile of X is inf{x : P(X ≤ x) > p} =
sup{x : P(X ≤ x)≤ p} and denoted by qp(X).

Then, the value-at-risk at level a , say a-VaR, is defined as the lower a-quantile of the random loss −X .
Mathematically, a-VaR = qa(−X) = inf{x : P(X +x ≥ 0)≥ a}. Typically, a is a value close to 1 such as
95% or 99%. From this, VaR can be interpreted as the minimal cash amount such that the portfolio value
X +x does not become negative with probability at least a . Instead of a single VaR, we can consider the
average of VaR values in the right tail of the random loss −X , i.e., (1−a)−1 ∫ 1

a b -VaRdb , and this is the
conditional value-at-risk at level a . See, e.g., Hong and Liu (2009).

It is well known that

a-CVaR =
1

1−a
E
[
(−X − t)+

]
+ t =

1
1−a

{
E [−X 1{−X ≥ t}]+ t (1−a −P(−X ≥ t))

}
(1)

for any t ∈ [qa(−X),qa(−X)]. Furthermore, it can be shown that if −X(m) (with parameter m) does not
have an atom at qa(−X), then P(−X ≥ qa(−X)) = 1−a and thus

a-CVaR(m) = E

[
−X(m)

∣∣∣−X(m)≥ a-VaR(m)
]
. (2)

We further assume that X(m) is Lipschitz continuous for almost all sample point w with Lipschitz constant
K(w) where K is an integrable random variable, and that a-VaR is differentiable with respect to m . Then,
Hong and Liu (2009) show that the derivative of a-CVaR(m) with respect to m can be given as

a-CVaR′(m) = E

[
−X ′(m)

∣∣∣−X(m)≥ a-VaR(m)
]
, (3)
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where the prime is used to denote taking a derivative with respect to m .
Throughout this paper, we implicitly assume that the conditions above are always satisfied so that

(2) and (3) are valid. Our objective is to obtain global approximations to a-CVaR(m) and a-CVaR′(m)
over the parameter space Wm , based on simulation observations. Even though it is straightforward to get
consistent estimators for CVaR and its sensitivity at a single point m , it may be quite time consuming and
inaccurate to perform such a task globally. Hence, we propose to apply stochastic kriging with gradient
information (if available), which is described in the following section.

3 STOCHASTIC KRIGING

3.1 Stochastic Kriging with Gradient Estimator

Kriging is an interpolation-based metamodel that uses a finite number of observations and this number is
often small due to associated costs in applications. At design points x1, . . . ,xk ∈ Rd , the response surface
is assumed to be a realization of the following stochastic process

Y(x) = f(x)>b +M(x)

where f is a Rp-valued function, b is a p-dimensional vector, and M is a mean zero stationary Gaussian
random field such that E

[
|M(x)|2

]
< ¥ for all x ∈Rd . In addition, the correlation structure for M is given

by

Cov[M(x),M(y)] = t2
R(x,y), R(x,y) = exp

(
−

d

å
r=1

qr|xr − yr|
2

)
.

Here, x = (x1, . . . ,xd)
> and the qr’s are fixed parameters in R+. Note that Var[M(x)] = t2. Therefore, the

variance of this random field remains the same at all points, but the correlation between M(x) and M(y)
decreases as the distance between two points increases. Furthermore, we assume the process above has
partial derivatives in the sense that

D
r(x) :=

(
¶ f(x)
¶xr

)>

b +
¶M(x)

¶xr
,

¶M(x)
¶xr

= lim
t→0

t−1
(
M(x+ ter)−M(x)

)

where the limit is taken in the mean-square sense and er is the rth canonical basis vector in Rd . The
limit in the mean-square sense is useful for applications. Sufficient conditions for the existence of the
mean-square derivative of M(x) (hence Y(x)) are fully characterized by conditions on R(·, ·), thereby
allowing the modeling of the dependence of the derivative processes on the original response process. See
Parzen (1962) for more. Then, Dr(x) is again Gaussian and its correlation structure is given by

Cov [Dr(x),Ds(y)] = t2 ¶ 2R(x,y)
¶xr¶ys

, Cov [Dr(x),Y(y)] = t2 ¶R(x,y)
¶xr

.

