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ABSTRACT 

In Multi-objective Optimization the goal is to present a set of Pareto-optimal solutions to the decision 
maker (DM). One out of these solutions is then chosen according to the DM preferences. Given that the 
DM has some general idea of what type of solution is preferred, a more efficient optimization could be 
run. This can be accomplished by letting the optimization algorithm make use of this preference infor-
mation and guide the search towards better solutions that correspond to the preferences. One example for 
such kind of algorithms is the Reference point-based NSGA-II algorithm (R-NSGA-II), by which user-
specified reference points can be used to guide the search in the objective space and the diversity of the 
focused Pareto-set can be controlled. In this paper, the applicability of the R-NSGA-II algorithm in solv-
ing industrial-scale simulation-based optimization problems is illustrated through a case study for the im-
provement of a production line. 

1 INTRODUCTION 

Simulation-based multi-objective optimization problems are in many cases difficult to solve which is 
caused by the vast number of simulation runs that are needed in order to find a converged and diverse set 
of Pareto-optimal solutions. The standard goal usually pursued in multi-objective optimization is to find a 
converged set of solutions that is also featuring diversity. This goal requires to find a large number of so-
lutions to cover the whole Pareto-front. Besides a complex problem structure the high number of simula-
tion runs can also be caused by uncertainty in the input or output parameters of the model which has to be 
handled by simulating every solution multiple times and using the average objective values. Also a high 
number of problem objectives can make it necessary to execute many solution evaluations. This is be-
cause the Pareto-optimal front of a high-dimensional problem is a large subspace. In order to cover it suf-
ficiently many Pareto-optimal solutions need to be found.  

For complex real-world simulation models the execution time usually is high so that the overall num-
ber of simulation runs that can be executed is limited. With this limited simulation time budget in many 
cases only an inferior Pareto-optimal front can be found. For many optimization problems however the 
DM has domain knowledge about which solutions are most interesting. After the optimization has been 
run only a single solution is chosen and implemented. If the DM can provide preference information that 
indicates where the DM expects to choose a solution the algorithm can exploit this information and guide 
the search towards this area. In this way only a small part of the Pareto-optimal front needs to be covered 
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and the algorithm can find a focused solution set that is more converged in the interesting area than algo-
rithms that aim at finding a solution set covering the whole Pareto-front. 

Several algorithms have been proposed that can focus the search towards a certain area of the objec-
tive space. A comprehensive overview on guided search algorithms controlled by preferences is given in 
(Miettinen, 1999; Branke et al. 2008). Guided search algorithms can be distinguished by the type of in-
formation that is used to specify interesting solutions. For example the DM can make comparisons be-
tween different solutions. This information can be transformed into a value function that serves as a fit-
ness function for the optimization algorithm (Deb et al. 2010). Another way of preference articulation is 
the specification of a preference direction or light beam along which the search is guided (Deb and Ku-
mar, 2007; Jaszkiewicz and Slowinski, 1999). The way of preference specification that is used in this arti-
cle requires the user to specify one or more reference points in interesting areas of the objective space 
where the search is guided to. An algorithm that implements this search is the R-NSGA-II algorithm 
which was proposed by (Deb et al. 2006). Extensions have been proposed by (Siegmund, Ng, and Deb, 
2012). 

In this paper we present the application of this algorithm in a real-world simulation optimization case 
study. This simulation optimization problem deals with the optimization of a production line that can be 
configured via binary parameters. 

The paper is structured as follows. The R-NSGA-II algorithm is described in section 2. In section 3 
the industrial case is introduced. Following, the experiments and results are presented in section 4. In sec-
tion 5 we draw conclusions and present future research questions. 

2 R-NSGA-II ALGORITHM 

In this study the application of the R-NSGA-II algorithm on a real-world simulation optimization problem 
is performed and evaluated. In this section we describe the algorithm on a general level without going into 
details. This is to give the reader a general overview and understanding of the way the algorithm works. 

The R-NSGA-II algorithm is a multi-objective evolutionary optimization algorithm that is based on 
the Non-dominated Sorting Genetic Algorithm II, NSGA-II (Deb et al. 2002). The NSGA-II algorithm is 
an elitist multi-objective evolutionary algorithm that uses two types of fitness functions. The primary fit-
ness function is the Pareto-optimality. Solutions that cannot be compared by means of Pareto-optimality 
are distinguished by a secondary fitness criterion called crowding distance. To guide the search for new 
solutions the R-NSGA-II algorithm allows the specification of one or more reference points in the objec-
tive space where the search is attracted to. Solutions close to the reference points are preferred. This fit-
ness criterion replaces the crowding distance measure of NSGA-II. In the following the context of where 
NSGA-II uses the crowding distance measure is described and how the distance measure to the reference 
points is used instead. 

