
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

USING DVFS TO OPTIMIZE TIME WARP SIMULATIONS

Ryan Child
Philip A. Wilsey

University of Cincinnati
School of Electronic and Computing Systems

Cincinnati, OH 45221-0030, USA

ABSTRACT

Some emerging high performance many-core chips have support to enable software control of an individual
core’s operating frequency (and voltage). These controls can potentially be used to optimize execution
for either performance (accelerating the critical path) or power savings (green computing). In Time Warp
parallel simulators using the Virtual Time synchronization paradigm, some cores may be executing events
that are well off the critical path and likely to be undone. In this work, we explore the adjustment of operating
frequencies of cores executing on and off the critical path to reduce rollback and power consumption, while
maintaining or, in some cases, enhancing performance.

1 INTRODUCTION

Although raw performance is the main goal of Parallel Discrete Event Simulation (PDES) (Fujimoto 1990a),
power consumption has become a concern due to factors such as operational cost, component lifetime,
and the environment. Virtually all modern single Chip Multiprocessors (CMPs) include features that help
to reduce power consumption. One of these features, Dynamic Voltage and Frequency Scaling (DVFS),
provides exciting opportunities for PDES, both in terms of speedup and power consumption.

DVFS achieves power savings by scaling the voltage and clock frequency of the CPU. Equation (1)
shows that dynamic power is proportional to clock frequency multiplied by voltage squared. A lower
clock frequency makes lower voltages possible, and since reductions in frequency are usually accompanied
by mostly proportional changes in voltage, DVFS can potentially reduce power by the cube of voltage
reduction. This is known as the “cube-root” rule (Brooks et al. 2000).

Pdynamic ∝ CV 2 f (1)

It has been shown that DVFS techniques on clusters can significantly reduce energy at little or no
performance cost if the load is imbalanced and the critical path is not slowed down (Rountree et al. 2009).
Intel Turbo Boost and AMD Turbo CORE are hardware implementations that take this approach. Turbo
Boost independently boosts the clock frequency of one or more cores when they are under heavy load, while
Turbo CORE simultaneously boosts up to three cores. Both of these technologies attempt to simultaneously
optimize for performance and energy. This is possible because over-utilized cores are over clocked only
if other cores are under clocked, resulting in approximately the same power. At the same time, the task is
completed sooner, meaning better performance and less energy consumed. Because technologies such as
Turbo Boost and Turbo CORE dynamically identify a load imbalance and accelerate the critical path, they
can be understood as a form of load balancing.

Like many parallel systems, Time Warp can become imbalanced which negatively affects simulation
performance. The primary difference between traditional load balancing and load balancing in Time Warp is
the metric used to determine loading. In traditional load balancing scenarios, raw CPU utilization determines
relative load. In Time Warp, the concept of utilization is entirely different. Time Warp aggressively uses

978-1-4673-4781-5/12/$31.00 ©2012 IEEE

Child and Wilsey

all available CPU resources throughout the duration of a simulation, so it must instead use the concept
of “useful work” (Palaniswamy and Wilsey 1996) to detect and balance the critical path. Turbo Boost
and Turbo CORE are unable to detect imbalances in Time Warp simulations and thus may not be able to
correctly detect and accelerate the critical path.

One of our goals is to show that both performance and energy savings could be attainable in Time Warp
on chip multiprocessors (CMPs) if technology such as Turbo Boost and Turbo CORE could be controlled
from software such that useful work could be used as a metric for detecting load imbalance. Our second
goal is to explore the possibility of using DVFS to further increase energy savings in Time Warp both on
CMPs and clusters by scaling down the frequency of cores off the critical path.

The remainder of this manuscript is organized as follows. Section 2 provides background information
on Time Warp synchronized parallel simulation and on Dynamic Voltage and Frequency Scaling (DVFS)
in modern processors with a quick review of the corresponding specifications in the ACPI standard that
allow operating systems to utilize DVFS. Section 3 describes and compares possible metrics of useful
work of the parallel executing Logical Processes (LPs) in a Time Warp synchronized simulator. Section 4
describes the DVFS algorithms that we have developed to balance the critical path using estimates of useful
work. Section 5 gives the equations used to model the energy efficiency of Time Warp simulations under
the control of our DVFS algorithms. Section 6 describes the experiments and the experimental results we
obtained for this study. Finally, Section 7 contains some concluding remarks and suggestions for future
research.