Consequently, the k observations at design points together with total kd partial derivatives have a k(1+d)-
dimensional multivariate normal distribution. To simplify notation, we write Y = (Y(x1), . . . ,Y(xk))

>,

D
r = (Dr(x1), . . . ,D

r(xk))
>, and Y+ =

(
Y
>,
(
D

1
)>

, . . . ,
(
D

d
)>)>

. We also denote the mean and the

covariance matrix of Y+ by F+b and SM+ , where F+ is the k(d + 1)× p matrix of functions that has
f(x1)

>, . . . , f(xk)
>, (¶ f(x1)/¶x1)

> , . . . ,(¶ f(xk)/¶x1)
>,. . . , (¶ f(x1)/¶xd)

> , . . . ,(¶ f(xk)/¶xd)
> as its rows.

In the stochastic simulation context, however, our observations are simulation results that contain
simulation errors. Suppose that we make ni independent simulation replications at each design point xi

which can be different at distinct design points. Then, we adapt the metamodel above to a stochastic
simulation context:

Y j(xi) = Y(xi)+ e j(xi), D
r
j (xi) = D

r(xi)+z r
j (xi), j = 1, . . . ,ni, i = 1, . . . ,k, r = 1, . . . ,d.



Chen, Kim, and Nelson

Here, e j(xi)’s are the i.i.d. mean zero simulation noise from j-th run at the i-th design point. The z r
j (xi)’s are

similarly defined. We run simulations independently across replications and design points. However, e j(xi)
and z r

j (xi) for the same replication at the same design point might be correlated. Hence, the correlation
structure of simulation noise is assumed to be

Var[e j(xi)] = s2
i0, Var[z r

j (xi)] = s2
ir, Corr[e j(xi),z r

j (xi)] = r(0,r)
i , Corr[z r

j (xi),z s
j (xi)] = r(r,s)

i .

The last term is defined only when r 6= s. We denote the sample averages of Y j(xi) and D r
j (xi) by Ȳ (xi)

and D̄ r(xi). In the same manner, we define ē(xi) and z̄ r(xi). Then, again we have a k(1+d)-dimensional
multivariate normal distribution for Ȳ+ = (Ȳ (x1), . . . , Ȳ (xk),D̄

1(x1),D̄
1(x2), . . . ,D̄

d(xk))
>. Its mean is

the same as F+b , but its covariance matrix has the form S+ := SM+ +Se+ where the second term is the
covariance matrix of ē+ := (ē(x1), . . . , ē(xk), z̄ 1(x1), . . . , z̄ d(xk))

>.
The objective of this metamodel is to make a prediction of Y(x) at a prediction point x0 ∈ Rd . With

given f, b , and covariance matrices, the random vector (Y(x0), Ȳ+) has a multivariate normal distribution.
Then, it is a standard result that

Ŷ(x0) := E
[
Y(x0)|Ȳ+

]
= f(x0)

>b +SM+(x0, ·)
>S−1

+ (Ȳ+−F+b ) (4)

where SM+(x0, ·) represents the covariance matrix between Y(x0) and Ȳ+ (and thus Y+ because ē+ is

independent of Y(x0)). It can be shown that Ŷ(x0) is the best linear predictor that minimizes the mean
squared error (MSE) among linear predictors. Regarding parameter estimation, we start with Se+ estimated
from the simulation replications, then calculate the maximum likelihood estimates for b , t2, and qr. More
details about stochastic kriging with gradient estimators can be found in Chen et al. (2011). Notice that
response prediction with gradient information has also been studied in other research contexts. See, for
instance, Morris et al. (1993) for deterministic computer experiments and Solak et al. (2003) for Gaussian
process models for dynamic system identification.

3.2 Sensitivity Estimation with Kriging Metamodel

Often, we are not only interested in evaluating an unknown performance function Y(x) but also in obtaining
sensitivities Dr(x) of such a function. There are well-known methods to obtain sensitivities via simulation
such as finite difference scheme, infinitesimal perturbation analysis, or likelihood ratio method. See Chapter
VII of Asmussen and Glynn (2007) for example. However, when we want to obtain global approximations
to the gradients D

r(x), applications of such methods might be infeasible due to high simulation costs. In
this subsection, we consider three approaches based on stochastic kriging metamodels.

