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ABSTRACT 

Simulation has overcome critical obstacles to become a valuable method for obtaining insights about the 
behavior of complex systems.  George Box’s famous assessment that “all models are wrong, some are 
useful” referred to statistical models, but should now be reimagined to reflect that many simulation mod-
els are “right enough” to aid in decision making for important practical problems.  Over the past fifty 
years, simulation has transformed from its beginnings as a brute-force numerical integration method into 
an attractive and sophisticated option for decision makers.  This is due, in part, to the exponential growth 
of computing power.  Although other analytic approaches also benefit from this trend, keyword searches 
of several scholarly search engines reveal that the reliance on simulation is increasing more rapidly. A de-
scriptive analysis paints a compelling picture:  simulation is frequently a researcher’s preferred method 
for supporting decision makers and may often be the “first resort” for complex real world issues. 

1 INTRODUCTION 

The 1958 article, “Simulation Techniques in Operations Research” by John Harling, described simulation 
as a tool of “last resort.” Harling considered simulation to be analogous to waving the white flag and set-
tling for an approximate solution when it becomes too difficult to break a system down into a “simple” 
model.  However, three sentences after Harling called simulation a method of last resort, he went on to 
mention that that the cost of simulation often outweighs the benefits because “large machines are so often 
involved.”  This criticism seems laughable today, because Harling had yet to realize the phenomenon that 
Gordon Moore would formalize in 1965, when he predicted the exponential growth of computing power.  
While simulation was once an expensive and cumbersome brute-force means of estimating an answer,  
today’s analysts have more than 10 billion times more processing power (according to Moore’s Law) than 
Harling did.  With this expanded processing power, as well as advances in the practice of simulation, it 
makes sense that simulation should be an increasingly valuable technique. 

Astonishingly, the argument that simulation should be a last resort is, unfortunately, alive and well 
fifty years later.  In their 2008 article, “Dynamic Allocation of Airline Check-In Counters:  A Queueing 
Optimization Approach,” Parlar and Sharafali (2008) constructed a complex queuing model to “optimize” 
the number of employees that should man the counters for a modern airline.  Aside from a number of 
oversimplified, unrealistic assumptions (such as exponential service times, independence, and a known 
number of only one customer at a time arrivals) that allowed for tidy math, the article claimed that the 
problem should be tackled via “analytical treatment” rather than “resorting” to simulation because that 
approach is “more realistic” and the “results are on firmer ground.” 

In this paper, we present the results of keyword analysis involving several large search engines.  This 
assessment of simulation publications provides one measure of how the field has developed.  We find that 
the usage of simulation has grown exponentially, much like the computing power that supports such 
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models.  A comparison of search engine searches for analytical keywords “linear programming” and “op-
timization” shows that the growth of these particular topics has not kept pace with that of simulation.  A 
more detailed look at influential years, and historical developments leading up to these years, provides 
more context about the way simulation has developed as a field.  We feel that understanding this context 
is an interesting and useful topic for both undergraduate and graduate courses, as we prepare the next 
generation of simulation modelers, analysts, and researchers.  Moreover, teachers can use these findings 
to motivate their students, as they show the value of the material being taught. 

2 EARLY ROOTS 

Simulation proved useful as an analytic technique long before the astonishing growth in computing pow-
er.  In order to fully understand and appreciate the impressive rise in the use of simulation, one must pay 
respect to the genesis of its expansion.  In the early computer days of the 1950s and 1960s, simulation 
was by no means a new concept.  The use of simulation predates computers, with perhaps the most fa-

mous example being Buffon’s “needle experiment” to estimate the value of π in 1777 (Nance and Sargent 
2002).  Another well-known simulation took place in 1908, when William Gosset used manual simulation 
to empirically derive an estimate of the probability density function for his “Student’s ‘t’ distribution 
(Student 1908).  Over the years researchers were beginning to adopt the opinion that simulation could be 
used as a means of putting years of research and data to work.  Similarly, the use of simulation motivated 
further research and stimulated advancement across all operational fields as well as the business and mili-
tary worlds. 

