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ABSTRACT

Guided by Little’s law, decision and control models for operations in reentrant line manufacturing (RLM)
systems are commonly set up to minimize the total work-in-process (WIP), which in turn indirectly minimizes
cycle time (CT). By viewing the problem fundamentally differently, we re-formulate it as one that seeks
to select the best cost function leading to optimal cycle times. We present the details and results of an
extended simulation study, based on a benchmark problem, using a simulation-based approximate dynamic
programming method, with a newly proposed extended actor-critic architecture. Our results support the idea
that a Markov decision process modeling approach can be used as a flexible platform to explore different
cost formulations, leading to a selection of an optimal cost and model to optimize cycle time directly.

1 INTRODUCTION

The control and decision problems arising in large scale manufacturing are very challenge tasks (Kumar
1994; Wein 1988). These processes involve large state and action spaces, thus making them analytically and
computationally difficult. Manufacturing systems with feedback loops, i.e., reentrant line manufacturing
(RLM) system, are of particular interest. Reentrant lines are manufacturing systems in which jobs will
return to the early stations during their production. In particular, semiconductor manufacturing facilities
(fabs) are usually modeled as RLMs because of the demand for repetitive layer processing by the same
station of each silicon wafer (Kumar 1993).

Much research effort has been devoted to modeling and optimization of operations in semiconductor
manufacturing systems, namely, the control of RLM systems. The control problems arising in RLM systems
of this type are known as shop floor control (Uzsoy et al. 1994), which considers two major problems,
job sequencing and scheduling, to improve overall performance of the system, e.g., cycle time (CT). The
sequencing problem is of particular interest here, because the optimal solution is usually hindered by large
state and action spaces. The existing literature with the sequencing problem is mainly based on heuristics
and control theory, which are extensively studied by Lu and Kumar (1991), Kumar and Kumar (2001),
Flores-Godoy et al. (1998), Tsakalis et al. (1997), and Vargas-Villamil et al. (2003).

Modeling and optimizing RLM systems with Markov decision process (MDP) (Puterman 1994) and its
solution methods approximate dynamic programming (ADP) (Bertsekas 2007; Powell 2007) are reported
by Ramirez-Hernandez and Fernandez (2007), Choi and Reveliotis (2005). Later on, due to its scalability
for large systems, these methods were applied to more complex RLM systems (Ramirez-Hernandez and
Fernandez 2009, 2010).

Due to the feedback and competitive nature of RLM systems, optimization for sequencing control with
respect to cycle time is a highly complex process, and direct optimization in terms of the time metric is
usually impractical. Existing methods are based upon an approximate transformation and mapping rule, the
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well-known Little’s law (Little 1961). On the contrary, formulating the sequencing optimization problem
as an MDP would require an explicit and precise functional preference, i.e., a one-stage cost function, over
its state space in order to provide optimal results. Guided by Little’s law, usually only the total number
in queue is used, namely, the work-in-process (WIP), and thought to be proportional to cycle time, on
average. However, cycle time is the true desired objective to be optimized, and for real applications, any
departures from an ideal exponential queueing could lead to a non-optimal policy, in terms of cycle time.
Even if an MDP formulation dictates, the derived policy should minimize the total number in queue. As
shown later via simulation experiments, the choice of different cost functions, linear and others, leads to
different policies with significant differences in average cycle time. Hence, we seek to select directly the
cost function itself, which then leads to a derived policy that optimizes cycle time.

However, existing work with RLMs overlooks this issue and considers only a single functional form
for the one-stage cost function, without considering other modeling and optimization possibilities with
MDP methods. In this paper, we consider the sequencing optimization problem for reducing the cycle time
of the open queue system (Whitt 1984), presented by the Intel Mini-Fab (Kempf 1994). Different from
the existing work, we investigate the performance improvement and degradation with the Mini-Fab by
exploring the use of different one-stage cost functions with a simulation-based ADP method, under a new
proposed extended actor-critic architecture. We first discuss a departure from the reliance on Little’s law to
have some basic cost (function) realizations, followed by the detailed simulation results and performance
comparison. Then, we show that these basic cost realizations can be easily extended to more general
forms, and the proposed extended actor-critic architecture provides a flexible platform for learning and
optimization with problems of this kind.

