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ABSTRACT 

Release control plays an important role in the operational performance of manufacturing systems. In this 
research, a simulation-based optimization method is proposed for the release control of a re-entrant manu-
facturing system. First, a simulation system is developed for a real re-entrant job shop. Secondly, a genet-
ic algorithm, Memetic-climbing algorithm and Memetic-SA algorithm are designed to generate a near-
optimal release control solution, respectively. Finally, the proposed methods are validated and verified by 
simulations. The simulation results show that the simulation-based optimization method has the ability to 
obtain near-optimal release control solutions in a reasonable time. 

1 INTRODUCTION 

Release control is one of the most important component of complex manufacturing systems. It decides 
when and how many raw materials (jobs) will be input into a production line. Its objective is to fully use 
the capacity of the production line and meet the due date requirements of the customers. 

The existing research on release control could be divided into static release control and dynamic re-
lease control. The former makes input decisions according to the due dates and average cycle times of the 
products with little or no consideration on the fluctuating capacity or workload of the production system. 
If the capacity can’t be estimated correctly, the high amount of WIP (Work-in-Process, i.e., lots in the 
production line) and longer cycle time may be expected. The latter decides the input rate according to the 
amount of WIP or the workload in the production line and can be expected to have better performance, 
such as less queue time, shorter cycle times and less tardiness. For example, (Qi et al. 2009) presented a 
workload limited release methodology (WIPLCtrl) for the overall shop floor, which behavior was ana-
lyzed using the Markov process model of a transfer line system to observe its potential advantage relative 
to the conventional measure of system workload using the WIP level. (Phan et al. 2009) proposed a con-
tinuous time Workload Control (WLC) concept based on the workload norms suitable for the needs of 
make-to-order job shops. (Savla and Frazzoli 2010) designed a task release control policies that can stabi-
lize the dynamical queue for the maximum possible arrival rate, where the queue was said to be stable if 
the number of tasks awaiting service does not grow unbounded over time. (Wang and Chen 2009) pro-
posed a theory-of-constraint based release policy on the basis of system bottleneck being detected and ap-
plied it to hot orders. 

In this paper, we propose a simulation-based optimization method for release control of a real re-
entrant production line. The simulation results show that this method can improve the makespan perfor-
mance issue effectively. 
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2 DESCRIPTION OF THE PROBLEM 

The re-entrant production line discussed in this paper is shown in Table 1. It has 11 stations and 2 ma-
chines. The main difference between stations and machines is that the former must be finished by opera-
tors and the latter can be finished automatically by themselves. There are 4 products (Product 1, 2, 3 and 
4) processed on it at the same time. The complexities of  this production line are as follows. 

Table 1:  Parameters of the Re-entrant Production Line 

No. Operator Working Style Processing Style 
Re-entrant Number by 

Products 1-4 

Station 1 1 Manual operation
Piece or batch processing 

without or with capacity limit
(5,4,4,4) 

Station 2 2 Manual operation
Batch processing without 

capacity limit 
(1,1,1,1) 

Station 3 3 Manual operation
Batch processing with 

capacity limit 
(1,1,1,1) 

Station 4 4 Manual operation Piece processing (1,0,2,2) 

Station 5 5,6 Manual operation
Piece or batch processing 

with capacity limit 
(3,3,0,3) 

Station 6 7,8 Manual operation
Batch processing with 

capacity limit 
(1,0,2,2) 

Station 7 9 Manual operation
Batch processing without 

capacity limit 
(1,1,0,1) 

Station 8 9 Manual operation
Batch processing without 

capacity limit 
(0,0,0,1) 

Station 9 10 Manual operation
Piece or batch processing 

without capacity limit 
(3,3,2,4) 

Station 10 10 Manual operation
Piece or batch processing 

with capacity limit 
(2,2,4,2) 

Station 11 10 Manual operation Piece processing (0,1,2,1) 

Station 12 11,12 Manual operation
Batch processing without 

capacity limit 
(1,1,1,1) 

Station 13 13 Manual operation
Piece or batch processing 

without capacity limit 
(2,1,1,1) 

Machine 1 / Auto-operation 
Batch processing without 

capacity limit 
(1,0,2,1) 

Machine 2 / Auto-operation 
Batch processing without 

capacity limit 
(1,1,0,1) 

(1) Mix processing style: some stations have mix-processing style, e.g., Stations 1, 5, 9, 10 and 13. It is 
difficult to decide how to scheduling the jobs with different processing requirements. 