In the business world, the dollar is the bottom line.  With that philosophy in mind, it makes sense that 
simulation began to gain popularity in the business world as the cost of sophisticated computers began 
falling.  In 1954, Cuthbert C. Hurd wrote of a machine-shop scheduling problem that was addressed using 
simulation after other methods failed.  Researchers from the 1953 Operations Research Society of Ameri-
ca meeting attempted to solve the scheduling problem through analytical means.  Specifically, they tried 
to apply “the theory of game and of linear programming,” but found those methods to be of little help.  
What was of great help was the IBM 701, a machine that “calculated directly” the solution to the ma-
chine-scheduling problem through simulation (Hurd 1954). 

Some of Hurd’s words were unique in that he complemented mathematicians and their deep explora-
tion of complex systems and the formulations that motivate them.  He credited their studies for benefitting 
the physical world and for igniting the desire for further research.  Hurd’s tip of the hat to theoretical 
mathematicians is in stark contrast to the common simulation versus analytical solution arguments that 
exist among some scholars.  Hurd suggested that “simulation by computation” was the key to unearthing 
deeper mysteries.  He went on to mention that simulation was continuing to gain popularity thanks to the 
falling “unit cost of carrying out computation.”  In other words, computers were getting cheaper.  Think-
ing back to the “bottom line” mentality, a cheap machine that computed the most cost-effective decision 
rules made perfect sense as the weapon of choice for high-level decision makers (Hurd 1954). 

Speaking of weapons, let us recognize the early uses of simulation as a tool in tactical decision mak-
ing.  That tool is known as the “war game.”  In a 1955 paper titled “Simulation as an Aid in Model Build-
ing,” R. P. Rich discussed a model that was based on a fleet air defense system.  He stressed that the fact 
that a military example was being used was purely “coincidental,” because almost any complex scenario 
could have been used to demonstrate the utility of simulation.  Rich’s paper is valuable in that it illustrates 
many benefits that arise from simulation,  but his words on war gaming are particularly relevant in the 
way they highlight how simulation has been used to model battlefield operations.  In a peculiar way, Rich 
(1955) used the word “machine” to describe simulation before he or the world had fully come to realize 
the impact that machines would have on the subject.  When he wrote that, “a war game is just a special 
type of simulator, with the opposing teams so many parts of the machine,” he was not referring to a com-
puter that ran the model, but rather the individuals whose actions provided the decisions within the sce-
nario and added stochastic variability.  The people playing the game were key moving parts.  Rich did, 
however, mention a “simple device” that played a role in “emulation” for the fleet air defense scenario.  It 
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was the combination of the device and the opposing team “parts” that provided the basis for this very spe-
cial type of simulator.  The war game would prove to be a type of model that would play an important 
role in strategic and tactical development across all branches of the military.   

Today, the United States Department of Defense (DoD) regularly utilizes hundreds of large simula-
tions (M&SCO 2012) to help in deciding how forces should be equipped, organized, trained, employed, 
deployed, and maintained.  To capture the complexities of the real world, these simulations sometimes 
involve many thousands of input variables and can take several hours to run a single Monte Carlo exper-
iment.  One such simulation environment in widespread use is the Extended Air Defense Simulation 
(Teledyne Brown Engineering 2009).  First deployed in 1989, EADSIM was used to analyze air opera-
tions in advance of and during operation Desert Storm.  EADSIM is currently being used by nearly 400 
agencies around the world.  Its success derives in large part from its object oriented design and pre and 
post processing graphical interfaces.  As with most DoD models, EADSIM has followed one of this pa-
per’s author’s “Lucas’s Law,” that is:  “The detail within a model grows in proportion to the processing 
power available, leaving runtimes relatively constant.” 

3 SEARCH ENGINE KEYWORD ANALYSIS 

To investigate the behavior of the growth of simulation, and compare it to a few other fields, we use key-
word searches for several scholarly search engines. Through data collection via varying search engines, 
exploration of the increase in use of simulation was not limited to the scope of specific journals.  The 
year-by-year keyword, title, and abstract searches by journal display increases in the frequency and pro-
portion of simulation-inspired articles.  Each search engine allows for an “advanced search” that permits 
the filtering of articles, year-by-year, in such a way that only those articles with the central topic of simu-
lation appear on the results page.  The search engines provided by the Naval Postgraduate School library 
online database used for this research are JSTOR (Journal Storage), INFORMS, EBSCOhost (Elton B. 
Stephens Co.), and ACM DL (Association for Computing Machinery Digital Library).  These search en-
gines also display the relevant article counts per year, so data collection became a simple (yet painstak-
ing) matter of recording the results in a form amenable for analysis. 

