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ABSTRACT

The modeling and simulation of inpatient healthcare systems comprising of multiple interconnected units
of monitored care is a challenging task given the nature of clinical practices and procedures that regulate
patient flow. Therefore, any related study on the properties of patient flow should (i) explicitly consider the
modeling of patient movement rules in face of congestion, and (ii) examine the sensitivity of simulation
output, expressed by patient delays and diversions, over different patient movement modeling approaches.
In this work, we use a high fidelity simulation model of a tertiary facility that can incorporate complex
patient movement rules to investigate the challenges inherent in its employment for resource allocation
tasks.

1 INTRODUCTION

An Intensive Care Unit (ICU) is a limited-capacity, resource-intensive unit designed to deliver intensive
monitored care for a diverse set of high acuity clinical conditions. The daily cost of ICU operations is higher
than that of standard care nursing units due to the requirement for higher nurse-patient ratios, invasive
bedside procedures, and expensive monitoring equipment (Groeger et al. 1993). The daily ICU operations
are driven by a number of factors, such as clinical practices, unit occupancy, staff scheduling, the operating
status of other units of the host healthcare facility, and resource management decisions.

At VA Pittsburgh Healthcare System (VAPHS), a large tertiary care Veterans Healthcare Administration
(VHA) facility, the most intensive units in terms of human and technological resources include the medical
intensive care unit (MICU), the coronary care unit (CCU), and the surgical intensive care unit (SICU).
Step-down units are somewhat less intensive, while the monitored and telemetry units require still a lesser
level of resources. Regular hospital beds are the least resource intensive. Patients can move from more
intensive to less intensive levels of care (and the reverse) as their condition changes over the course of their
hospital stay. However, due to capacity restrictions, patients may not be able to move to the requested unit
and level of care. We will refer to this phenomenon as patient blocking. Furthermore, in the event of bed
unavailability at VAPHS, patients may have to be diverted to another regional facility when medically able
to do so. We will refer to this phenomenon as patient diversion.

Patient blocking is an important patient flow characteristic with an impact on operating costs and the
timely delivery of healthcare services. Blocked patients can occupy resources meant for higher levels of care
than clinically needed, thereby increasing operating costs without improvement on healthcare outcomes.
We assume that a patient blocked in a unit with a higher level of care does not experience worse outcomes,
although this may not be true (Teng et al. 2009). Furthermore, patient blocking might propagate and
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disrupt operations in other related units. For example, patient blocking at an ICU may delay bed availability
which, in turn, may affect the operations at the surgical theater. In some cases, patients with illnesses
necessitating ICU level of care may be forced to receive intensive care in non-monitored beds, or other
more stable patients may be discharged prematurely incurring a significant cost.

Patient diversion is another important patient flow statistic with a significant impact on VAPHS patient
expenditures. In reality, the majority of ICU patients get diverted before their arrival at the VAPHS facility.
An operator is responsible for orchestrating the transfer of the patient from the off-site facility to the VAPHS.
Given the patient’s medical condition and a waiting time estimate from the Emergency Department (ED), the
operator decides whether the patient should be diverted to another facility. There is no generally accepted
estimate on the time above which a patient is diverted and often diversion decisions are case specific.
Furthermore, given the large risks and expense of diverting patients from the ICU, there is a strong bias
against diversions whenever possible.

Identifying the factors that drive patient blocking and diversions is a challenging task given the inherent
complexity of the healthcare facilities where ICUs operate. Given that most ICU patients experience
multiple unit transitions, it is important to adopt a modeling approach that will consider the ICUs as an
integral part of a larger healthcare facility. While most researchers concentrate their modeling effort on
some individual area of the hospital, large scale simulation models are relatively rare. This may be due to
the unique challenges pertaining to increased data requirements and the need for extensive clinical personnel
involvement. Moreover, given the size of the facility and the complexity of rules (often case specific)
dictating patient movement, it is important to develop simulation code able to accurately represent patient
flow under a large number of model inputs pertaining to (i) resource allocation schemes, and (ii) possible
sets of patient movement rules. This is particularly important for the sensitivity analysis of model output
since the testing of various interventions will have to be performed over a variety of patient movement
rules and policies that attempt to approximate, on average, the actual patient flow dynamics.