In Section 2, we briefly review Little’s law and discuss two basic cost realizations used in an MDP
formulation; we also discuss necessary changes to the conventional Markov decision process to have a new
extended actor-critic architecture. In Section 3, we discuss the benchmark RLM model, the Intel Mini-Fab,
followed by detailed optimization and simulation results in Sections 4 and 5, and conclusions are given in
Section 6.

2 BACKGROUND

In this section, we’ll first review and discuss multiple cost realizations with the MDP formulation of
the control problem in an RLM system, in order to reach beyond a formulation depending exclusively
on Little’s law. Then, we go over conventional Markov decision process results, and introduce some
modeling modifications, including new performance measurement and optimality with respect to multiple
cost realizations.

2.1 Little’s Law and Cost Realizations

Little’s seminal work provides a solid foundation for understanding the relationship between cycle time
and work-in-process in queueing systems. This relationship can be expressed through a simple equation
L = λW , where L is the expected number in the system, λ is the expected arrival rate, and W is the
expected cycle time. Extensions and generalizations to this equation have been studied by Maxwell (1970)
and Brumelle (1972). Maxwell’s work first suggests that the average inventory level term, i.e., L(t), can
be generalized to any integrable functions, e.g., holding cost Lg(t) associated with WIP, which then results
in a functional dependent queueing equation, Lg = λWg. Brumelle’s work gives a more complementary
treatment of this relation, proposing a more general formula, H = λG, where H and G contain moment
information of the expected number of waiting customers and their waiting times respectively, denoted as
L and W in the original formula. Later, solid proof for these types of relations was provided by Heyman
and Stidham (1980) as well as Glynn and Whitt (1989).

Little’s law (and its extensions) are very general and fit many queueing systems, but this also means it
contains a certain level of generality and may not necessarily provide precise knowledge that is required
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to govern an optimization task, especially for the case of RLM systems. Because of the feedback loop
and competitive nature, reducing the inventory level in one particular buffer in a RLM system, say Li, will
usually block the service in another and thus lead to an increase in buffer level, say L j, if Li and L j compete
for the same resources; this further affects the inventory level and work flow in between. We will discuss
two basic cost realizations through departing from the Little’s law, as depicted in Figure 1, tailored to fit
the structure of RLM systems.
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Figure 1: Cost Function Realization.

First, we denote each waiting line in an RLM system by a unique label i ∈ {1,2, ..., l}, and let Li be
the current queue length in queue i, regardless of its network position and class type. Then, departing from
Little’s law, namely, L = λW , we examine the following two cost realizations:

1. For a stable RLM network, minimize ∑
l
i=1 Li.

2. For a stable RLM network, minimize ∑
l
i=1 L2

i .

The first realization can be regarded as a direct generalization from the original Little’s law to a multi-class
queueing network (Wein 1988). The second one can be thought of as a quadratic functional of this kind, in
the sense that it considers some second moment information of the buffer level. Under ideal conditions of
an exponential queueing system, minimizing the first one above would lead to optimizing the cycle time.
On the other hand, one would also expect that the second would lead to some reduction or improvement
of the cycle time, though perhaps not optimal.

Below, we discuss some extensions of the conventional Markov decision process in order to accommodate
multiple cost realizations.

2.2 Markov Decision Process and Some Extensions

Departing from Little’s law motivates the use of multiple one-stage cost functions for the optimization
process. In order to accommodate this and provide a flexible platform for comparing the induced control
policy, we discuss extensions to the conventional definition of MDP.