We begin with simple graphic displays of the data, but our analysis goes further by fitting regression 
models.  In these models, the first year of the collected data (1960) is “Year 1,” 1961 is “Year 2” and so 
on, through “Year 51” (2010).  The purpose of these fits is not to predict the future, but rather to quantify 
past trends and help identify years that were particularly influential in the development and acceptance of 
simulation as a research tool.  Those years that have been identified as influential will enrich the narrative 
and understanding of the sorts of advancements—both technological and theoretical—that have had the 
greatest impact on the simulation world. Years that reflect particularly important leaps (and drops) in the 
frequency of simulation publication are also of interest.  Due to the lag between article submission and 
publication, an influential year actually represents a window of time around which to investigate.  

For comparison purposes, the “simulation” curves appear alongside “linear programming” and “opti-
mization” curves that, while incomplete, were collected in the exact same matter as the simulation search-
es.  Our intent is not to minimize the impact of these important operations research methods, but rather to 
examine whether the increase in simulation-based articles is mirrored across other fields that benefit from 
increased computational power.  It is important to note that “simulation” keyword searches were excluded 
from “optimization” keyword searches to avoid overlap in results that included articles with both key-
words.  This allowed for articles that dealt with “simulation optimization”—a vibrant topic in the simula-
tion community over the past decade—to default as “simulation” articles.  For additional details and dis-
cussion, see Powers (2012). 

3.1 JSTOR Results 

In Figure 1, a simple display of the frequency of simulation articles over a fifty-year time frame paints a 
compelling picture.  Overall, the growth during the first thirty years is less than half that of the last twenty 
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years.  The changes in JSTOR_LP and JSTOR_Opt are not nearly so dramatic.  JSTOR_LP rises slightly 
but then falls to near its original levels, while JSTOR_Opt increases at a slow, but steady, rate.  

The variability of JSTOR_Sim increases over time. So, we transform the keyword search results 
(JSTOR_Sim) to reduce the impact of heteroscedasticity.  After fitting several regression models to the 
JSTOR search engine data, we settle on a final parsimonious model of the form: 

 
JSTOR_Sim0.5 = 5.1870 + 0.4437 * (Year). 

 
This model has a p-value < 0.0001 and an R2 value of 0.976.  Cook’s Distance measures the influence of 
points on this model form as a combination of their leverage and their residuals.  For our final model, the 
most influential years are 1960, 1961, 1972, and 1973.  The first two (1960 and 1961) will appear several 
times and will be discussed later in this analysis.  The remaining unusual years are 1972 and 1973.  Upon 
inspection of the data, one can see that there was a particularly high jump in simulation articles between 
1971 and 1972 (120 articles in 1971 and 171 articles in 1972).  One would expect to find some interesting 
happenings that would pertain to simulation on or about the year 1971.  A simple internet search reveals a 
few possibilities (Computerhope 2012):  
 

• 1970:  Intel announced the first RAM chip, the Intel 1103, with more than 1,000 bits of memory. 
• 1971:  Intel developed the first microprocessor, the Intel 4004, capable of 60,000 instructions per 

second and a clock speed of 740 kHz. 
• 1972:  The C programming language was developed.  It introduced structured programming and 

was a prelude to object-oriented programming. 
 

 

Figure 1:  JSTOR data scatter plot.  The growth of the simulation data is impressive when compared to 
the slight decline of linear programming (LP), and the slow linear growth of optimization (Opt) articles.   

 Further scholarly research suggests some other landmarks that very well may have contributed to a 
surge in simulation use. 

 
• 1969:  Alan Pritsker of Purdue University produced GASP II, which is software that aided in 

making simulation programming languages portable across operating systems (Hollocks 2006).  
At the time, this FORTRAN-based language was praised for being flexible and well document-
ed—and it was already being taught at Arizona State University (Petersen 1969). 
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• 1970:  B. W. Hollocks implemented GSP-III’s features with FORTRAN as a platform to create 

FORSS (FORTRAN-based Simulation System).  Its portability resulted in wide use (Hollocks 
2006). 