In light of the above, the work presented herein concerns our extensive simulation work on a resource
allocation project on the VAPHS. Although the work is specific to the VAPHS facility we believe that the
depth of the analysis and the empirical findings can provide useful feedback to future large scale healthcare
projects. The rest of this paper is structured as follows: In Section 2 we give an overview of the challenges
inherent in the modeling of ICUs. Next, in Section 3 we describe the facility that is the center of our
analysis. Subsequently, in Section 4 we present the simulation model developed with a focus on patient
blocking and diversions. In Section 5 we describe the simulation work and the sensitivity analysis of our
results. Finally, in Section 6 we summarize our work and outline a number of directions for future research.

2 CHALLENGES IN ICU MODELING

Patient Blocking, Diversions, and Other Issues: In this section, we take a closer look at the factors
that make modeling, analyzing, and managing ICUs challenging. Clinical units and particularly ICUs are
specialized units that admit critically ill patients and may vary significantly across different hospitals. Some
hospitals utilize ICUs that are dedicated to specific patient types. For example, a single hospital might
possess a medical ICU as well as a surgical ICU that only handles surgery patients. Smaller hospitals
may have only a single ICU that handles all patient types and illnesses in which case prioritizing patients
is a critical issue. Yet still other hospitals may have ICUs dedicated to a subset of patients, for example
a neurosurgical ICU. Irrespective of the configuration, all ICUs have only a finite (and relatively small)
number of beds. Several types of illnesses can send a patient to the ICU, and depending on the type and
acuity of the illness, the regimen prescribed to the patient, and physiological differences between patients,
it may be difficult to model a “typical” ICU patient’s flow through the system. Even patients suffering
from the same illness can have vastly different experiences in the ICU. This inherent heterogeneity makes
it difficult to assess an “average” patient’s length of stay or the overall impact on other units of the hospital.

As the most resource-intensive unit in a healthcare facility, the ICU cannot be analyzed in isolation
from other upstream or downstream inpatient units and departments. The majority of ICU patients follow



Bountourelis, Nabors, Eckman, Luangkesorn, Schaefer, and Clermont

a similar flow through the system. As soon as the patient is medically ready to leave the ICU, a request
is made by the attending physician to transfer the patient to a telemetry, step-down, or regular hospital
bed that is less intensive than the care received in the ICU. From the step-down bed, the patient is usually
transferred to a regular hospital bed from which he or she is ultimately discharged. However, patients may
have trouble getting getting into, and out of, the ICU due to the blocking phenomenon.

Blocking in the ICU can happen in the following ways: First, an arriving patient who requires intensive
care may be denied admission to the ICU due to bed unavailability (i.e., all ICU beds are occupied, or the
unoccupied beds may not be suitable for the new patient). In such cases, an existing ICU patient may be
(prematurely) transferred to a lower level of care to accommodate the new patient; otherwise, the arriving
patient must be diverted to another hospital or treated at a lower level of care, thereby delaying the critical
care they need. In extreme cases, patients must receive ICU-level care in non-monitored beds. For instance,
equipment and personnel may need to be moved to the emergency department to administer ICU-level care
and stabilize the patient until an ICU bed is available. Blocking has devastatingly negative effects on the
operation and flow of the ICU and other hospital units. For example, unavailability of an ICU bed may
cause ED overcrowding, surgery cancellations for procedures that require post-surgery intensive care, and
inadequate delivery of high acuity care.