Consider the conventional definition of an MDP with tuples {S,A,P,c}, where s∈ S represents the states,
a(s) ∈ A represents the action mapping from state to control, ps,s′(s,a) ∈ P are the transition probabilities
and c(·) is the one-stage cost function independent of the next state. For a classic problem, e.g., a finite
and recurrent chain, existing solution methods based on gradient and linear function approximation, e.g.,
TD(λ ), are sufficient to solve this complex optimization problem. Usually, this results in a value function
J(·), which is further used to differentiate between policies π ∈Πad , where Πad is the admissible policy
set for the underlying MDP problem. By convention, policies are compared through the value function
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J(·) defined with the one-stage cost function c. In the case of the average cost (AC) criterion, this can be
shown as: Jπ

c (s) = limN→∞
1
N Eπ{∑N−1

k=0 c(sk)|s0 = s}. A preference over the policy, say, πa � πb is then
defined with the partial order over the value function, e.g., Jπa

c (·)≤ Jπb

c (·), and optimal policy π∗c is one
that minimizes the value function. One limitation for the conventional formulation is that it only allows the
comparison of policies selected with respect to the same cost (function) realization or under some strict
constraints. And when this one cost function is biased due to insufficient knowledge of the underlying
system, the induced policy can be also biased and thus becomes overall non-optimal. Thus, in order to
avoid the use of a biased cost function and accommodate comparison among multiple cost functions and
their induced policies, we need the following extensions.

First, we denote Qπ(·) as a new metric corresponding to the system performance under a particular
control policy π . For the control problem of RLM systems, the performance of Qπ(·) is different from the
value function Jπ

c (·), in the sense that the former corresponds to the time metric, e.g., cycle time, and the
latter corresponds to the modeled metric, e.g., functionals of WIP. The preference over policy, say, πa � πb

is then re-defined over the partial order of the new metric, e.g., Qπa
(·) ≤ Qπb

(·). And we have the new
optimality over whole admissible policy set as: π∗ = argminπ∈Πad Qπ(·), which we denote as the exact
(optimization) problem. It’s known that this corresponds to the direct optimization of the RLM system in
terms of the time metric, and we also refer to this as optimization in the policy space.

Due to the dimensionality and tractability issues, there are no efficient algorithms that can be used to track
and converge along the unknown surface of the performance Qπ(·) for the exact problem. Alternatively, we
say that this can be partially solved by exploiting the so-called un-dominated policies with simulation-based
approximate dynamic programming methods. We denote an un-dominated policy as π∗ci

, which is defined
as π∗ci

� π for any π ∈Πad with the conventional policy preference notation; in other words, it’s an optimal
policy for one particular cost function realization ci. Then essentially, we try to convert the original exact
problem, e.g., π∗ = argminπ∈Πad Qπ(·), to a more tractable searching problem among a set of induced
un-dominated policies {π∗c1

,π∗c2
, ...,π∗ci

, ...}, where each single policy in this set can be efficiently solved
with an existing tractable algorithm, e.g., TD(λ ), and we denote the procedures for finding each one of the
un-dominated policies as optimization in the value space. One known practical issue with this framework
is its potential for a large or infinite search space over the un-dominated policy set. This, however, needs
to be studied independently, and is beyond the scope of this paper. In the rest of this study, we restrict
the set of un-dominated policies to be a small finite set corresponding to our heuristically selected cost
functions to serve the purpose of this study.

In Section 3, we’ll talk about the detailed model of Intel Mini-Fab that is used in this study.

3 SIMULATION MODEL

In this section, we will discuss the simulation model and its key features. The model used throughout
this paper is the so-called Intel Mini-Fab, which is a joint research effort between research labs from
Arizona State University (ASU) and Intel Corporation. The model is a benchmark system for all kinds of
semiconductor research, and also is a popular one used for evaluating different sequencing rules.

The Intel Mini-Fab system has three stations, diffusion, ion implantation and lithography, denoted as
Station 1, 2, and 3 respectively. Both the diffusion and ion implantation stations have two machines (A, B)
and (C, D) that can do parallel jobs, while the lithography station has only one machine (E). A diagram of
the general structure of the Mini-Fab is given in Figure 2. The manufacturing process follows the sequence
of the so-called six steps marked with arrows in Figure 2 with one re-entry to each of its stations. An
additional 9 buffers for batching processes before buffers 1 and 5 are used; details of the batching rule and
buffer settings can be found in (Kempf 1994).