• 1970:  Jeffrey R. Raskin’s “A Tutorial on Random Number Generation” recognizes the benefits 
of computer-generated pseudorandom numbers, particularly their ease of generation and the abil-
ity to reproduce results (Raskin 1970).  Raskin’s paper represents one of many at the time that 
dealt with the idea of improving on existing methods of random number generation because of its 
necessity in the field of simulation. 

 
The analysis of the JSTOR data identified an influential window of time from the late 1960s through 

the early 1970s.  Computational developments have almost certainly played a role in the apparent jump of 
simulation-inspired articles.   

3.2 INFORMS Results 

Figure 2 displays the results from the INFORMS search engine.  Once again, we see that the growth of 
simulation-related articles is more dramatic than the growth of articles related to linear programming.  
The final model for the INFORMS search engine data is  

INFORMS_Sim0.4 =  3.8179 + (5.2906 * Year) - (0.8676 * Year2). 

This model has a p-value < 0.0004 for the first-order term for Year, a p-value < 0.05 for the second-order 
term, and an R2 value of 0.822.  The naming convention remains the same as the JSTOR model.  The in-
fluential years are 1960, 1963, and 2008 through 2010.  This could simply because these are a set of 
“bookend” years, or because they were truly unusual.  By the year 2008, advances in computing technol-
ogy are so dense that it is nearly impossible to pinpoint several events that could have inspired a leap.  

 

 

Figure 2:  INFORMS data scatter plot.  Once again, the simulation results grow faster than linearly while 
the LP results display a linear trend.  The search engine did not allow for exclusion of “simulation” from 
“optimization,” so no trend line for “optimization” exists.  One of the most interesting aspects of the 
simulation curve is how the data points drop below the trend line for the years 2002 – 2007. 

 
While the numerical results of the INFORMS search engine may appear to be less impressive, the fact 

that the search results spawn from a smaller sample of publications allows for a more intimate analysis. A 
look at the data, as represented on a scatterplot, reveal an interesting story.  An exploration into the 
INFORMS society itself may explain the drop in simulation articles from 2002 to 2007.  The following 
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are summaries of key events obtained from the minutes of the INFORMS Simulation Society Business 
Meetings from 1999 through 2008.  
 

• May 1999:  At this time, the organization was known as the INFORMS College on Simulation. 
The College was acting like a Society in that, among other things, it was running the PhD collo-
quium at the Winter Simulation Conference and actively inviting interested students to attend the 
conference.  The minutes reveal a decline in College representation at the annual meetings and a 
need to encourage more simulation-related article submissions. 

• November 1999:  More concern over the dropping number of simulation submissions was noted.  
It is mentioned that the College would have more influence if it were a society. 

• October 2004:  The College had over 500 members, which was large enough to be considered a 
Society.  The members at the meeting unanimously voted to petition for Society status. 

• November 2005:  The organization held its first meeting as a Society.  It is mentioned that simu-
lation submissions are on the rise. 

• November 2007.  As a sign of great success, it is mentioned that 742 authors are contributing to 
the Winter Simulation Conference, and that all the hotel blocks reserved for the conference have 
been booked. 

By 2008, the number of simulation-related articles had risen above the trend line.  
 

3.3 ACM DL Results 

While the earlier results show polynomial growth in the number of simulation-related articles, the results 
for the ACM DL search engine data are fit well by an exponential curve (p-value < 0.0001, R2 = 0.945).  
Figure 3 shows the results from the ACM DL search engine.  The final model is  
 

log(ACM_Sim) = 3.4251 + (0.1051 * Year). 
 
The influential years (in terms of Cook’s Distance) are 1960, 1964, 1966, and 1967.  This set of years 
shall be discussed in the results of the next search engine. 

 

 

Figure 3:  ACM DL data scatter plot.  The ACM DL search engine allowed for separation of “simulation” 
from “optimization” searches.  The “optimization” (Opt) and “linear programming” (LP) curves, while 
exponential, are dwarfed by the “simulation” (Sim) curve.  
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A look at the exponential curve and the data point corresponding to the year 2005 reveals some inter-

esting characteristics.  The change from 2000 to 2005 is larger than that from 2005 to 2010, while the 
year 2010 is below the curve.  This might suggest that not much has happened between 2005 and 2010 as 
far as computing capability is concerned, and the world may be poised for another advance!  The rather 
large leap in the plot between 2000 and 2005 inspires an investigation of computing history as far back as 
2000. 