2 BACKGROUND

2.1 Time Warp

Time Warp is a form of PDES that optimistically executes events using Jefferson’s Virtual Time paradigm
for synchronization (Jefferson 1985; Fujimoto 1990a). Events are characterized by a send and receive time
(timestamp) and are sent as messages between objects that model physical processes. These objects are
grouped in to sets called Logical Processes (LPs), which in turn are mapped onto parallel execution units
(PEs). The lowest timestamped event in the event queue of an LP is known as the LP’s Local Virtual
Time (LVT). The minimum LVT of all LPs in the simulation, together with the send times of any in-flight
messages is known as the Global Virtual Time (GVT), and is used as a measure of simulation progress.
Because events are optimistically executed and not guaranteed to be in their correct causal order, they must
sometimes be undone and re-executed (if an event with an timestamp lower than LVT arrives; such events
are called straggler events). When a straggler event arrives, the LP must recover by performing a rollback
to a previously saved state that will allow the execution of the input events (including the straggler event)
in their proper timestamp order. LPs that spend more time doing erroneous (or premature) computation
can be said to be doing less useful work. Depending on network topology and the application model being
simulated, it is possible that some LPs will be doing significantly more (or less) useful work than the others,
resulting in an imbalanced simulation. Various adaptive techniques have been proposed to dynamically
balance Time Warp simulations at runtime (Das 1996), many of which slow down the offending processes
by blocking event execution for a period of time.

The DVFS approach described in this paper presents an alternative method for adaptive throttling of
Time Warp. Scaling the frequency of the core executing an LP is most closely related to existing approaches
that employ some form of real-time blocking, such as those described in Ball and Hoyt (1990), Ferscha
and Lüthi (1995), Hamnes and Tripathi (1994), Srinivasan and Reynolds Jr. (1998), Quaglia (2001). Just
as these approaches are orthogonal to other optimization techniques that focus on areas of Time Warp such
as scheduling and checkpointing, so is the DVFS-based approach described in this paper. Child and Wilsey
(2012) introduced the concept of DVFS-based tuning of Time Warp simulations. The present study is
complementary in that both power consumption and performance are considered. Moreover, three different
DVFS algorithms (“governors”) are implemented and experimentally compared.

Child and Wilsey

2.2 DVFS

Weiser was the first to investigate the use of DVFS in an operating system scheduler to decrease power
consumption and show that huge energy savings are possible (Weiser et al. 1994). Today, DVFS is
ubiquitous and is used by operating systems to boost performance and conserve power. DVFS features are
highly device-specific, so contemporary operating systems running on x86 hardware interface with DVFS
mechanisms in hardware through the Advanced Configuration and Power Interface (ACPI) (Hewlett-Packard
Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd., Toshiba Corporation
2010).

ACPI defines a maximum of 16 discrete frequency-voltage pairs called performance states (P-States).
The P-states are labeled P0 · · · Pn (in decreasing order of frequency and voltage) and they are made
available to the operating system via tables in firmware. P-states are related to, but different than, the
Intel Turbo Boost and AMD Turbo CORE technologies discussed in Section 1. These technologies will
temporarily over clock some of the chip cores when others are idle. They are implemented in hardware
and may take effect when one or more cores is set to state P0. P-state definitions, along with the rest of
the ACPI specification, are architecture-independent, allowing implementations on a range of devices.

The number of available P-states in a chip is limited due to complex timing constraints between various
frequency and voltage domains on the chip. Typically, only four to six P-states are made available. To
further simplify the design, most microprocessors require coordination of P-states between cores (i.e., they
are not fully independent). The 4-core Intel Core i7 and the ARM-based dual-core TI OMAP4460 require
P-State coordination, while the six-core AMD Phenom II X6, the twelve-core Opteron 6168, and the 8-core
IBM Power 7 do not. Per-core DVFS may become more prevalent in the future, as the Intel Single-Chip
Cloud Computer (SCC) research chip provides 24 independently-configurable frequency islands (Labs
2010). In this study, we perform our experiments with the Linux operating system and so we will briefly
review the control of P-state in Linux.

The Linux kernel subsystem responsible for dynamically setting the P-states of the CPU cores is known
as cpufreq (Hopper 2009). It includes several in-kernel “governors” — daemons that detect workloads
and set P-states according to some power and performance goals. The current available governors in
the Linux kernel are userspace, ondemand, performance, powersave and conservative.
The userspace governor is of the most interest to us as it allows userspace implementation of DVFS
algorithms. It has been used for other DVFS research, most recently to study the effect of DVFS in High
Performance Computing (HPC) environments (Etinski et al. 2012; Rountree et al. 2009).