Suppose that we have (sample averaged) simulation outputs Ȳ := (Ȳ (x1), . . . , Ȳ (xk))
> =Y+ ē where

Y = (Y(x1), . . . ,Y(xk))
>, ē = (ē(x1), . . . , ē(xk))

>

with ni independent simulation replications at the i-th of the k design points. Further assume that we do
not have any derivative information. Then, as presented above, stochastic kriging metamodel based on Ȳ

stipulates that (Y(x0), Ȳ ) at a prediction point x0 has a multivariate normal distribution. If the covariance
matrices of Y and ē are SM and Se , respectively, then the best linear predictor (denoted by SK) is given by

Ŷ(x0) = f(x0)
>b +SM(x0, ·)

>(SM+Se )−1(Ȳ −Fb ) (5)

where E[Y] = Fb and SM(x0, ·) is the covariance matrix between Y(x0) and Ȳ . Then, one simple solution
for global gradient approximation is to differentiate Ŷ(x0) and get

D̂
r(x0) =

(
¶ f(x0)

¶xr

)>

b +SDr(x0, ·)
>(SM+Se )−1(Ȳ −Fb )
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where SDr(x0, ·) = (¶/¶xr)SM(x0, ·). It is not difficult to see that this partial derivative is nothing but
the k-vector containing covariances between D

r(x0) and Ȳ . Similar methods have been studied in other
contexts; see, for instance, Sakata et al. (2010) and Pardo-Igúzquiza and Chica-Olmo (2004). We denote
this approach by SK-G.

A second method to do gradient estimation is to “map” the gradient surface by treating the gradient at
a point as the response of interest. This method uses the gradient estimates obtained at the k design points
to construct a stochastic kriging predictor for the gradient at x0 by (5). We denote this second approach
by SK4G.

Lastly, we present our third approach SKG-G that builds a metamodel for the gradients based on full
information, i.e., response and gradient information. By simply differentiating (4), we obtain

D̂
r(x0) =

(
¶ f(x0)

¶xr

)>

b +SDr
+
(x0, ·)

>S−1
+ (Ȳ+−F+b )

where SDr
+
(x0, ·) is the covariance matrix between D

r(x0) and Y+. In particular,

Ȳ+ = Y++ ē+ =

(
Y

D

)
+

(
ē
z̄

)
=

(
Ȳ

D̄

)
, SDr

+
(x0, ·) =

(
SDr(x0, ·)
S′
Dr(x0, ·)

)
,

and S′
Dr(x0, ·) is the kd-vector that contains covariances between D

r(x0) and D. We can show that this
predictor is actually the best linear predictor of D

r(x0) based on Ȳ+ among all linear predictors. When
parameters are unknown, we estimate them using simulation replication results and maximum likelihood
estimation.

4 NUMERICAL EXAMPLES

In this section, we provide three examples with increasing difficulty to demonstrate how one can apply
stochastic kriging to risk measurement. Specifically, we compare the performances of the three proposed
methods introduced in Section 3 in terms of the following two aspects.

1. Predicting risk measure: compare the prediction results by stochastic kriging (SK), stochastic
kriging with gradient estimators (SKG) and by a naive simulation method (NS).

2. Sensitivity estimation: compare the estimates by differentiating stochastic kriging metamodel (SK-
G), stochastic kriging for gradient estimators (SK4G), differentiating stochastic kriging metamodel
with gradient estimators (SKG-G), and a naive simulation method (NS).

4.1 Call Option on a Single Asset

Our first example is a call option based on the Black-Scholes (BS) model. This example involves neither
VaR nor CVaR but the option price C(S0) and its first order sensitivity “delta” D(S0) where S0 is the stock
price at the inception of the option contract. We choose this example because it is quite well known and
C(S0),D(S0) provide important information when managing risks in options.

The stock price dynamics of the BS model is given by the stochastic differential equation (SDE) under
the risk-neutral measure,

dSt = rStdt +sStdWt ,

where r is the risk-free rate and s is the volatility of St . This SDE admits a closed form solution
St = S0 exp

(
(r−s2/2)t +sWt

)
, and St can be easily simulated using the fact that Wt ∼ N (0, t). The

European call option on St is a right to buy a stock at option maturity T and at the pre-specified strike
price K. Mathematically, this payoff discounted at rate r is expressed as P = e−rT (ST −K)+. The price
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Table 1: Parameters for the Black-Scholes European call option model.

S0 K T r s
[85,115] 100 1/52 year 3% 40%

and the delta are, then, calculated as follows:

C(S0) = E[P] = E
[
e−rT (ST −K)+

]
,

D(S0) =
dC
dS0

= E

[
dP
dST

dST

dS0

]
= E

[
e−rT

(
ST

S0

)
·1{ST ≥ K}

]
.