The primary fitness criterion Pareto-optimality means that solutions are preferred that are not worse 
in any objective than another solution but truly better in at least one objective. If this is true for two solu-
tions then the better solution is said to be dominating the other solution. Solutions that are not dominated 
by any other solution are called non-dominated solutions. All non-dominated solutions form a set which 
is called a front. Assumed that those solutions are removed a new front of non-dominated solutions will 
be formed. In this way a solution set can be fully partitioned into front subsets. Inside of those subsets so-
lutions are not comparable. NSGA-II selects solutions according to their front membership. It forms the 
union of population and offspring and partitions this set into fronts. All fronts that fit completely into the 
next population are selected. The front that only partially fits into the next population requires a special 
selection procedure. Here the secondary fitness type is applied. NSGA-II uses a diversity fitness measure 
called crowding distance which makes sure that a subset of this partially selected front with high diversity 
is selected. R-NSGA-II uses a different secondary fitness measure. It is based on the distance of the solu-
tions to the reference points. Those who are closest to the reference points are selected into the next popu-
lation. By means of this secondary selection criterion the algorithm can be guided towards the reference 
points. However, at the same time a certain degree of diversity must be maintained.  For this purpose R-
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NSGA-II uses a clustering algorithm that filters out solutions that are too close to each other. The remain-
ing solutions are considered for selection. Without this clustering step the algorithm would find a popula-
tion which is situated in very close proximity to the reference points in the objective space. The alterna-
tive solutions the DM could choose from would not be very different from each other.  

2.1 ALGORITHM DESCRIPTION 

The R-NSGA-II algorithm follows a scheme as of many evolutionary algorithms. A set of solutions, the 
population, is maintained whereof new offspring solutions are generated through mating, crossover and 
mutation (Deb, 2001). The best solutions among the old population and the offspring solutions are chosen 
to form the new population. The working scheme is depicted in Figure 1. In contrast to the NSGA-II algo-
rithm which uses the Pareto-rank as fitness function in the tournament selection for mating the R-NSGA-
II algorithm uses the reference point rank. The reference point rank is calculated by creating a distance 
ranking among all solutions for each reference point.  For a certain reference point the closest solution is 
assigned rank 1, the second closest solution rank 2, and so on. The reference point rank for a solution is 
the minimum rank that has been assigned to it among all different rankings. 

 

 
Figure 1: R-NSGA-II flowchart 

 
The selection step of the R-NSGA-II algorithm that is marked as a sub process in Figure 1 is complex 

and is therefore displayed in Figure 2. After partitioning the set of population and offspring solutions into 
fronts on each front a clustering algorithm is performed. It chooses a representative solution out of the 
front which has the lowest reference point rank. All solutions within a radius epsilon are cleared and are 
added to the cluster of the representative. In the following they are not considered for selection, only the 
representative solution is considered. The clustering selects the next representative solution and clears out 
the neighboring solutions again. This is continued until all solutions have been assigned to clusters. This 
is performed for all fronts. The epsilon distance can be chosen as a parameter to allow the user to choose 
different amounts of diversity. 

After the clustering the algorithm works similar as NSGA-II. It browses through the fronts and checks 
whether the current front, respectively its set of cluster representatives can be selected completely into the 
next front. In this case all representative solutions are selected into the next population and the algorithm 
continues with the next front. Otherwise, in case the algorithm can only use a subset of the cluster repre-
sentatives, the representatives solutions with the lowest reference point ranks among the representatives 
are selected into the next population. The new population is complete and is returned to the algorithm 
main loop. 

In case the algorithm reaches the last front and it was not possible to select enough solutions to fill the 
new population completely the algorithm starts over with the remaining solutions. The clustering is per-
formed once more and the algorithm browses through the fronts starting with the first front. 

For the full functionality of the algorithm the reader may confer to (Deb et al. 2006; Siegmund, Ng, 
and Deb, 2012). 
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Figure 2: R-NSGA-II selection step sub flow 

3 GUIDED SEARCH OPTIMIZATION CASE STUDY 

This section describes the production line used in the case study. It is a large production line with around 
90 stations and just over 70 buffers, mostly conveyor belts but also some larger warehouses. The line is 
very complex with several parallel sections, some assembly, several two-piece stations, automatic as well 
as manual testing with scrap or rework options, portal cranes, and some pallet loops. Figure 3 shows a 
simplified layout of the described production line. 