 
• 2000:  Intel releases the Pentium 4. 
• 2003:  Intel releases Pentium M. 
• 2005:  Intel releases Pentium D. 
• 2006:  Intel releases Core 2. 
• 2007–2009:  Intel releases several advancements to the Core 2. 
 
These advancements, while rapid and significant, do not relate specifically to the world of simulation 

as to suggest that they play the most important role in simulation’s growth.  They have certainly improved 
computers as far as processing power and overall speed are concerned, but perhaps the simulation com-
munity is about to witness a breakthrough that is more than a leap in technology. 

3.4 EBSCOhost Results 

Figure 4 shows the results from the EBSCOhost search engine.  As for the ACM-DL search engine, the 
growth is quite dramatic.  The final model is  
 

log(EBSCOhost_Sim) = 2.8499 + 0.1194 * Year (p-value < 0.0001, R2 = 0.966). 
 
The influential years (according to Cook’s distance) are 1961, 1962, 1966 and 1968; 1963 (with Cook’s 
distance 0.0768) is also very close to the influential cutoff (4/n = 0.0784).  This set of years is remarkable 
in that they represent early days of computer simulation other than the “bookend” year of 1960.  This par-
ticular analysis motivates a look at developments from the early to late 1960s that were influential. 
 

 

Figure 4:  EBSCOhost data scatter plot.  The EBSCOhost search engine allowed for separation of “simu-
lation” from “optimization” searches.  The “optimization” (Opt) curve, while representing smaller return 
values, is also exponential.   



Powers, Sanchez, and Lucas 
 

 With 1961 through 1963, 1966, and 1968 identified as the influential years for this fit, it was neces-
sary to look at developments in the computing world and the world of academia as it pertained to simula-
tion.  With hindsight being what it is, this necessity is because common knowledge tells us that techno-
logical advances could not have been the only driving force behind the advancement of simulation 
modeling in the 1960s. 

 
• 1961:  The programming language FORTRAN IV is created. 
• 1963:  IEEE is founded.  IEEE will be responsible for publishing many simulation-based articles. 
• 1964:  BASIC is run for the first time. 
• 1964:  IBM introduces System/360, which uses interchangeable software.  This is an example of 

a “third generation computer.” 
• 1965:  Gordon Moore publishes Moore’s law. 
• 1969:  Lewis, Goodman, and Miller publish the paper, “A pseudo-random number generator for 

the System/360.”  This paper describes “pseudo-random number generator that uses the full ca-
pacity of the 32-bit registers of IBM SYSTEM/360 computers,” thereby addressing a hot topic of 
the day that was common to critiques of simulation. 

 
 The efforts of Peter A. W. Lewis were not the first attempt to develop random numbers and variates 
that behaved according to accepted statistical properties.  Such efforts dated as far back as 1949, with the 
multiplicative congruential generator originally introduced by Lehmer.  In fact, by 1971, over 200 papers 
had been written on the subject of random/pseudorandom number generation (Craddock and Farmer 
1971).  This amount of publications was indicative of the magnitude of attention that stochastic modeling 
was receiving.  So, while he may not have broken ground in the random number generation field, Dr. 
Lewis was a pioneer in the simulation community mostly because he was a respected scholar who took it 
seriously.  
 As previously mentioned, one of the most prohibitive factors that had been holding back the ad-
vancement of simulation was the negative attitude that the Operational Research community expressed 
towards it.  Dr. Lewis was one of the first highly respected scholars to visualize simulation as a valid 
method for modeling and research.  His endorsement played a tremendous role in the eventual acceptance 
of simulation as a noble pursuit (Schruben 2011).  Dr. Lewis’s impact was so great, in fact, that he was 
recently awarded the 2012 INFORMS Lifetime Professional Achievement Award (LPAA) in recognition 
of his contributions.   