In the second expression, we skipped the details in justifying the interchange of differentiation and integration.
See Broadie and Glasserman (1996) or Fu and Hu (1995). Also, we used dST/dS0 = ST/S0. Note that
two functions inside the expectation on the right-hand side give us the price estimator and the gradient
estimator. Parameter values used in the experiment are given in Table 1.

Experiments. As described above, we compare the performances of SK and SKG in predicting call
option prices C(S0) where S0 ranges over [85,115]. Regarding D(S0), we have three approaches SK-G,
SK4G, and SKG-G. Recall that the second approach is based on the stochastic kriging metamodel with
gradient information only. Pretending that little information about the true response surface is available,
a constant trend model f(S0)

>b = b0 is chosen for stochastic kriging metamodels. For each type of
metamodel, we fit the observational data at k design points using maximum likelihood estimation and
estimate the model parameters b0,t2 and q . Then b̂0, t̂2 and q̂ are used for prediction at N = 193 equally
spaced points in [85,115]. We select k ∈ {13,25} equally spaced design points (including 85 and 115),
and adopt an equal number of simulation replications n ∈ {2000,4000} at each design point.

As the closed-form expressions for C(S0) and D(S0) are available for the BS model, the estimated
root mean squared error (ERMSE) over the grid of N = 193 prediction points is proposed to evaluate the
prediction performance,

ERMSE(C) =

√
1
N

N

å
i=1

(
C(Si

0)−Ĉ(Si
0)
)2

, ERMSE(D) =

√
1
N

N

å
i=1

(
D(Si

0)− D̂(Si
0)
)2

, (6)

where C(Si
0),D(S

i
0) denote the true price and delta at Si

0, and Ĉ(Si
0), D̂(S

i
0) represent the predicted values.

One simple way of obtaining a global surface of C(S0),D(S0) is to allocate the simulation budget on
all of N prediction points and get price and delta estimates. We call this naive simulation NS. Then, the
number of simulation trials at each point becomes n̄ = dkn/Ne. This way, all methods have approximately
the same computational budget. The experiment is repeated for 100 macro-replications and we summarize
the resulting ERMSEs in boxplots which are available in Figures 1(a) and (b).

Results. Figure 1(a) shows the prediction performances of SK, SKG and NS in terms of ERMSE(C).
The left panel contains the boxplots when 13 design points are used while 25 design points are used for the
right panel. In each panel, two groups of boxplots are ordered from left to right, respectively, for n = 2000
and n = 4000. We can see that SKG is superior to SK and NS in predicting C(S0). Figure 1(b) presents
the ERMSE(D) by the four approaches for estimating D(S0) with 25 design points. As one can easily
see, although SK gives a pretty good predictor for C(S0), SK-G that is obtained by differentiating the
SK-based metamodel does not appear to be a competent gradient estimation approach. On the other hand,
differentiating SKG, namely SKG-G, gives a reasonably good gradient predictor, whose performance is
close to that of SK4G. Therefore, we see here that the SKG metamodel has a potential in producing good
response and sensitivity predictors simultaneously.



Chen, Kim, and Nelson

n

40
0
0

20
0
0

y_
N
ai
ve

y
_S
K
G

y
_S
K

y_
N
ai
ve

y
_S
K
G

y
_S
K

0.4

0.3

0.2

0.1

0.0

4
0
0
0

2
0
0
0

y_
N
a
iv
e

y_
S
K
G

y_
S
K

y_
N
a
iv
e

y_
S
K
G

y_
S
K

13 25

Panel variable: K

(a) Boxplots of ERMSE(C) for 100 macro-replications with
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Figure 1: Boxplots of ERMSEs for prices and sensitivities in the Black-Scholes model.

4.2 Quadratic Loss of Two Assets

In this subsection, we consider a two-dimensional problem taken from Hong and Liu (2009). Our objective
is to construct a CVaR response surface and gradient surfaces of CVaR. Here, we assume that the random
loss L(m) is given by L(m) = a0 + a>DS+DS>ADS where m = (m1,m2)

>, and a0 = 0.3, a = (0.8,1.5)>,

A =

(
1.2 0.6
0.6 1.5

)
. Further, we assume that DS is a bivariate normal random vector with mean m

and variance-covariance matrix Ss = 0.02

(
1 0.5

0.5 1

)
. Writing a-VaR, a-CVaR as va(m) and ca(m)

respectively, from Section 2 we have

ca(m) = E

[
L(m)