(2) Re-entrant processing flows: Stations 1, 4, 5, 6, 9, 19, 12 and 13 are all re-visit by Products 1, 2, 3 
or 4. The re-entrant processing flows make their scheduling difficult. 

(3) Coupling of operators and stations: one operator may manage more than one station (such as Sta-
tions 7 and 8, Stations 9, 10 and 11). These stations cannot be operated simultaneously. 

(4) Processing steps with time limit: some processing steps have time limits. For example,  after finish-
ing of step 15 of product 1, its step 18 should be finished in one hour. 
The above difficulties make it difficult to optimize the operational performance of the re-entrant 

production line with proper scheduling methods. Some research also demonstrates that the release control 
takes a more important role on the operational performance of a re-entrant system  than the scheduling 
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methods. As a result, we attempt to find an optimal or near-optimal release control plan to optimize its 
operational performance, while selecting first-in-first-out (FIFO) rule as the scheduling rule for the piece 
processing stations/machines and random batch size (RBS) rule for batch processing stations.  

In addition, the difference between this production line with common re-entrant systems is that a 
number of jobs are not released to the production line unless the former released jobs are finished by the 
production line. Therefore the concerned operational performance is the makespan issue. 

3 SIMULATION SYSTEM 

We use eM-Plant software from the UGS Company, an object oriented graphical modeling and simulation 
software, to build the simulation system of the re-entrant system introduced in Section 2. Due to the exist-
ence of mix-processing stations, such as Stations 1, 5, 9 and 10, we set a recipe on a station as a machine 
in the simulation platform. To avoid more than one recipes on a station being implemented simultaneous-
ly, we design a “lock” mechanism, i.e., the machines in the simulation model representing different reci-
pes on the same station of the actual system cannot be at working state at the same time to guarantee the 
feasibility of the simulation model. In addition, the transportation time of the jobs between the machines 
is neglected. The framework of the simulation system is composed of database, dynamic modeling and 
scheduling rules.  

The database stores the information related to the real production line (such as its machines, the pro-
cessing flows of its products and the jobs to be scheduled) and scheduling plans (dataset of the start time 
and finish time of a step of a job on a machine) generated by simulations that can be used to evaluate the 
performance of a dispatching rule or a release control strategy or guide the operations of the production 
line.  

Dynamic modeling is to build a simulation model of a production line with related data. Its process 
is to upload data, handle data, and finally organize data into a simulation model with a specified structure. 
With this technology, simulation models of different production lines can be built easily with the same 
style. 

Scheduling rules include dispatching rules and release control strategies. The former determines the 
processing order of the queued jobs before a machine. The latter decides the time, volume and order of 
the jobs released to the production line. According to the processing style of the machines, there are two 
dispatching rules applied to the simulation model, i.e., FIFO for the piece processing style and RBS for 
batch processing style. The release control strategy in this paper is to determine the release order of the 
jobs with a given number. We consider a simulation-based optimization method with three different 
methods (i.e., a genetic algorithm, a Memetic-climbing algorithm and a Memetic-simulated annealing al-
gorithm) that will be discussed detailed in next section. 

4 SIMULATION-BASED OPTIMIZATION METHOD FOR RELEASE CONTROL 

Here we give a simulation-based optimization method with three different intelligent algorithms (genetic 
algorithm, Memetic-climbing algorithm and Memetic-simulated annealing algorithm) to determine the re-
lease control sequences. 

The workflows to obtain an optimal release plan by using a genetic algorithm, Memetic-climbing 
(M-C) algorithm and Memetic-simulated annealing (M-S) algorithm, respectively, are shown in Figure 1. 
(1) The workflow of genetic algorithm (GA)  

The workflow of genetic algorithm is as follows. 
Step 1: Generate a population composed of a number of chromosomes generated randomly. The en-

coding scheme is to generate a random sequence of the jobs as  chromosome. 
Step 2: Compute the fitness of each chromosome. That is, take each chromosome as a release plan to 

run the simulations to obtain the makespan performance of the re-entrant system taken as its fitness. 
Step 3: Determine whether the terminal condition is satisfied. Here it is set to the maximum itera-

tions. If yes, go to step 6. 
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Figure 1: Workflows to obtain an optimal release plan 

Step 4: Implement the mutation operation on the chromosomes in the population. Here we only con-
sider mutation to guarantee the generated off-spring chromosomes to be feasible solutions. The mutation 
operation is to randomly select two cross bits to switch their genes with a mutation probability. 