The second type of blocking is experienced by existing ICU patients who cannot be transferred out
of the ICU due to unavailability of beds at lower levels of care. That is, patients who are medically able
to leave the ICU might be forced to stay there until a downstream bed becomes available. Obviously,
this type of blocking serves to exacerbate the former type as fewer ICU patients can be admitted. It is
important to note that patients who are prematurely transferred out of the ICU may be forced to re-enter
it if their medical condition worsens at any downstream stage. Blocking also stems from a shortfall of
external nursing care facilities, or due to institutional rules and procedures. For example, if transfers to
external facilities are prohibited during the weekend, step-down and hospital beds can all become occupied
over the weekend, thereby blocking the transfer of ICU patients.

Clinical Practices and Procedures: Modeling an ICU (and its interacting units) is complicated by clinical
practices and procedures that are often employed to control the flow of patients into and out of the ICU.
These practices can be viewed as “rules of thumb” for daily ICU operations, and they can vary dramatically
across hospitals or across doctors within the same hospital. For example, a medical ICU (MICU) might
accept post-surgery patients if no beds are available in the surgical ICU (SICU) or in the post-anesthesia
room (PAR) of the hospital. As noted earlier, some ICUs may discharge patients early if the ICU occupancy
reaches its peak. Patient demographics, proximity to other clinical facilities, and the level of outpatient
care available may also affect the length of stay and the patient mix. Ultimately, a universal set of rules
for transferring or discharging patients does not exist, thereby complicating the task of modeling these
important dynamics.

The simulation modeler must decide which rules to include and which to exclude, for each rule added
to the model can potentially add one or more control parameters that need to be estimated from data. For
example, it is clear that not all surgery patients are diverted to the MICU following surgery, but the exact
proportion that are diverted may be difficult to estimate, even for clinical staff members who are involved
in day-to-day decision making. Out of necessity, these parameters can be assigned initial values based on
an educated guess and subsequently updated when the (simulation or analytical) model is calibrated. But
if the number of unknown parameters is significant, the process of calibrating the model can be nontrivial
and very time-consuming. In the next section we provide a description of the clinical facility that is the
focus of this work.

3 FACILITY

The VAPHS hospital serves as an acute care facility and has 146 inpatient beds distributed among medicine,
surgery, neurology, cardiology, and critical care. The VAPHS facility is comprised of several ICUs, inpatient
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units, and departments. Table 1 summarizes the units (modules) explicitly modeled. After examining patient

Table 1: VAPHS Unit Bed Capacity and Staffing.

Inpatient Units Explicitly Modeled
Unit Name # of Beds Nurse-Patient Ratio

Medical ICU (MICU) 8 1:2
Surgical ICU (SICU) 9 1:2

Coronary Care Unit (CCU) 12 1:2
Step Down Unit (SDU) 9 1:3
Monitored Medical unit 13 1:4
Monitored Surgical unit 12 1:4

Non-Monitored Medical and Surgical units 71 1:5

data files, we compile a list of locations from which patients apply for admission to the inpatient units
listed in Table 1. Subsequently, with the help of the Subject Matter Experts (SME), we aggregate those
locations into five patient sources listed below:

1. Emergency Department (ED)
2. Operating Room (OR)
3. Post-Anesthesia Recovery (PAR) Room
4. Other Floors
5. Direct Admissions

4 SIMULATION MODEL

4.1 Simulation Software

The simulation model is coded in the OMNeT++ simulation package, an event-driven C++ simulation
library designed for building network simulators (OMNeT++ Community 2001) for telecommunication
applications. OMNeT++ provides versatile tools for configuring simulation models and collecting simulation
output. This platform adopts a modular approach for building simulation models that makes it easy to
implement complex scenarios and configurations. OMNeT++ allows the separation of model and input data
through the use of a configuration text file. Furthermore, we can implement complex patient movement
policies by describing them as text in the aforementioned configuration file. As a result of the above, the
use of OMNeT++ can result in a simulation model that can be easily configured for thousands of simulation
runs which can then be performed in parallel on a computer cluster. This is a necessary requirement for
evaluating model inputs and performing sensitivity analysis as we will see in the subsequent chapters of
this article.