The model also includes features like multiple products, a diffusion-like batching process, machine
failure, preventive maintenance work, as well as other important factors like modeling of operators, setup
times, machine loading/unloading, and transportation. The Mini-Fab operates 24 hours, 7 days a week,
with each 12 hours as a shift. In each week, the nominal arrival rate is 84 lots per week, with 60.7%
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Figure 2: Intel Mini-Fab.

of the arrivals being product A, 35.7% are product B, and the rest are test wafer. Stochastic arrival and
exponential processing times are used in our study, where the arrival is modeled as a Poisson process.
Arrivals then go into the first batching process, see Figure 2, and are released into the system only if there
is room in buffer 1. The detailed processing time as well as loading/unloading time, denoted as L/U below,
are given in Table 1 for each step in the manufacturing process.

Table 1: Time Specification for Intel Mini-Fab Model.

Machines Processing Steps Processing Time (min) L/U (min)
A & B 1 & 5 Step 1: 225, Step 5: 255 20/40
C & D 2 & 4 Step 2: 30, Step 4: 50 15/15

E 3 & 6 Step 3: 55, Step 6: 10 10/10

In the Mini-Fab model, machines C and D are considered to have random failures, which occur with
a uniform distribution between 24 to 76 hours. After a machine fails, emergency repair work will be
provided, which also takes a uniform distribution between 360 to 480 minutes for a technician to fix. In
addition to the unexpected machine failure, the Mini-Fab model considers scheduled down time to provide
preventive maintenance to all stations and machines. These schedules are deterministic and repeated every
day or shift, where the detailed schedule can be found in Table 2.

Table 2: PM Schedule.

Machine PM Schedule (Starting Time) PM Duration (min)
A & B 12 a.m. & 12 p.m. 75
C & D 12 a.m/p.m. & 2 a.m/p.m. 120

E 3 a.m/p.m. 30

4 SIMULATION-BASED APPROXIMATE DYNAMIC PROGRAMMING APPROACH

In this section we discuss the simulation-based ADP approach utilized for finding un-dominated polices
for sequencing control of the Mini-Fab system. We first discuss the Markov model of this RLM system
and its optimization criteria, and we then focus on details and the integration of different cost realizations
within our newly proposed extended actor-critic architecture.

4.1 Underlying Markov Model

We take a general form of a Markov model with tuples {T,S,A,P,c} to represent the system, where T
represents the time epochs, S represents the state space, A is the control space, P is the transition matrix
induced by the controlled Markov process with each of its elements to have the form p(·|s,a), and c(·)
is the cost function we’ll discuss later. For practical purposes, the state and transition probability of the
Mini-Fab are approximated with an ideal exponential queue of the same network structure, and all other
non-exponential and random events are not explicitly considered, e.g., deterministic maintenance, operators’
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availability and machine failure. Hence the state is defined as follows:

s(t) := (L(t),V (t),B(t)), ∀t ∈ T, (1)

where L(t) contains an inventory level of six main buffers at time t with L(t) := (l1(t), l2(t), . . . , l6(t))T ,
and V (t) contains the six pre-batching buffer levels at time t with V (t) := (v1(t),v2(t), . . . ,v6(t))T , and
B(t) is the inventory level at the three batching processes at time t with B(t) := (b1(t),b2(t),b3(t))T .

In the Intel Mini-Fab model, the control a ∈ A only considers the sequencing decision for the six main
buffers as follows:

a(s) := (a1(s),a2(s),a3(s),a4(s),a5(s),a6(s)), (2)

where each ai(s) is a binary decision variable, with value one representing selection of the corresponding
buffer to be served next, and value zero representing not selected. To reduce the complexity and stabilize
the controlled system further, we assume that all controls a(s) belong to a certain constraint subset A ⊂ A
for the RLM system. One of the constraints between the control of competing buffers is called the
non-idling policy. Before we specify the details of the constraint set, we first partition the machines and
buffers into different sets according to their stations. Then, we have three machine sets M1,M2,and M3,
corresponding to station 1, 2, and 3. And we have {Ma,Mb} ⊂M1,{Mc,Md} ⊂M2,and {Me} ⊂M3.
Furthermore, we also partition buffers and control action by following the same rule. Then we have
{a1,a5} ⊂AM1 ,{a2,a4} ⊂AM2 ,and{a3,a6} ⊂AM3 . The non-idling policy can be visualized as if there is
at least one machine available in the downstream station, then one of the holding buffers will release the lots
as: ∑ai∈AMk