4 DISCUSSION 

The previous results show that simulation publications in two of the search engines (ACM-DL and EB-
SCOhost) have roughly kept pace with Moore’s Law.  In the other two search engines (JSTOR and 
INFORMS) they have polynomial growth patterns over time.  In addition, deterministic analytic models 
are no longer achieving the popularity of stochastic models that are simulation based.  A comparison of 
search engine searches for the analytic keywords “linear programming” and “optimization” shows that the 
growth of these particular topics has not kept pace with that of simulation.  

4.1 Summary of Exponential Simulation Growth Curves 

The four data sets resulted in four separate and distinct models that were used to determine the most in-
fluential years in simulation history.  While some of the models share influential years, they were other-
wise completely different models.  They also share an obvious exponential trait.  As such, they each con-
tribute some validity to a theory offered by B. W. Hollocks in his 2006 paper, “Forty years of discrete-
event simulation—a personal reflection.”  Hollocks provided an in-depth look at technological advances 
that he has observed throughout his time in the OR community.  He suggested a tweak to Moore’s Law as 
it applies to simulation.  Instead of a trend based on values that would double every 18 months “until con-
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strained by the laws of physics,” Hollocks predicted that simulation’s evolution would follow more of an 
“S-curve,” as shown in Figure 5 (Hollocks 2006). 

 

Figure 5:  S-curve of simulation growth (Hollocks 2006). 

The curve proposed by Hollocks says that, as computing capability reaches its physical upper-
bound—a bound that Gordon Moore himself predicted would occur around 2015 to 2020—limited scope 
for improvement might be left.  What room does remain may be user-oriented improvements such as ease 
of model building and display capabilities.  Such a theory, however, would mean that simulation has en-
joyed success and expansion over time mainly because of technological advances.  A “squinty-eyed” look 
at the curves presented in this research may suggest that Hollocks is correct in giving so much credit to 
improvements in processing speed and software.  Of advanced processing speed, Hollocks said that “[i]n 
addition to permitting the same tools to run faster, it has also permitted the tools to carry more function 
and feature, leading to the current status of simulators.”  Simply put, Hollocks is suggesting that the simu-
lation field is getting very close to being as advanced as it will ever be (Hollocks 2006).  The authors of 
this paper have another suggestion. 

4.2 What is Next For Simulation 

Computational power provides benefits for both modeling and analysis.  As we mention in the analysis of 
the ACM DL data, the simulation community may be poised for breakthroughs that augment enhanced 
processing speed.  The technological ceiling that Moore has predicted to be right around the corner may 
still hold true for the physical limits of computers and speed, but the future is wide open for simulation.  
At least it will be when improved analysis approaches, such as simulation optimization and efficient de-
sign of experiments, are readily available to the simulation analyst and in widespread use.  

A recent leap of note was the June 2012 unveiling of a supercomputer known as IBM’s “Sequoia,” a 
bank of over 1.5 million processing cores capable of performing over 16 quadrillion operations per se-
cond (16 petaflop/s) (Wait 2012).  Such capability is so difficult to conceptualize that it is not unreasona-
ble to say that it may be approaching the limits of physics. It is difficult to imagine a model that can act 
more efficiently than one that is being executed on the type of technology that can support petaflop-speed 
calculation.  It would seem that such massive computing power would be enough to explore the limits of 
even the most complex model.  However, due to the “curse of dimensionality” even this level of computa-
tional power is not sufficient to provide a “brute-force” analysis for, e.g., conducting thorough sensitivity 
analyses of the complex simulation models that are pervasive in operations research, industry, business, 
and military simulations.  In fact, a “brute-force” approach involving a single replication of a two-level 
experiment that involves 100 factors (examined at all 2100 potential combinations) on a model consisting 
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of a single elementary operation would take over 2.5 million years to complete. The moral is that advanc-
es in simulation cannot rely on advances in technology alone.  

Fortunately, we need not wait for suitable analysis approaches to be developed.  If simulation has 
started to level out in terms of technology-based advancements, then the design of experiment (DOE) 
methods have the potential to break the ceiling.  Imagine the aforementioned two-level, 100 factor exper-
iment as the “ceiling” for a machine as capable as IBM’s Sequoia.  This is a stretch of the imagination, as 
not even the most patient analyst can spare millions of years for a single replication.  Nonetheless, smart 
experimental designs allows an analyst to identify the significant main effects and a modest number of in-
teractions among these 100 factors using as few as a few hundred carefully-specified combinations.  For 
example, thanks to the DOE method of fractional factorials, commonly known as “screening designs” for 
identifying important factors from an experiment, there exists a resolution V 2120-105 design for two-level 
experiments consisting of up to 120 factors that allows for all main effects and two-way interactions to be 
estimated in 32,768 runs, and this can easily be expanded into a design permitting the estimation of full 
second-order metamodels  (Sanchez and Sanchez 2005).   