4.2 Modeling the Facility

The ICU patient flow simulation model used in this work is an updated version of the model presented
in Bountourelis et al. (2011). The simulation model is comprised of a set of modules corresponding to the
patient sources (Items 1-5) and units (items of Table 1). The modules have a number of attribute variables
pertinent to the unit or department they represent (e.g., number of beds).

An integral feature of the model is the use of a database containing patient instances that correspond to
real de-identified cases of patients admitted and treated at the VAPHS. The patient instances were compiled
from patient movement data retrieved from the VAPHS data warehouse. Each patient instance is described
by (i) an arrival source (Items 1-5), (ii) a sequence of visited units and departments (items of Table 1 and
Items 1-5), and (iii) a corresponding sequence of length of stay (LOS) values. Furthermore, using the
initial database entries for every patient we estimated a series of patient arrival rates. That is, for every
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patient source, hour of the day, and day of the week, we were able to estimate a patient arrival rate. For
more details regarding the model structure and the processing of VAPHS patient movement data we refer
the reader to Bountourelis et al. (2011).

The program logic underlying patient generation and movement is as follows: Every hour of the day
and day of the week, the program retrieves the corresponding arrival rate for each patient source and
generates a number of patient arrivals using the Poisson distribution. Subsequently, the program queries
the patient database and randomly selects, with replacement, the corresponding number of patients from
each source. The patient entities are inserted into the generating module in order to initiate their transition
through the different modules of the simulation program. When a patient’s assigned LOS expires, a request
is made for a bed in the unit listed next in the unit sequence. In case there is no available bed in the next
assigned unit, the patient entities can be moved to a different simulation module (representing a unit or
department) according to a selected set of movement rules. After the next LOS expires, the patient resumes
the unit sequence. If no bed is found, the patient is declared blocked until a suitable bed becomes available.
When the patient entity completes the assigned unit sequence, the patient is discharged and output data is
extracted.

4.3 Patient Movement Rules

As discussed in Section 2, patient flow is regulated by a collection of rules (often undocumented) that can
vary even between doctors of the same hospital. Generally speaking, the transferring of patients between
units is based on the grouping of monitored units by level of care. Units with similar levels of care
(or higher) are often considered as alternatives for blocked patients. For example, a medical telemetry
unit might accept post-surgery patients if no beds are available in the surgical telemetry, or the CCU
might accept patients that otherwise would be admitted at the congested MICU. While a collection of
these rules are an important component for the simulation work, it is impossible to account for all of
the possible scenarios that might be encountered. Therefore, it is important for a large scale simulation
model to read and implement sets of patient movement rules in an attempt to capture the underlying trends
of patient flow. The objective is to run the model over different sets of rules so that the modeler can
conduct sensitivity analysis and examine the robustness of resource allocation schemes under a variety of dif-
ferent scenarios. In this simulation work, we consider two approaches for modeling patient movement rules:

Explicit Rules: In this approach, patient movement rules are described as a set of directives. A set of
directives is illustrated in Table 2 where every row is a collection of alternatives for patients who cannot
find a bed at their next assigned unit. The first column denotes the patient’s current location and the second
column his or her assigned unit. The rest of the entries denote the units (in order of preference) where the
simulation program will look for an available bed.

Generic Rules: In this modeling approach blocked patients seek an available bed at a unit of the same
level of care. If a bed cannot be found, they seek a bed at a unit of an immediately higher level of care
with a pre-specified probability. If beds are available in more than one unit of immediately higher level of
care, the patient is transfered to the one with the most available beds.