3 USEFUL WORK METRICS

Because in Time Warp all PEs have an equally high raw CPU utilization, we need to use a different metric
to identify the critical path of the simulation. While there are many possible choices, a good candidate must
be both accurate and inexpensive to compute. It should be noted that useful work can only be estimated
dynamically at run-time, not calculated. This is because it is not known at the time of event execution
whether the event will be rolled back. Useful work is estimated based on the measurement of recent
behavior.

Many metrics have been proposed in the literature (Ball and Hoyt 1990; Palaniswamy and Wilsey 1996;
Fleischmann and Wilsey 1995; Reiher and Jefferson 1990; Tay, Teo, and Kong 1997). Since rollbacks
occur because certain LPs advance too far ahead of other LPs in virtual time, it is natural to consider
LVT in determining useful work. Indeed, this has been used as a metric by Tay, Teo, and Kong (1997) to
implement an adaptive throttling scheme. In their scheme, event scheduling is throttled based on distance
from GVT. However, using LVT for this purpose can unintentionally prevent the simulator from uncovering
hidden parallelism in the application model (Palaniswamy and Wilsey 1996). For example, consider a
simulation with two LPs executing on separate PEs. Assume one LP has a much higher LVT than the
other. If a rollback occurs, there must be a difference in LVT between the two LPs. However, the converse

Child and Wilsey

is not necessarily true — the difference in LVT itself does not guarantee a rollback. If the application
model contains sufficient parallelism, the two LPs could be executing along two parallel critical paths.
Slowing down the LP with the higher LVT would then restrict the parallelism and thus slow down the
overall simulation.

In the experiments reported in this paper, we have implemented and tested 3 different “useful work”
estimation algorithms. Each algorithm estimates useful work based on a different metric. We refrain from
using virtual time information, in order to circumvent the problems discussed above.

This first metric is based on “effective utilization,” defined by Reiher and Jefferson (1990) as the
fraction of work on a given node that will not be rolled back. The work performed while executing events
is obtained in the form of CPU cycles by examining the rdtsc time stamp counter register. The use of
this register is generally discouraged in modern multi-core CPUs because of the possibility of migration
to other cores by the operating system and frequency switching during the lifetime of a process. However,
in our case, each LP is bound to a specific core and frequencies are switched at a relatively slow rate,
thus the use of the rdtsc register is acceptable. If an event is rolled back at a later time, the CPU cycles
measured at its time of execution are subtracted from the effective work estimator. At each frequency
adjustment interval, the number of cycles that were not undone is divided by the total number of cycles
spent in execution to give an effective utilization number that is generally between 0 and 1. In some rare
cases, effective utilization may be negative if many events that took a large number of cycles are rolled
back at the beginning of a frequency adjustment interval and the interval is small (although this was not
observed in our experiments). The effective utilization equation is given in (2), where Cexecuted represents
the number of CPU cycles spent executing events and Cundone is the number of CPU cycles spent rolling
back events. Both these quantities are reset to 0 after each measurement of effective utilization.

E f f ectiveUtilization =
Cexecuted−Cundone

Cexecuted
= 1− Cundone

Cexecuted
(2)

The second metric of useful work that we implemented and tested is called number-of-rollbacks. It is
defined as the number of rollbacks that occur during a measurement cycle. This estimator is derived from
observations made by Palaniswamy Palaniswamy and Wilsey (1996). In his work, Palaniswamy showed
that useful work is generally proportional to the number of times an LP rolls back. A rollback occurs when
a “straggler” event arrives at an LP having an LVT that is greater than the event timestamp. It is associated
with a virtual time span during which any number of events could have been incorrectly executed, however
the number-of-rollbacks metric does not take this fact into account. Unlike effective utilization, this metric
can be measured to be arbitrarily high, which makes the problem of classification slightly more complicated
than with effective utilization. Note that a fourth metric could be derived to solve this problem simply by
normalizing against the number of events received. We limit this study to three metrics, as the primary
focus of this paper is DVFS-based optimization.