∣∣∣L(m)≥ va(m)
]
= va(m)+

1
1−a

E [L(m)− va(m)]+ ,

¶ca(m)
¶ mi

= E

[
¶L(m)

¶ mi

∣∣∣L(m)≥ va(m)
]
, i = 1,2,

where the second equality in the first equation is obtained by setting t = qa(−X) in (1). When the
gradient estimator D(i) = ¶L/¶ mi = ¶miL exists, Hong and Liu (2009) suggests using the following consistent

estimators: given ns triples of i.i.d. (L j,D
(1)
j ,D(2)

j ) for (L,¶m1L,¶m2L),

v̂ns
a = Ldnsae:ns

, ĉns
a = v̂ns

a +
1

ns(1−a)

ns

å
j=1

[L j − v̂ns
a ]

+ , Y
(i)
ns

=
1

ns(1−a)

ns

å
j=1

D(i)
j 1{L j ≥ v̂ns

a } (7)

where Lk:ns is the kth order statistic. Clearly, D(i) = a>ei +2e>i ADS and ei is the ith canonical basis vector
in R2, i = 1,2.

Experiments. The experimental design is similar to the one in the previous subsection. Our design
space is Wm = [0.001,0.1]2 from which we select k design points, i.e., choose k different m vectors. Then,
at each design point, we obtain n observations of va , ca , and ¶mica . Note that each estimate involves ns

simulation trials, yielding (L j,D
(1)
j ,D(2)

j ), j = 1, . . . ,ns. Given n observations of v̂ns , ĉns
a , and Y

(i)
ns

at each
design point, we build metamodels for CVaR based on SK, SKG; and for gradient estimation, SK-G, SK4G,
and SKG-G are used. As for design points, we use a “maxmin” Latin-hypercube sample of (k−4) design
points from Wm plus its four corner points with k ∈ {16,25}, and we use in total N = 1601 prediction points
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Table 2: The mean ERMSEs and the corresponding standard errors for CVaR and its sensitivities over 50
macro-replications using n×ns = 105 when a = 0.99.

n = 100,ns = 1000 n = 50,ns = 2000 n = 25,ns = 4000
ERMSE k 16 25 16 25 16 25

ĉa

SK 1.21E−02
(3.25E−04)

1.22E−02
(2.94E−04)

8.10E−03
(2.91E−04)

8.90E−03
(3.22E−04)

8.40E−03
(4.75E−04)

1.02E−02
(3.15E−04)

SKG 1.53E−02
(2.00E−04)

1.52E−02
(2.02E−04)

7.90E−03
(1.56E−04)

8.40E−03
(1.73E−04)

5.30E−03
(1.99E−04)

5.30E−03
(1.49E−04)

NS 1.11E−01
(3.35E−05)

1.11E−01
(1.60E−05)

1.11E−01
(3.35E−05)

1.11E−01
(1.60E−05)

1.11E−01
(3.35E−05)

1.11E−01
(1.60E−05)

¶̂m1ca

SK-G 1.64E−01
(1.17E−02)

1.50E−01
(9.60E−03)

2.07E−01
(2.03E−02)

2.34E−01
(2.68E−02)

2.74E−01
(3.49E−02)

4.97E−01
(3.51E−02)

SKG-G 1.89E−01
(2.53E−04)

1.89E−01
(2.49E−04)

9.48E−02
(2.89E−04)

9.48E−02
(2.07E−04)

4.77E−02
(2.43E−04)

4.72E−02
(2.31E−04)

SK4G 1.89E−01
(2.95E−04)

1.89E−01
(2.77E−04)

9.49E−02
(2.74E−04)

9.49E−02
(2.04E−04)

4.82E−02
(3.54E−04)

4.77E−02
(2.98E−04)

NS 2.05E−01
(2.48E−04)

9.11E−02
(8.61E−05)

2.05E−01
(2.48E−04)

9.11E−02
(8.61E−05)

2.05E−01
(2.48E−04)

9.11E−02
(8.61E−05)

¶̂m2ca

SK-G 1.89E−01
(1.20E−02)

1.95E−01
(1.42E−02)

2.36E−01
(2.34E−02)

2.95E−01
(2.95E−02)

3.10E−01
(3.35E−02)

5.68E−01
(4.47E−02)

SKG-G 2.83E−01
(2.35E−04)

2.83E−01
(2.56E−04)

1.42E−01
(2.55E−04)

1.41E−01
(2.40E−04)

7.05E−02
(3.03E−04)