Patient Diversions: In reality, the majority of diversion decisions for ICU patients are made before
their arrival at the VAPHS facility. On the other hand, telemetry patients usually have to wait for an
amount of time (depending on their condition) before being diverted to another facility. In this model
we adopt the following rules governing patient diversions: (i) for an ICU patient arriving from the ED
or Direct Admissions, if a bed cannot be found using the patient movement directives, he or she is
diverted immediately, and (ii) for a telemetry patient arriving from ED or Direct Admissions, if a bed
cannot be found using the patient movement directives, he or she is diverted after a pre-specified waiting time.
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Patient Blocking: Patient blocking can occur for patients residing in patient sources (Items 1-5) and units
(items of Table 1) if their next assigned unit (items of Table 1) has no available beds. If no bed is found at
the alternative units, or if there are no alternatives at all, the patient is declared blocked. Patient movement
directives attempt to capture a wide range of possible scenarios. In some instances a post-surgery patient
might be moved to an MICU instead of the SICU, or another patient initially assigned to a monitored unit
might be moved upstream to a higher level of care.

Table 2: Movement Directives.

Explicit Patient Movement Rules
Current Destination Alternatives Current Destination Alternatives
ED MICU CCU, SICU PAR MICU SICU, CCU
ED SICU MICU, CCU PAR SICU MICU, CCU
ED CCU MICU, SICU PAR CCU SICU, MICU
ED SDU SICU, MICU PAR SDU SICU, MICU
ED Mon. Med. Mon. Surg., SDU PAR Mon. Med. Mon. Surg.
ED Mon. Surg. Mon. Med., SDU PAR Mon. Surg. Mon. Med.
Outside MICU CCU, SICU MICU SDU None
Outside SICU MICU, CCU MICU Mon. Med. Mon. Surg.
Outside CCU MICU, SICU MICU Mon. Surg. None
Outside SDU SICU, MICU SICU SDU None
Outside Mon. Med. Mon. Surg. SICU Mon. Med. Mon. Surg.
Outside Mon. Surg. Mon. Med. SICU Mon. Surg. SDU
OR MICU SICU, CCU CCU SDU None
OR SICU MICU, CCU CCU Mon. Med. Mon. Surg.
OR CCU SICU, MICU CCU Mon. Surg. SDU
OR SDU SICU, MICU SDU MICU SICU, CCU
OR Mon. Med. Mon. Surg. SDU SICU MICU, CCU
OR Mon. Surg. Mon. Med. SDU CCU MICU, SICU
SDU Mon. Med. Mon. Surg. SDU Mon. Surg. None

4.4 Measures of Interest

In the following we introduce our approach to evaluate the potential cost impact of patient blocking and
diversions through the use of relevant measures that capture the overall monetary effects of these phenomena.
We will refer to them as the cost of blocking and the cost of diversions.

Blocking and Associated Cost: The driving factor behind the definition of blocking cost is that blocked
patients occupy expensive resources no longer clinically required; consequently, operating costs increase
without improvement in healthcare outcomes. We retrieve a daily operating cost for each of the units
included in the simulation model and we calculate the cost of blocking as follows: For each unit, the
simulation model records all the experienced blocking times and the corresponding destination units.
Subsequently, we obtain the monetary impact of the particular blocking sample by multiplying the dif-
ference in daily operating expenses between the current and the destination unit with the corresponding
blocking time. Using the sum of blocking costs we calculate an average monthly blocking costs for each unit.
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Diversions and Associated Cost: From an analysis of VAPHS patient diversion data, we conclude that
there are two types of diversions that represent the most substantial cost to the hospital: ICU and monitored
diversions. ICU diversions are instances when a patient cannot be admitted to an intensive care unit (MICU,
SICU, or CCU) and is diverted to another facility for immediate care. Monitored diversions differ from
ICU diversions in that the patient is seeking admission to a lower-level monitored unit (monitored medical
or monitored surgical unit). ICU diversions are the more expensive type with an estimated cost per episode
of $21,000 versus $6,600 for monitored diversions. For our analysis, monthly average diversion costs are
calculated by multiplying the average number of ICU and general diversion episodes by their respective
cost estimates and summing.
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Figure 1: Real vs Simulated occupancies for “Explicit” and “General” patient movement rules.