ai = 1{Mk=Idle},∀i ∈ 1,2, ...,6, and k ∈ 1,2,3. In addition, the so-called anti-block mechanism
is needed in order to stabilize the controlled reentrant line. The anti-block mechanism only allows the
buffer to release the lot to the available machine when there is additional space at the buffer in the next
processing step, which can be seen as: ai ≤ 1{Lnext step<Lcapacity}, ∀i ∈ 1,2, ...,5.

4.2 One Stage Cost Functions and Average Cost Criteria

Following our discussion of the cost realizations in Section 2.1, we first introduce the following two basic
one-stage cost functions:

1. c1(s) := LT · cl +VT · cv +BT · cb
2. c2(s) := LT ClL+VT CvV+BT CbB

where L,V, and B are state vectors. Cost coefficients cl , cv, cb, and Cl , Cv, Cb are in vector and matrix
form that correspond to each of the buffers and their inventory levels. The first cost function is an L1
norm-like function, which only considers the total buffer level at each time epoch. Coefficients are set
to be one, except for those holding batched products, e.g., buffers 1 and 5. This cost function is a direct
relaxation of Little’s law to multi-class queueing network; it tries to minimize the total inventory regardless
of the network structure. The second one considers the quadratic functional of each buffer level, and as a
second realization, this one will also lead to the reduction in cycle time. Besides, the moment information
it contains may also lead to a lower variance compared to the first.

With the underlying Markov model and cost functions, we now discuss the optimization criteria for
the process. We assume appropriate uniformization of the original continuous model, and only discuss
its discrete counterpart in the rest of this paper. Focusing on long run steady-state performance, we then
formulate this optimization process with the average cost criterion:

Jπ(s) = lim
N→∞

1
N

Eπ{
N−1

∑
k=0

c(sk)|s0 = s}, (3)

where Jπ(s) is the average cost under the policy π , and for simplicity we omit the subscript c in value
function for the rest of the paper. The optimal Jπ∗(s) admits the minimal value of the average cost over
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all policies with respect to the given cost realization c over the infinite time horizon, and we denote this
by µ∗(s) = Jπ∗(s). Furthermore, it’s assumed that the weak accessibility (Bertsekas 2007) condition holds,
and we have µ∗(s) = µ∗ for all initial states s. Then, we consider the following average cost optimality
equation (ACOE): µ∗+h∗(s) = mina(s)∈A (s){c(s)+∑s′ p(s′|s,u)h∗(s′)}, where µ∗ is the optimal average
cost and h∗(s) is the differential cost between the current cost c(s) and the optimal average cost µ∗. The
optimization process will then be running iteratively via the so-called extended actor-critic architecture
discussed next.

4.3 Extended Actor-Critic Architecture and TD(λ )

Different from the conventional actor-critic, the new architecture integrates our newly defined performance
measure and cost realizations into the existing framework. The new architecture involves two coupled
layers, policy space and value space, also denoted as outer layer and inner layer respectively; see Figure 3.
We assume from this point that the cost functions are parameterized by α , i.e., cα . Recalling our discussion
in Section 2.2, we consider the outer layer as a generalized problem that corresponds to optimization in the
whole admissible policy space, e.g., π∗ = argminπ∈Πad Qπ(·). Then, by some mechanisms not specifically
detailed at this point, one could have updates of cα based on the performance Q(α) so as to minimize overall
performance. The inner layer corresponds to the learning and optimization process with the conventional
MDP formulation. We denote this new architecture as the extended actor-critic architecture. Different
from the conventional one-shot optimization of the inner layer with only one choice of the cost function,
the new outer layer now offers a flexible platform for the performance comparison, and thus provides more
insight to help select the cost function. As discussed earlier, a full feedback loop for the outer layer may
include extensive search in large or infinite space, so in this paper, we restrict this feedback to provide
only simple (heuristic) options (see the discussion in Section 5), that leads to the reduction in cycle time.
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Figure 3: Extended Actor-Critic Architecture.