7.06E−02
(2.45E−04)

SK4G 2.83E−01
(2.98E−04)

2.83E−01
(2.96E−04)

1.42E−01
(3.28E−04)

1.42E−01
(2.83E−04)

7.09E−02
(3.59E−04)

7.06E−02
(3.43E−04)

NS 2.98E−01
(2.55E−04)

1.15E−01
(1.21E−04)

2.98E−01
(2.55E−04)

1.15E−01
(1.21E−04)

2.98E−01
(2.55E−04)

1.15E−01
(1.21E−04)

in Wm . Actually, 1600 points are regularly spaced and we add the testing point in Hong and Liu (2009)
for a sanity check.

The performance measures ERMSEs for predicting CVaR and its gradients are defined in a similar
fashion as in (6). Since closed-form expressions of ca and ¶mica are not available, the true values at each of
N points are approximated using simulations with a sample size ns = 106. Experiments for a ∈ {0.95,0.99}
are conducted, and only the results for a = 0.99 are presented below for the sake of brevity. We include
ERMSEs from the naive simulation scheme NS for comparison. Recall that this method allocates the
total simulation budget k×n×ns equally over N prediction points, i.e., n̄ = dknns/Ne, and obtains global
approximations to ca and ¶mica , i = 1,2 in Wm .

y_Naivey_SKGy_SK
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0.08

0.06
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0.02

0.00

y_Naivey_SKGy_SK

4000 8000

Panel variable: n_s

(a) Boxplots of ERMSEs for ĉa

NaiveSK4GSKG-GSK-G

0.4

0.3

0.2
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0.0

NaiveSK4GSKG-GSK-G

4000 8000

Panel variable: n_s

(b) Boxplots of ERMSEs for ¶̂m1 ca

Figure 2: Boxplots of ERMSEs for ĉa and ¶̂m1ca over 50 macro-replications with n = 50 and k = 16 for
a = 0.99.

Results. The entire experiment is repeated for 50 macro-replications and the results are summarized in
Table 2 and Figures 2 (a) and (b). We first focus on the impacts of the number of simulation replications n
and the sample size ns on the performances of the methods under consideration. The table shows ERMSEs
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and the associated standard errors of ĉa , ¶̂mica for a = 0.99 with a fixed computational budget n×ns = 105

allocated at each of the k design points.
For the prediction of CVaR, both SK and SKG outperform the naive simulation NS with their mean

ERMSEs nearly one order of magnitude smaller. Furthermore, it is seen that SKG shows a better performance
over SK as the sample size ns becomes larger. We observe that the computational budget spent at each design
point ns ×n has a greater influence on the performance of metamodels than the number of design points k
does; increasing k from 16 to 25 in this example does not make a noticeable difference on performances
of metamodel-based approaches. When it comes to gradient estimation SK4G and SKG-G seem to play
equally well; as ns becomes moderately large, both methods outperform NS. It is interesting to notice that
doubling the sample size ns while reducing the number of replications n by a half nevertheless decreases
the mean ERMSEs for the SKG-G and SK4G by nearly a half. Given the low simulation noise level in this
particular example and the knowledge that ns affects both the variance and bias of CVaR and its gradient
estimators, it is not surprising to see the dominating role ns plays in improving prediction and gradient
estimation performances.

We further explore the impact of ns by fixing the number of simulation replications n to 50 and the
number of design points k to 16 while increasing ns from 2000 to 8000. Figure 2 (a) and (b) show the

boxplots of ERMSEs for ĉa and ¶̂m1ca for ns = 4000 and 8000; the results for ¶̂m2ca are similar in nature.
In the figures, we can see the advantage of using SKG and SKG-G for global approximations to CVaR
and its sensitivities. Experiments with k = 25 lead to quite similar results.

4.3 Derivative Portfolio on a Single Asset

For this example, we consider a portfolio consisting of three derivatives on a single asset with initial price
S0:

• short one call option with payoff H1(S) =−(ST −Kc)
+ with Kc = 101.

• long one put option with payoff H2(S) = (Kp −ST )
+ with Kp = 110.

• short one Asian call option with payoff H3(S) =−
(
q−1 åq

i=1 Sti −Ka
)+

with 0 ≤ t1 < · · ·< tq ≤ T
with Ka = 110.