The engineers in charge of the production line are faced with a rather tough, but not uncommon task. 
They are to make it capable of handling some new variants coming in and at the same time increase its 
capacity in order to meet customer demands. Based on the current condition of the line and a simulation 
study considering the new variants they are far from reaching their capacity goal. They are able to reach a 
throughput of 84 pieces per hour instead of the needed 95 pieces per hour, i.e. they will have to increase 
the capacity with at least 13%. 

Given the size and complexity of the line it is not an easy task to decide where to make improvements 
in order to reach this goal, and it is even harder if at the same time it has to be made sure that as few im-
provements as possible are needed. Three types of improvements were considered as shown in Table 1 
(due to limited amount of space, larger buffer capacities were excluded as a possible improvement). 

 
Table 1: Improvement, values, and example of possible ways of achieving the improvement. 

Improvement Values Possible solutions 
Reduction of cycle time Original value down to 26 se-

conds. 
New faster machine, new 
tools, improvement machine 
sequence or code. 

Improved availability Original value up to 98%. New more reliable machine 
or tools. 

Reduction of mean time to 
repair 

Original value down to 5 
minutes. 

More resources for support 
and maintenance. 
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Figure 3: Simplified layout of the machining line. 

 
The values for each improvement were provided by the engineers in charge of the production line. These 
improvements were considered on all stations if their original value was not worse than the proposed im-
provement value. This resulted in 128 potential improvements, which in turn represents 2128 ≈ 3.4E+38 
possible combinations of improvements. Given this huge number of possible combinations it was decided 
to use simulation based multi-objective optimization to evaluate what improvements that should be im-
plemented. 

Using binary variables for representing the improvements (value = 0, original value / value=1, im-
provement value) the following multi-objective optimization problem was defined in which an imple-
mented improvement is counted as one change. 
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The formal description of the optimization problem looks as follows: 
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where

{ }1,0∈= timprovementimecycleiα  

{ }1,0∈= improventtyavailabilijβ  

{ }1,0∈= timprovemenrepairtotimemeankγ
 

4 NUMERICAL EXPERIMENTS 

In this section the experiment setup of the case study is described and the results are analyzed. 

4.1 Case Study 

The simulation horizon of the model was set to one month (32 days with 2 days of warm-up time) and 
evaluation was run with five replications. The time to run one evaluation was about 16 minutes. To speed 
up the search an initial population was used. The initial solution with zero changes (representing the cur-
rent conditions of the line) was added to the otherwise randomly chosen initial population of the optimi-
zation. The optimizations in this study were allowed to run for 5000 evaluations. Given the stochastic na-
ture of evolutionary optimization algorithms the optimizations were replicated five times in order to get 
reliable results. Results from these replicated optimizations are illustrated using median attainment sur-
faces (Bartz-Beielstein et al., 2010). 

The NSGA-II algorithm was configured as follows. Since the problem is a binary decision problem 
the algorithm works on binary vectors. Uniform crossover is used which chooses randomly between the 
parameter values of two solutions, with uniform probability. Crossover probability is 0.8.  

 

 
Figure 4: Results from a run without reference point (NSGA-II). 
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Mutation is performed by choosing uniformly either value 0 or 1 for the mutated parameters. Muta-

tion probability is 1/15 which means that on average 9 of 128 parameters are mutated. The population size 
is chosen to be 50. 

As a basis the optimization is run once by NSGA-II without guidance. The result is displayed in Fig-
ure 4. It is able to find a converged and diverse set of solutions that even includes several solutions that 
reach and exceed the capacity goal of 95 while at the same time requiring less than 10 changes. This was, 
according to the engineers, a reasonable number of changes. The following goal was set by the automa-
tion engineers: “Try to reach a throughput of 95 pieces per hour with 10 or fewer improvements on the 
line”. This goal was added to the optimization algorithm as the reference point in order to find out if this 
additional information could help the optimization in providing even better solutions given the same 
budget. 

R-NSGA-II was configured identically to NSGA-II. Additionally, the reference point was chosen to 
be (Number of Changes = 10, Throughput = 95) for all experiments. As distance measure an achievement 
scalarizing function was used that calculates the maximum normalized objective distance between a solu-
tion and the reference point, as defined in (1). For diversity control epsilon is configured to be 0.001 un-
less otherwise stated. 

{ }))((max),)(( iii rsFabsrsFASF −=        (1) 

where 

)(sF  is the normalized vector of fitness values of solution s  

r  is the normalized reference point in the objective space 
 
The result of R-NSGA-II with reference point (10, 95) is displayed in Figure 5. The optimization was 

able to find solutions that satisfy the capacity goal of 95 pieces per hour. The solution that met the capaci-
ty goal and had the fewest number of changes produced 96.7 pieces per hour with 8 changes. Compared 
to NSGA-II the solutions found by the optimization could achieve an improvement in both objectives. 
 