Step 5: Compute the fitness of the off-springs by simulations, similar to step 2. Then select the same 
number of chromosomes from the parents and off-springs as that of initial population to compose  a popu-
lation of next generation by using a roulette selection method. It means the population size will not be 
changed during the search process. Go to Step 3. 

Step 6: Print the best-of-all chromosome as the optimal solution. 
(2) The workflow of the Memetic-climbing (M-C) algorithm 

The workflow of the M-C algorithm only adds a climbing algorithm to the above genetic algorithm. 
The climbing algorithm is a neighborhood search method. In this paper, its main idea is as follows. For 
each chromosome in the population obtained by the selection operation, build a neighbor space with 2-opt 
method. Compare the fitness of its neighbor nodes with its fitness by simulations to find a best one in-
stead of it.  Then we obtain a new population with higher average fitness. 
(3) The workflow of the Memetic-simulated annealing (M-S) algorithm  

The workflow of the M-S algorithm only adds a simulated annealing (SA) algorithm to the above 
genetic algorithm. SA is a meta-heuristic algorithm pursuing global optimization. In this paper, its main 
idea is as follows. For each chromosome in the population obtained by the selection operation, build a 
neighbor space with 2-opt method. Compare the fitness of its neighbor nodes with its fitness by simula-
tions to find a best one instead of it or accept a near-optimal solution with a probability. 
(4) Simulation results 

The iterations of GA, M-C and M-S are set to 15, 10 for GA and 5 for climbing algorithm, and 10 
for GA and 5 for simulated annealing algorithm, respectively.  They have the same population size with 
100 chromosomes. The mutation probability is set to 0.1. The initial temperature and temperature drop 
coefficient of SA is 100 and 0.8, respectively. The number of jobs to be scheduled is 200. So the length of 
chromosomes is 200, too. The objective is to minimize the makespan of the jobs. The simulation results 
are shown in Figure 2. The simulation results show that the average difference of the best fitness and the 
worst fitness is about 5%. So the simulation-based optimization method can achieve the expected perfor-
mance. M-S can obtain better performance comparing to M-C and GA. In addition, M-S can obtain a 
near-optimal solution more quickly, too. 

Then we consider the impacts of population size, mutation probability and maximum iterations on 
the performance. The simulation results are shown in Figure 3.  
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When the population size is less than 100, the makespan performance of all algorithms are a little 

worse. However, the search efficiencies of M-C and M-S are better than GA. When the population size is  
 

 

Figure 2: Simulation results of GA, M-C and M-SA 

 

Figure 3: Impacts of population size, mutation probability and maximum iterations on the performance 
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bigger than 100, the fitness of M-C and M-S is little changed. It means they can obtain optimal solutions 
with less number of chromosomes. However, GA is more dependent on the population size. 

The change of mutation probability has less impact on the performance of M-C and M-S. It has seri-
ous impact on GA. The better selection on mutation probability for GA is between 0.1 to 0.25. It means 
M-C and M-S are more robust than GA. 

M-C and M-S obtain the best solution at the 9th iteration. GA obtains its best solution at the 24th it-
eration. However, M-C is more easier to be trapped into local optimum comparing to M-S. So the selec-
tion of the local search algorithms is very important to improve the performance of a Memetic algorithm. 

5 CONCLUSIONS 

In this paper, we propose a simulation-based optimization method with three different intelligent algo-
rithms to obtain a optimal release plan for a real re-entrant system. The simulation results show that Me-
metic algorithms can obtain better performance than a simple meta-heuristic method by introducing local 
search. Our future work is to generate a large number of samples by using the method proposed in this 
paper and learn release knowledge from these samples to obtain high-speed near-optimal release deci-
sions to meet the industrial requirements. 
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