The third and final metric that we studied is “efficiency,” defined by Equation (3). In this equation,
Eexecuted represents number of event executions, while Eundone represents the number of event rollbacks.
Eexecuted and Eundone are reset to 0 every time efficiency is measured. When used as a useful work metric at
various points during a simulation, efficiency is an estimate of the fraction of event executions that will be
committed. Specifically, the number of committed events during a measurement cycle is estimated to be
Eexecuted−Eundone, as shown in the numerator of (3). Unlike the number-of-rollbacks metric, efficiency does
take into account the number of events undone during each rollback, and is only slightly more expensive to
compute. Similar to effective utilization, efficiency is generally a fraction between 0 and 1, although it can
theoretically be negative if more events are undone than executed during a frequency adjustment interval.
Note that efficiency and effective utilization are equal if the grain of computation is equal for all events.

E f f iciency =
Eexecuted−Eundone

Eexecuted
= 1− Eundone

Eexecuted
(3)

Child and Wilsey

1. while there exists a pair (LP_H,LP_L)
with useful work (above,below) threshold:

2. while LP_H is at maximum frequency:
3. LP_H := LP with next lower useful work index
4. end while
5. while LP_L is at the minimum frequency:
6. LP_L := LP with next higher useful work index
7. end while
8. if (LP_H,LP_L) still have useful work (above,below) threshold:
9. adjust the frequency of LP_L down
10. adjust the frequency of LP_H up
11. end if
12. end while

Figure 1: Time Warp Performance governor algorithm.

1. while there exists a pair (LP_H,LP_L)
with useful work (above,below) threshold:

2. while LP_L is at the minimum frequency:
3. LP_L := LP with next higher useful work index
4. end while
5. if LP_L still has useful work below threshold:
6. adjust the frequency of LP_L down
7. end if
8. end while

Figure 2: Time Warp LowPower governor algorithm.

4 TIME WARP DVFS GOVERNORS

Using the Linuxuserspace kernel governor, we implemented a number of our own “Time Warp governors”
that dynamically set the P-states of each core based on the useful work of the LP that is bound to it. In
particular we implement three distinct governors that we have named Performance, LowPower, and Hybrid.
Each governor employs a slightly different algorithm depending on the optimization goal, further discussed
below. In each algorithm, each LP number and its useful work index have been collected into an array of
records and sorted by useful work index in ascending order. The useful work metric is selectable among
the three discussed in the previous section.

The Performance governor (Figure 1) only scales the frequency of one LP up if it can find another LP
that it can scale down. The LowPower governor (Figure 2) aggressively scales down the frequencies of
LPs with a low useful work index, regardless of whether there is another LP it can scale up. The Hybrid
governor (Figure 3) attempts to combine the Performance and LowPower governors. It operates by first
scaling down the frequency of an LP with a below-average useful work index, and then scales up an LP
with an above-average useful work index if one exists. The upper and lower thresholds of useful work
depend on the metric. For the effective utilization and efficiency metrics, the thresholds are the average
useful work across all LPs ± 0.1. For the number-of-rollbacks useful work metric, they are the average ±
10%.

Child and Wilsey

1. while there exists a pair (LP_H,LP_L)
with useful work (above,below) threshold:

2. while LP_H is at maximum frequency:
3. LP_H := LP with next lower useful work index
4. end while
5. while LP_L is at the minimum frequency:
6. LP_L := LP with next higher useful work index
7. end while
8. if LP_L has useful work below threshold:
9. adjust the frequency of LP_L down
10. if LP_H has useful work above threshold:
11. adjust the frequency of LP_H up
12. end if
13. end if
14. end while

Figure 3: Time Warp Hybrid governor algorithm.

5 MODELING TIME WARP ENERGY USAGE

Power consumption in VLSI circuits is divided into three components: dynamic, static (or leakage), and
direct path. These three components sum to equal the total device power, given by Equation (4) (Rabaey
1996, p. 225). Dynamic power consumption results from energy lost while charging and discharging
capacitances during 0→ 1 and 1→ 0 transitions. Static power dissipation results from leakage currents
from VDD to ground, and has become a significant part of the power equation with today’s nanoscale
transistors and near-threshold voltages. Direct path power results from short circuit current that occurs in
the brief partially-on partially-off state between transitions.

Ptotal = Pdynamic +Pleakage +Pdirect path (4)

It is common practice to neglect everything but the dynamic power (Brooks et al. 2000). We have no way
of measuring leakage power on the Phenom II X6 1055T, but we can assume that the operating points
designed by AMD (Table 2) were chosen such that leakage power is kept under control. Indeed, the
minimum operating voltage of 1.18V in P3 seems to be sufficiently above the typical threshold voltage (a
few hundred millivolts) of a 45nm CMOS process. Static power is neglected in our calculations for these
reasons. Direct path power is also neglected as it is the smallest part of the power equation and is easily
kept under control with careful design (Rabaey 1996, p. 225).