To solve the MDP problem efficiently and find all those un-dominated policies, the inner loop plays an
important role, and we’ll now focus on this part. In particular, we introduce the convergent approximate
method, i.e., the TD(λ ) algorithm as our inner layer. This algorithm is studied extensively by Sutton (1988),
and when coupled with the gradient method and linear function approximation, solid convergence analysis
has been reported by Tsitsiklis and Van Roy (1999). First, we consider the following approximated version
of ACOE:

µ̃
∗+ h̃∗(s,r) = min

a(s)∈A (s)
{c(s)+∑

s′
p(s′|s,a)h̃∗(s′,r)}, (4)

where h̃∗(s,r) corresponds to an approximation to the true differential cost h∗(s). We restrict this approx-
imation to be linear, e.g., h̃∗(s,r) = φ T (s) · r, with a set of basis function: φ(s) = (φ1(s)φ2(s) · · · φn(s))T .
The basis function here could be selected as simple functions of each buffer level, which also depends
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on the type of the cost function used. Then, µ̃∗ and h̃∗(s,r) can be found with the inner layer, which
contains three parts: a simulation model for generating sample trajectories, a critic part to approximate the
differential function, and an actor part for making correct control actions.

For the critic part, the approximation to the differential cost h̃ is approximated in the subspace spanned
by the feature vector, and a linear approximation structure is then used to ensure convergence, while the
coefficients r are updated via the gradient-like method:

rk+1 = rk + γk ·dk · zk, (5)

where γk is the step size following standard convergence assumptions: ∑
∞
k=0 γk = ∞ and ∑

∞
k=0 γk

2 < ∞.
dk := c(sk)− µ̃k + h̃(sk+1,rk)− h̃(sk,rk) is the temporal difference (TD) error defined as the difference
between two consecutive approximations, and zk := ∑

k
t=0 λ k−tφ(st) is the eligibility trace. µ̃k is the current

approximation to the true average cost, which is updated with: µ̃k+1 := (1−σk) · µ̃k +σk · c(sk).
For the actor part, the control policy is updated with an ε-greedy rule with respect to the current

estimate:

a∗(s) = arg min
a∈A (s)

{c(s,a)+
n

∑
s′=1

p(s′|s,a)h̃(s′,rk)}. (6)

This updating can be further simplified with the structure property of the RLM system reported by
Ramirez-Hernandez and Fernandez (2007) as a∗(s) = argmina(s)∈A (s){a1 · M̃1(s,rk)+ · · ·+a6 · M̃6(s,rk)}.
Where M̃i(s,rk) is an approximation to the expected savings in optimal differential costs defined as
M̃i(s,rk) := θi · (h̃∗(Bis,rk)− (h̃∗(s,rk)); θi here represents the expected time rate required for the state
transition from state s to Bns as a result of the control action ai = 1, and Bis : Rn 7→ Rn is defined as a
controlled mapping between the current state and the next state.

We next present our empirical results with detailed performance comparisons, first for the two basic
cost realizations, then for more general cases.

5 SIMULATION STUDY

In this section, we present our empirical results with respect to various cost functions. We first introduce
some experimental settings, then we focus on the detailed performance obtained with both basic cost
realizations as well as more general forms. The simulation model here and its experiments are built and
conducted with the Arena simulation software (Kelton et al. 2010); in particular, the simulation-based
ADP methods are coded using Arena’s built-in VBA routine. During the course of the simulation, each
cost function is tested for 200 replications of 9600 hours length each, with a total of 960000 hours
learning and another 960000 hours of evaluation period. This number and length of replications provided
uniformly good statistical precision across the outputs (95% confidence interval half widths within 3%
of the respective sample means), and changing the cost functions significantly changes the performance.
During the learning period, an ε-greedy updating method is used to provide additional trade-offs between
exploiting and exploration over the state and control space. Some important parameters and settings are
summarized below:

1. As the original RLM network with 84 lots per week is highly congested, we used a reduced arrival
rate with 87% of the nominal arrival per week to present our numerical results better.