The real-world drift is m = 8%, and volatility is s = 20%. The risk-free rate is r = 3%. The derivatives
have the common maturity T = 1/12 year. And the risk horizon is t = 1/52 year and it is the time at
which the random loss L(S0) is computed. This random loss is the sum of values of three derivatives at t ,

and the calculation is done under the risk-neutral measure by L(S0) =−å3
i=1E

[
e−r(T−t)Hi(S)

∣∣∣Ft

]
where

Ft is the information set available at t . In more detail, it is given by

L(S0) = e−r(T−t)

{
E

[
(ST −Kc)

+
∣∣∣St

]
−E

[
(Kp −ST )

+
∣∣∣St

]
+E

[(
1
q

a

å
i=1

Sti +
1
q

q

å
i=a+1

Sti −Ka

)+∣∣∣∣∣St1 , . . . ,Sta ,St

]}
, (8)

where a is an integer such that t1 < · · ·< ta ≤ t < ta+1 < · · ·< tq ≤ T and, in this example, a = 2 and q = 6.
At this point, let us describe the dynamics of the underlying stock price S. Under the real world

probability, it follows the Geometric Brownian Motion with drift m and volatility s , and it is St =
S0 exp

((
m −s2/2

)
t +sWt

)
for t ≤ t . Recall that we calculate L(S0) under the risk-neutral probability and

in this measure St = St exp
((

r−s2/2
)
(t − t)+sBt−t

)
for t > t . Here, W and B are two independent

standard Brownian motions. Knowing the history of S at time t is equivalent to knowing the Brownian
path W up to t . Denoting q−1 åq

i=1 Sti by S, the pathwise derivative of L(S0) is given by

L′(S0) = e−r(T−t)

{
E

[
1{ST ≥ Kc}

ST

S0

∣∣∣St

]
+E

[
1{ST ≤ Kp}

ST

S0

∣∣∣St

]
+E

[
1{S ≥ Ka}

S
S0

∣∣∣∣∣St1 , . . . ,Sta ,St

]}
. (9)
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Note that two expressions inside the expectations in (8) and (9) provide us with the unbiased estimators
of the random loss and its first order sensitivity with respect to S0, respectively.

Experiments. For this example, we use the standard nested simulation to estimate CVaR and its
sensitivity. For the outer level simulation, we generate nouter scenarios up to the risk horizon t , say
w1, . . . ,wnouter which represent the simulated Brownian paths of W . Conditional on each scenario w i, we
generate ninner independent inner level sample paths, which determine the cash flows of the portfolio from
time t to T , i.e., z i1, . . . ,z i,ninner that are the simulated sample paths of B. For each w i and z i j, j = 1, . . . ,ninner,
we obtain a pair of (Li,Di) where Di = dL/dS0 under scenario w i. To save some space, we do not include
formulae for the pair which are quite straightforward to derive.

We continue to describe our experimental design. The space for S0 is WS0 = [80,120] from which we
select k design points. Recall under scenario w i, we get a pair (Li,Di). Hence, for nouter scenarios at a
fixed design point, there are {(Li,Di)}

nouter
i=1 , and we compute estimates for CVaR and its gradient using (7)

by replacing ns with nouter. To apply stochastic kriging, we repeat this two-level simulation n times at each
of k design points. Consequently, we get n estimates of ca and ¶S0ca at k design points, based on which
CVaR response surface and gradient surface are obtained. In particular, the prediction points are N = 193
regularly spaced points in WS0 . As for design points, we consider three cases k ∈ {7,13,25}. In all cases,
the design points are also equally placed in the design space. Since the closed-form expressions of ca ,
¶S0ca are not available, the true values at N prediction points are approximated using computational budget
of nouter = 105 and ninner = 500. We present the results for a = 0.95 with k = 13 and 25 only.

Results. The topic of optimal sampling rules for nested two-level simulation has been studied in the
literature. See, for example, Gordy and Juneja (2010) or Broadie et al. (2011a). In this example, we make
an attempt to assess the impacts of nouter and ninner on the performances of the metamodel-based methods under
consideration. The entire experiment is repeated for 100 macro-replications and the resulting ERMSEs are
summarized in Table 3.

For each two-level simulation, the 1/3 : 2/3 uniform rule uses nouter =
⌈
(ns)

2/3
⌉

and ninner =
⌈
(ns)

1/3
⌉
.