Dynamic power across an N-core CMP is approximated by Equation (5). C is the output capacitance
of all transistors on one core (assumed to be approximately equal across all cores), a is an activity factor
that represents the switching frequency of transistors on the core, V is CPU voltage (VDD), and f is clock
frequency (Brooks et al. 2000).

Pdynamic ≈
aC
2

N

∑
i

V 2
i fi (5)

We multiply the total dynamic power given by Equation (5) by the simulation runtime (delay D) to obtain
an approximation of the energy used by the simulation. This approximation is given in Equation (6).

E ≈ Pdynamic (tstop− tstart) (6)

= PdynamicD (7)

Child and Wilsey

1 2 3 4 5 6 7 8 9 10
Wall time (s)

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Effective Utilization

Efficiency

Rollbacks

400

450

500

550

600

R
o
llb

a
ck

s

Figure 4: Comparisons of the number-of-rollbacks, effective utilization, and efficiency useful work metrics.

6 EXPERIMENTS

The WARPED Time Warp simulator is used as a platform to implement and evaluate the DVFS algorithms
and useful work estimators discussed in this paper. As WARPED was originally designed for use on
distributed memory clusters, it was upgraded to use the Nemesis communication channel of MPICH2,
an MPI implementation that uses non-blocking shared memory queues for intra-node message passing
(Buntinas, Mercier, and Gropp 2006). An LP in WARPED is a Linux heavyweight thread that contains any
number of simulation objects and maintains a single Least Time Stamp First (LTSF) queue of events for
all of its objects. Four and six-LP WARPED simulations were run on a custom PC equipped with an AMD
Phenom II X6 1055T CPU and 16GB RAM.

First, the number-of-rollbacks, effective utilization, and efficiency useful work metrics were evaluated
using the parallel hold (PHold) simulation model (Fujimoto 1990b). Figure 4 shows a trace of a PHold
simulation with 2 LPs each bound to a core of the X6, 6 simulation objects (3 per LP) and a message
density of 32. This is a single simulation run in which all three useful work metrics are computed. In this
case, the effective utilization and efficiency metrics are roughly the same. This is expected, as all events
in the PHold model have a constant granularity. Any slight differences are likely due to rdtsc readings
taken between context switches.

The number-of-rollbacks metric, however, is strikingly different than the other two. Until 5 seconds
into the simulation, it appears to be proportional to the inverse of the other two metrics, as we would
expect. However, from that point on it deviates from our expectations significantly. The measurement at
time 7 could be explained by a single rollback causing a large number of events to be undone (a long
rollback). At the same time, the measurement of a large number of rollbacks together with a high efficiency
measurement at time 8 could be explained as either a sharp drop in the number of events executed that
interval due to a sudden GVT computation, or a large number of rollbacks that only go back to the recent
virtual past and therefore only undo the work of a few events.

Although the simplicity of the number-of-rollbacks metric is appealing, these results seem to be in favor
of the efficiency and effective utilization metrics. Real application models in Time Warp have different
types of events with different computation grains, so we would expect to see some deviation between the
efficiency and effective utilization when running simulations of different models. For PHold, the efficiency
metric is the clear winner, as it is less expensive to estimate.

Child and Wilsey

Table 1: Steady-state frequencies arrived at by the Time Warp governors, in MHz.

Governor fLP0 fLP1 fLP2 fLP3 fLP4 fLP5

Performance 2800 1500∗ 2200 2200 2200 2200
Low Power 2200 1500 1500 1500 1500 1500

Hybrid 2800 1500 1500 1500 1500 1500
Fixed 2200 2200 2200 2200 2200 2200

∗Performance will set the LP with the smallest useful work index to 1500 MHz, which may not necessarily be LP1.

A modified version of PHold was used to evaluate and compare the performance of the Time Warp
governors. The PHold model is an extension of the hold model used in sequential simulators, and is
designed to test the spatial and temporal locality of Time Warp. The PHold model by itself, however, is
completely balanced provided LPs are partitioned evenly across all available PEs, which made it nearly
useless for the purposes of evaluating our load balancing DVFS governors. Fortunately Ahmed, Rönngren,
and Ayani (1994) showed how to introduce imbalances into a PHold model. In particular, the authors used
a modified version of PHold in scheduling experiments to model a heterogeneous system in which a “hot
spot” node is N times more likely to receive an event than any other node. The use of a hot spot node is
justified because it represents a type of model in which some LPs are more active than others, a property
that is common in realistic models such as digital logic simulators (Ahmed, Rönngren, and Ayani 1994).
Below, we use this idea to evaluate our Time Warp governors.