2. All scheduled or unscheduled repair and maintenance work will be finished regardless of the
availability of the technician.

3. Machine setup times are considered to be negligible and not contribute to the cycle time.
4. λ for temporal different algorithm is chosen at 0.95.
5. σk and γk have the form of 1

K1+epoch and σk = K2γk, where K1, K2 are some real constants.
6. ε for exploration is updated at each replication with 5

replication %.
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In Table 3, we first list the detailed cycle time with a 0.95 confidence interval (CI) and standard
deviation (SD) for each product type and with respect to two basic cost realizations. The cost realization c2
achieves lower cycle times in all three products types, also with a slight advantage in standard deviation, as
expected, since it contains some second moment information. In contrast, we list in Table 4 the aggregated
measure of cycle time for all type of products combined, which is denoted as Q, and the corresponding
optimal average cost, which is denoted as J∗.

Table 3: Detailed Performance of Two Cost Realizations under Reduced Arrival Rate.

Cost Realization c1 Cost Realization c2
Cycle Time (Hour) SD Cycle Time (Hour) SD

Product A [238.57 250.13] 47.22 [237.01 247.57] 44.89
Product B [219.19 226.19] 32.72 [218.98 224.72] 31.21
Test Wafer [218.38 225.50] 32.40 [217.33 222.85] 31.71

Table 4: Measurement Comparison under Reduced Arrival Rate.

Optimal J∗ Q
Cost Realization c1 91.44 235.45
Cost Realization c2 2971.34 233.86

Data in Table 4 give a direct comparison between the optimal value achieved with the two cost
realizations considered. A key difference here as compared to the conventional MDP formulation is that
the performance measure of Q in Table 4 provides a feasible platform to compare different cost functions
directly and their induced control policies, which are not comparable under the conventional settings, e.g.,
comparison of J∗. Next, the detailed steady-state buffer levels at the six main buffers are summarized in
Figure 4. Buffers 1, 2, and 3 are heavily loaded compared to their capacity levels, and buffers 4, 5, and 6
achieve low average buffer levels during the simulation.
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Figure 4: Steady State Buffer Levels for Two Basic Cost Realizations.

As we now have compared the two basic cost realizations and their induced control policy to the
Mini-Fab system, a natural question that may arise is whether there is a better cost realization for this
problem. We show below that these two simple cost realizations can be easily extended to general forms,
in the sense that these two do not include any in-depth domain knowledge. A reasonable generalization is
to adjust the cost function to have a weights-adjusted form, e.g., ∑

n
i=1 θi f (Li), where θi is some weighting

function with or without certain constraints, and f (Li) are some functionals that depend on the buffer level
Li. In the following simulation studies, we use the weighted forms of both cost realizations to address this
issue. In particular, we heuristically tested several different sets of weights that correspond to different user
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preferences over the state space with our new architecture. For simplicity, we only consider preference
over two buffer classes. As previous results showed in Figure 4, the buffers can be categorized into two
classes: heavily loaded, e.g., buffers 1, 2, and 3, and lightly loaded, e.g., buffers 4, 5, and 6. We then let
α be the ratio between the the holding costs for these two classes, e.g., α = θ1

θ5
= θ2

θ4
= θ3

θ6
, while detailed

holding costs within each class are kept the same following the discussion in Section 4.2. We consider
several different choices of αs, with detailed results summarized in Table 5 and 6.

Table 5: Detailed Performance with Different Preference Ratio α .