In contrast, some papers propose that the sampling rule of nouter = ns and ninner = 1 can lead to better results.
Our experience with this example tells that the 1/3 : 2/3 uniform rule works better and hence is adopted
in the experiments for comparing the performances of SK, SKG, and SK4G. For the naive simulation
scheme NS, the simulation budget allocation at each of the N = 193 check-points is n̄outer =

⌈
(knns/N)2/3

⌉

and n̄inner =
⌈
(knns/N)1/3

⌉
, which amounts to approximately equivalent total computational budget as used

in simulations for metamodel-based methods.
Table 3 shows the ERMSEs and the associated standard errors for ĉa , ¶̂S0ca with a = 0.95 and

the computational budget of ns = nouter × ninner at each design point. We consider three cases ns ∈ {3.2×
104,105,2.5× 105}. For the prediction of CVaR, both SK and SKG outperform NS in all cases, and it
seems that SK is slightly better than SKG. Regarding the prediction of CVaR sensitivity, the performances
of all methods improve as the computational budget (in terms of k or ns = nouter × ninner) increases. In
particular, SKG-G and SK4G outperform NS as ns increases to 105 with k = 25 design points. Based on
our extensive numerical tests, we emphasize the crucial role played by ns as compared to the number of
design points k and the number of simulation replications n without showing the detailed results. Although
this example shows a potential of SKG and SKG-G without using advantageous experimental designs, it
demonstrates that an optimal budget allocation rule is not at all obvious for building a metamodel in which
the selection of design points, the number of simulation replications, outer/inner simulations are involved
at the same time. This is one of several research topics that we will address in our future work.

5 CONCLUSION

In this paper, we proposed methods for obtaining global approximations to the so-called CVaR and its
sensitivities. The methods are based on stochastic kriging using gradient estimators when available.
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Table 3: The mean ERMSEs and the corresponding standard errors for ĉa and ¶̂S0ca over 100 macro-
replications using n = 10 and 1/3:2/3 uniform rule for a = 0.95.

ns = nouter ×ninner 3.2×104 105 2.5×105

ERMSE k 13 25 13 25 13 25

ĉa

SK 3.61E−01
(3.70E−03)

3.53E−01
(2.90E−03)

2.54E−01
(2.60E−03)

2.41E−01
(1.90E−03)

1.89E−01
(1.90E−03)

1.80E−01
(1.20E−03)

SKG 4.38E−01
(5.60E−03)

4.50E−01
(4.40E−03)

2.51E−01
(2.50E−03)

2.48E−01
(2.10E−03)

1.98E−01
(2.20E−03)

1.95E−01
(1.40E−03)

NS 5.99E−01
(3.30E−03)

4.79E−01
(2.30E−03)

4.05E−01
(2.10E−03)

3.25E−01
(1.60E−03)

2.97E−01
(1.50E−03)

2.38E−01
(1.20E−03)

¶̂S0ca

SK-G 6.09E−02
(1.00E−03)

5.12E−02
(1.20E−03)

4.64E−02
(1.10E−03)

3.79E−02
(7.13E−04)

3.80E−02
(9.00E−04)

3.11E−02
(5.85E−04)

SKG-G 2.44E−02
(6.10E−04)

2.09E−02
(9.68E−05)

1.35E−02
(3.25E−04)

8.20E−03
(4.95E−05)

1.32E−02
(2.02E−04)

6.80E−03
(3.05E−05)

SK4G 2.50E−02
(1.59E−04)

2.43E−02
(1.02E−04)

1.50E−02
(1.83E−04)

9.30E−03
(8.02E−05)

1.56E−02
(1.36E−04)

7.60E−03
(5.35E−05)

NS 2.42E−02
(1.41E−04)

1.67E−02
(1.06E−04)

1.45E−02
(8.59E−05)

1.68E−02
(6.24E−05)

1.14E−02
(5.71E−05)

7.90E−03
(5.10E−05)

Stochastic kriging is a metamodeling technique such that the unknown function response is modeled using
Gaussian random fields and, in addition, simulation noises are taken into account. Computing risk measures
of asset portfolios can be quite time-consuming due to the complexity of financial products. Thus, a good
prediction model based on estimates at a small number of points can be very useful in practice. For this
purpose, we build a stochastic kriging metamodel, and in particular, we do so in a way that the derivative of
the metamodel for CVaR is again a metamodel for CVaR sensitivities. We demonstrated the performances
of metamodels through three examples with different complexities: first, European call option, second,
quadratic random loss of two assets, and lastly, a derivative portfolio of a single asset. It is observed that
the methods are potentially useful, however, the optimal budget allocation for two-level simulation requires
further investigations.
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