5 CASE STUDY

The case study presented in this section concerns the construction of an additional floor at the VAPHS and
its impact on the blocking and diversion costs under different numbers and mixtures of beds. We allow the
additional space to include a mixture of beds belonging to the ICU and monitored units of Table 1. It is
evident that the evaluation of all possible configurations for a given number of beds can be a computationally
demanding proposition. For example, the addition of nine beds of (potentially) six different kinds can
result in a total of 2002 configurations. Furthermore, the model will have to be tested over different patient
movement rules thus increasing significantly the total number of simulation runs. Therefore, to alleviate
the computational effort we consider possible configurations with beds distributed between a maximum of
two units; this results in pure and pairwise configurations for the total number of added beds (i.e., a pure
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configuration consists of a single bed type whereas a pairwise configuration consists of some combination
of two bed types, for example, SDU and monitored beds).

To evaluate the sensitivity of simulation output with respect to patient movement rules, we perform
our simulation runs over two sets of patient movement rules derived from the aforementioned modeling
approches, the explicit and generic movement rules. The first set is illustrated in Table 2 and will be referred
to as “Explicit”. The second set will be referred to as “General”. The starting point for out analysis is that
both of the considered patient movement rules result in a valid simulation model with respect to the average
unit bed unitilizations. As we illustrate in Figure 1, the average unit utilizations resulting from both models
are close to the real bed utilizations observed from the analysis of patient flow data. In particular, for
the model implementing the “Explicit” set of rules, the real utilization falls within the confidence interval
produced by the model for all units except MICU and CCU. However we should note that the combined
MICU and CCU model utilizations agree with the corresponding combined real utilizations. This is due
to the fact that patient movement rules hardly discriminate between MICU and CCU thus leading to the
observed imbalance. Similar observations pertain ot the model with the “General” set of rules. We have to
note that we do not consider the non-monitored units of the facility due to the lack of reliable occupancy
data. Furthermore, non-monitored facilities can be found in different parts of the tertiary facility and most
often they do not experience congestion issues as is the case for higher level units.

The scope of this resource allocation case study can be summarized as follows: (i) examine the marginal
difference of different bed levels with respect to the cost of blocking and diversions, (ii) highlight the
trade-offs of each combination of bed type and level, i.e., increases and/or decreases of blocking and
diversion costs that are observed by varying the combination of different bed types, and (iii) perform a
sensitivity analysis that will explore the robustness of the aforementioned observations over the two sets
of the considered patient movement rules.

5.1 Simulation Output Analysis

We simulated all possible bed combinations resulting from the addition of 3 to 13 beds of pure and pairwise
combinations of ICU, SDU and monitored units. Each configuration was simulated for 120 replications over
a period of 12 months. The simulation output consisted of the following measures (i) an average monthly
blocking cost, and (ii) the average monthly cost of ICU and general diversion episodes. An illustrative
picture of the expected costs under the addition of different levels of beds is given by the plots of Figure 2.
For each considered set of patient movement rules and additional bed levels, we demonstrate an “efficient
frontier” of the configurations, i.e., the configurations with the best empirical blocking and diversion costs.

For each bed level and output measure we identify the set of the best configurations using a standard
single-stage subset selection procedure. The procedure returns a subset (whose size can be random)
that contains the best configurations with probability ≥ 0.95. For more details on the procedure and its
implementational details we refer the reader to Boesel et al. (2003). We illustrate the most favorable
configurations for the case of nine additional beds (expressed as a vector of additional beds to the current
base configuration) at Tables 3 and 4.

The first general observation comes from Figure 2 and pertains to the marginal difference of the different
levels of additional beds. The difference is greater for the “General” policy, a set of movement rules that
result in greater movement flexibility when compared to “Explicit” policy. This observed difference of
scale (particularly in terms of divergence cost) is a result of the increased freedom of movement made
possible by the “General” set of movement rules. We notice that even if the shape of the “efficient frontiers”
remain largely unchanged under the two sets of patient movement rules, their positioning in the cost scale
is different. In particular, the curves corresponding to “General” rules indicate considerable savings with
respect to diversion costs. This observation supports the conjecture that there is more room for patients
moving upstream when we relax patient movement rules. Furthermore, it highlights another important
attribute of large scale simulations; patient movement rules can greatly affect a particular statistic (in this
case patient diversion costs) with its values changing up to 50%.
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Figure 2: Frontiers for general and explicit movement rules. Solid lines connect solutions with the same
number of added beds. The Basic configuration corresponds to the base bed configuration used in this
experiment and the depicted bars to the confidence intervals for the considered output measures.