Similarly, imagine a simulation model running on a computer with processing speed that allows for 
each design point to take only one second to run.  Such a scenario is often feasible considering the pro-
cessing speeds of commercially available systems.  Now suppose that this model is comprised of 29 fac-
tors.  The “brute force” simulation approach would require over 17 years using a 229 full factorial design.  
This takes the wind out of the ability to simply ride the technological wave.  Now, apply the benefits of 
Latin hypercube sampling and the same model would take under five minutes using a 257 design point 
NOLH design (Cioppa and Lucas 2007).  In other words, one can efficiently squeeze a substantial amount 
of experimental information from such a 29-factor experiment in less than five minutes.  Efficient designs 
also allow for flexibility in modeling, which is particularly useful in a world where the analyst must ac-
count for last-minute “good ideas” offered by his or her clients and there may be considerable uncertainty 
about the significant factors and the response forms. 

The theories behind DOE cannot take full credit for such flexibility.  It is a combination of the com-
putational capability available on modern computers and the “art” of experimental design.  This marriage 
of the processing power of today’s machines and the power provided by efficient experimental design is 
an example of both sides of the simulation argument playing nice.  The idea of optimality is under the 
hood of many efficient designs in that the combination of factor settings provides the “best” estimation of 
a specified response.  Furthermore, the concept of “optimality” permeates the practical real world where 
“sampling is expensive—the goal is to take no more samples than absolutely necessary.”  That is, even if 
you could spare the time to run as many replications of your complex model as you wanted, you do not 
have to (Sanchez and Wan 2012).  The optimality of efficient design is holding hands with the impressive 
capabilities of modern computers to create simulation models that represent a powerful force that is any-
thing but “brute.”  Of course, another advantage of many space-filling designs, such as NOLHs, is that 
they are robust in the sense that they allow analysts to explore a breadth of diverse possible metamodels 
(Kleijnen et al. 2005; Vieira Jr. et al. 2011).  For more on the use of experimental design for simulation 
(including additional references), please see the tutorial by Sanchez and Wan (2012) earlier in this Pro-
ceedings.  Advances in simulation optimization (Fu 2002) are also providing new opportunities for simu-
lation analysts; there are several sessions in the 2012 WSC Proceedings, and an entire track in the 2011 
WSC Proceedings.  

In order for analysts to take advantage of new design and analysis capabilities, they need the proper 
software tools.  Fortunately, new simulation environments are making it easier to build simulations, con-
duct many experiments in parallel using efficient experimental designs, and analyze the output with statis-
tical tools and graphical playbacks.  The future of simulation is moving beyond the emphasis on program-
ing and conducting a small number of experiments.  We see a future in which modern design and analysis 
capabilities allow researchers to get orders of magnitude more experimental information from their mod-
els—and that these possibilities become the standard practice.  Indeed, the simulation community is just 
beginning to utilize these powerful capabilities. 
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5 CONCLUSIONS 

The exponential nature of simulation’s growth over time has been made apparent without a need for deep 
exploration or analysis.  The model fitting and analysis of influential years has pointed out some possible 
candidates for the most significant advances in the computing and academic fields.  The takeaway is that 
simulation did not simply ride the technological wave and only take advantage of improved processing 
speeds.  There have been serious contributions in terms of elegant thought, such as new algorithms for 
pseudo-random number generation, simulation optimization, and efficient design.  As we educate the next 
generation of simulation practitioners and researchers, it is important to let them know that the “last re-
sort” stigma that has been so aggressively applied to simulation in the past is not an accurate reflection of 
the field.  Furthermore, as technologies that leverage higher processing capabilities, such as simulation 
software and efficient high-dimensional design of experiments, continue to advance, we expect the expo-
nential growth in the use of simulation to continue for the foreseeable future.  For many complex real 
world problems requiring complex models, simulation will increasingly be the tool of “first resort.” 
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