 
Figure 5: Results from a run with reference point (R-NSGA-II). Reference point (10,95). 

 
To obtain reliable results both optimizations have been executed five times and their average perfor-

mance was compared via a median attainment surface as in Figure 6. The performance advantage of R-
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NSGA-II can clearly be observed. Also a tendency of R-NSGA-II to achieve the most improvement at 
parts of the front with higher throughput values than the reference point can be seen. It is assumed that 
this is an effect described in (Siegmund, Ng, and Deb, 2012). The 5000 evaluations do not allow the algo-
rithm to converge fully to the true Pareto-front. In this state algorithms based on Pareto-optimality have a 
tendency to have a bias towards the ideal point (Deb, 2001) which lies approximately at (0, 115). 

 

 
Figure 6: Attainment surface combining the experiments of R-NSGA-II (dotted line) and NSGA-II (solid 
line). Reference point (10, 95). 
 

 
Figure 7: Attainment surface combining the experiments of R-NSGA-II (dotted line) and NSGA-II (solid 
line), using biased crossover and mutation operators favoring a lower number of changes. Reference point 
(10, 95). 
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4.2 Biased Variation Operators 

Considering the long run time and the tremendously large search space (3.4E+38 possible combinations) 
biased crossover and mutation operators promoting low number of changes were implemented in the op-
timization algorithm in order to get even better results. In detail, continuous variation operators are used 
that generate crossover and mutation values that lie in the interval [0,1]. All values in [0, 1) are rounded 
downwards to 0. 

In Figure 7 the attainment surface of the experiments with the biased variation operators is displayed. 
The dotted line represents the result of R-NSGA-II. The performance advantage in the preferred region of 
R-NSGA-II over NSGA-II is even more clear compared to the previous experiment (Figure 6). 

4.3 Diversity Control 

The R-NSGA-II algorithm allows to control the diversity of the found solutions via a parameter called ep-
silon. Since R-NSGA-II prioritizes solutions with high reference point rank before Pareto-optimal solu-
tions R-NSGA-II uses clustering to maintain diversity. The parameter epsilon is used in the clustering al-
gorithm as the minimum distance between two selected solutions as in (1). Step by step a representative 
solution is chosen and all other solutions within radius epsilon around this solution are discarded. In this 
chapter we show the effect of choosing a different epsilon parameter value. Epsilon is increased from the 
original value 0.001 to 0.005. The objective vectors of the Pareto-front in the original experiment with ep-
silon 0.001 are shown in Figure 8. The results of the increased diversity experiment with epsilon 0.005 
are displayed in Figure 9. The results show that by increasing epsilon the Pareto-front is not more wide-
spread. However, a more evenly spread Pareto-front can be found. During the optimization process more 
solutions in dense areas of the current non-dominated front of the population are cleared out than in the 
original experiment. This increases the probability for the creation of Pareto-solutions in more sparse are-
as of the Pareto-front. If the budget for simulation evaluations would not be limited the final population 
would be more widespread for epsilon 0.005 than for epsilon 0.001 as shown in the experiments in (Deb 
et al. 2006). 

 

 
Figure 8: Found Pareto-front for experiment with diversity parameter value epsilon=0.001. Reference 
point (10, 95). 
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Figure 9: Found Pareto-front for experiment with diversity parameter value epsilon=0.005. Reference 
point (10,95). 

5 CONCLUSIONS 

The following conditions are often present in industrial cases, (1) limited time for analysis (e.g. optimiza-
tions), (2) very large and complex problems, and (3) knowledge of what represents a desirable and some-
what realistic performance of the studied system exists. This paper has shown, at least for one such case, a 
successful use of a reference point guided optimization algorithm, R-NSGA-II, that outperformed its 
standard counterpart, NSGA-II. 

In future studies we will test the use of multiple reference points. Another ability of R-NSGA-II will 
be demonstrated in future work. In multi-objective simulation optimization problems it can happen that 
parts of the Pareto-front are not fully explored. This occurs often for parts of the Pareto-front where a 
small improvement of one objectives leads to large losses regarding another objective. Here it is difficult 
to find a diverse set of Pareto-optimal solutions. With R-NSGA-II those areas can be explored and the 
gaps can be filled. One such case is described in (Aslam, Karlsson, and Ng, 2012). 

Several extensions to R-NSGA-II have been made regarding diversity control and compromised Pare-
to-optimality (Siegmund, Ng, and Deb, 2012). There will be follow up studies testing these extensions of 
R-NSGA-II on real-world problems. 
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