A second observation pertains to the most favorable bed configurations (for the case of nine additional
beds) under the “Explicit” policy illustrated in Tables 3 and 4. We notice that for both considered measures
a combination of SDU and monitored beds is a well balanced robust solution that seems to alleviate both
blocking and diversions. These two bed types serve as down-stream beds for patients from the SICU,
the unit responsible for the greatest portion of blocking expenses according to historical VAPHS data.
So a mixed configuration impacts the overall cost of blocking and diversions in the following ways: (i)
by alleviating blocking cost at the SICU for patients going downstream, (ii) by indirectly reducing ICU
diversions through facilitating SICU patient throughput to SDU, and (iii) significantly reducing monitored
diversions with the direct addition of monitored beds. Although the above observations do not contradict
with intuition, we are able to quantify the optimal mixture of beds by selecting the configurations that
belong to both sets of favorable configurations.

However, the picture is different when we examine the most favorable configurations under the ”General”
set of rules. As illustrated in Table 3, the best configurations with respect to patient blocking is a combination
of SDU and monitored beds. However, as illustrated in Table 4, the best configuration with respect to
patient diversions allocates all nine beds to the SICU. This is due to the fact that the more relaxed rules of
“General” policy tend to direct patient flow ”upstream”, especially when there is enough capacity to do so.
As a result, the increased SICU capacity mininimizes ICU diversions whereas the upstream patient flow
has an alleviating effect on the general diversion episodes originating from the monitored units. In reality,
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such concentration of patients would be avoided since the daily cost of an ICU is greater than that of a
less intensive care unit. This observation highlights one of the possible pitfalls when modeling complex
healthcare systems; we might reach different conclusions under different but validated patient movement
rules.

Table 3: Best solutions with respect to cost of patient blocking.

MICU SICU CCU SDU Mon Med Mon Surg Policy
0 0 0 6 0 3
0 0 0 5 0 4 Explicit
0 0 0 7 0 2
0 0 0 6 0 3
0 0 0 7 0 2 Generic
0 0 0 8 0 1

Table 4: Best solutions with respect to cost of patient diversions

MICU SICU CCU SDU Mon Med Mon Surg Policy
0 0 0 4 0 5
0 0 0 5 0 4
0 0 0 6 0 3 Explicit
0 0 0 3 0 6
0 0 0 2 0 7
0 9 0 0 0 0 Generic

6 DISCUSSION

In this article we present our work regarding a resource allocation project using a large scale simulation model.
The challenges pertain to (i) the complexity of patient flow dictated by clinical practices and procedures,
(ii) the implementation of pertinent patient movement rules that capture patient flow characteristics, and
(iii) the sensitivity of the resource allocation schemes with respect to different sets of patient movement
rules. We compile a simulation model able to implement complex patient movement scenarios in the face
of congestion and conduct a sensitivity analysis of the considered simulation output over two sets of patient
movement rules.

We conclude that different patient movement rules can affect patient flow statistics as well as lead to
different conclusions when used to support resource allocation decisions. Furthermore, the work presented
herein highlights the increasing need for the employment of sophisticated simulation software when modeling
large healthcare systems. In particular, the need for incorporating complex movement rules and extensive
model testing translates to software that deviates from the standard market packages and can be executed
in parallel in computer clusters.

Future work includes the utilization of the simulation model to explore interventions beyond the realm
of resource allocation problems. An open question is whether simulation models can provide the necessary
fidelity to explore, for example, the benefits of truncating the LOS of a particular class of patients or the
impact of arrival stream variations.
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