Weighted Cost Realizations c1

Product A Product B Product TW Q Q̄−Qo
Qo

1

α = 16 [361.73 370.23] [347.19 352.55] [345.72 350.26] 359.32 -52.60%
α = 9 [243.58 251.48] [223.25 227.69] [222.01 226.89] 238.46 -1.27%
α = 4 [245.84 252.72] [224.35 228.23] [222.92 226.90] 239.78 -1.83%
α = 1 [238.57 250.13] [219.19 226.19] [218.38 225.50] 235.45 0 %
α = 9/11 [240.67 247.11] [220.55 225.09] [220.26 224.48] 235.25 +0.08%
α = 7/13 [211.51 221.99] [195.48 206.48] [194.48 202.70] 209.91 +10.84%
α = 1/4 [206.96 219.22] [193.73 202.33] [192.95 202.13] 206.89 +12.13%

Table 6: Detailed Performance with Different Preference Ratio α .

Weighted Cost Realizations c2

Product A Product B Product TW Q Q̄−Qo
Qo

1

α = 16 [364.62 372.06] [348.71 353.05] [346.47 351.57] 361.10 -54.40%
α = 9 [361.97 369.43] [346.46 352.16] [344.02 350.14] 358.90 -53.46%
α = 2.25 [365.30 372.38] [348.33 353.83] [346.99 352.73] 361.50 -54.57%
α ≈ 1.493 [238.91 252.03] [230.29 236.19] [219.42 225.14] 236.29 -1.03%
α = 1 [237.01 247.57] [218.98 224.72] [217.33 222.85] 233.86 0%
α = 4/9 [216.77 225.93] [202.50 208.74] [201.51 207.53] 214.95 +8.08%
α = 1/16 [215.94 224.28] [200.63 208.33] [199.88 207.40] 213.75 +8.59%
1 Qo corresponds to a Q value with α = 1.

The heuristics behind the choice of α can also be regarded as the preference for balancing different
buffer levels between two classes of buffers. In particular, α = 1 indicates that there is no preference for
holding one inventory at either heavily loaded or lightly loaded buffers, while α > 1 or α < 1 indicate the
preference for lowering the first or second class of buffers respectively. Essentially, lowering the second
class can be thought to be similar to the priority sequencing policy, e.g., last-buffer-first-serve (LBFS),
and lowering the first class to be another, named first-buffer-first-serve (FBFS). Different from those two
heuristic policies, which gives highest priority based purely on network position, the use of α allows more
flexible and delicate tuning of the buffer preference of the system. The data here show interesting results.
First, direct application of the ADP method to sequencing control of the Mini-Fab with no preference,
e.g., α = 1, does not yield the best CT from either of the two basic cost realizations. Second, there is a
range of α such that the performance is neither improved nor degraded, for example, α ∈ [ 9

11 9] for the
first realization and α ∈ [1 1.493] for the second. There exists some certain threshold for which α goes
beyond or below, where the performance then will substantially change. Also, although the variance data
are not shown here, the weighted cost realization c1 can achieve the lowest cycle time while the weighted
realization c2 always offers a lower variance as a trade-off.

The results thus confirm that the selection of the cost function for optimizing the RLM system can
be sensitive and thus needs careful treatment and requires certain domain knowledge. Besides, the use of
Little’s law does provide a fundamental guideline for those problems, but it does not offer explicit and
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precise knowledge all the time. It also validates the use of the so-called extended actor-critic architecture
as a complementary method in situations where only imprecise or incomplete knowledge is available.

6 CONCLUSION

We have presented our empirical study of implementing the MDP method with multiple one-stage cost
functions for optimizing the sequencing control of a benchmark RLM system. In particular, we introduced
multiple cost (function) realizations with the departing from the well-known queueing rule, Little’s law,
previously used to govern this kind of optimization process. We also provide certain modifications to the
use of conventional MDP and a simulation-based ADP method with our proposed extended actor-critic
architecture. The results show that the new architecture can generally offer more insight for the underlying
process and provide comparable results. The study still leaves several interesting and open questions
regarding the selection of one-stage cost functions in optimization and the use of simulation-based ADP
methods. Further research could proceed in several directions, including the preference-assigning procedure
to each buffer, adaptive cost realization, and selecting and comparing mechanisms for large or infinite
realization sets.
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