The hot spot node creates an imbalance in the simulation such that none of the governors are able to
restore balance, meaning the P-states of each LP are already set to their final value within the first seconds
of the simulation. The frequencies inevitably arrived at for a 6-LP simulation with LP0 configured as a
hotspot are given in Table 1. In the case of the Performance governor, any one of the LPs other than
LP0 could be selected for scaling down, depending on which has the absolute lowest useful work index.
Initial results showed that WARPED under DVFS performed better with a restricted range of frequencies,
so the available P-states for these experiments were limited to the first three, P0-P2. The frequencies and
empirically obtained voltages of these P-states are given in Table 2.

Figure 5 compares the three Time Warp governors presented in this paper. The Fixed governor simply
sets the frequencies of all cores to the nominal (2.2 GHz). Message densities (number of initial events per
LP) were varied from 2 to 32, and the computation grain was set to 10µs. Each LP is bound to a core
of the X6 and contains only one simulation object. Efficiency was used as the useful work metric. The
frequency adjustment interval was 1 second. Four performance metrics commonly used to evaluate Time
Warp were measured: simulation time, event rate, efficiency, and number of rollbacks. Simulation time is
the wall time of the simulation run. Event rate is the number of committed events per second and is thus
inversely related to simulation time. Here, as opposed to useful work estimation, efficiency is the actual
number of committed events divided by the number of executed events throughout the whole simulation,
and rollbacks gives the total number of rollbacks across all LPs. Each data point is the arithmetic mean
of the results of 10 simulation runs.

Simulation time and number of rollbacks are the most affected by the DVFS algorithm and number of
LPs. This dependence becomes more apparent at higher message densities. The Fixed governor has the
highest efficiency of the 4-LP simulations at message densities less than 32.

It can be gathered from the simulation times in Figure 5 that the Performance and Hybrid governors
were able to speed up simulations, at least for some message densities. We now turn our attention to
quantifying these measurements in terms of energy savings and performance gains. Table 2 lists measured
operating points of the AMD Phenom II X6 1055T, which were empirically obtained using the sensors
tool of the lm-sensors package and the cpufreq userspace governor to set the P-states. This was
necessary because the authors have so far been unable to obtain a datasheet. cpufreq also shows that
the transition latency between P-states is 8µs for all operating points.

Child and Wilsey

0 4 8 12 16 20 24 28 32 36
Message Density

0

10

20

30

40

50

60

70

80

90

S
im

u
la

ti
o
n
 T

im
e
 (

s)

6 lPs (Performance)

6 LPs (LowPower)

6 LPs (Hybrid)

6 LPs (Fixed)

4 lPs (Performance)

4 LPs (LowPower)

4 LPs (Hybrid)

4 LPs (Fixed)

0 4 8 12 16 20 24 28 32 36
Message Density

15

20

25

30

35

40

45

50

E
v
e
n
t

R
a
te

 (
th

o
u
sa

n
d
 e

v
e
n
ts

/s
)

6 lPs (Performance)

6 LPs (LowPower)

6 LPs (Hybrid)

6 LPs (Fixed)

4 lPs (Performance)

4 LPs (LowPower)

4 LPs (Hybrid)

4 LPs (Fixed)

0 4 8 12 16 20 24 28 32 36
Message Density

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E
ff

ic
ie

n
cy

6 lPs (Performance)

6 LPs (LowPower)

6 LPs (Hybrid)

6 LPs (Fixed)

4 lPs (Performance)

4 LPs (LowPower)

4 LPs (Hybrid)

4 LPs (Fixed)

0 4 8 12 16 20 24 28 32 36
Message Density

0

20

40

60

80

100

120

140

160

180
R

o
llb

a
ck

s/
1
0
0
0

6 lPs (Performance)

6 LPs (LowPower)

6 LPs (Hybrid)

6 LPs (Fixed)

4 lPs (Performance)

4 LPs (LowPower)

4 LPs (Hybrid)

4 LPs (Fixed)

Figure 5: Simulation time, event rate, efficiency, and rollback comparison of Time Warp governors for 4
and 6 LPs. LP0 is configured as a hot spot node with N=10.

Table 2: Empirical AMD Phenom II X6 1055T Operating Points.

P-State Voltage (V) Frequency (MHz) Used
P0 1.44 2800 Yes
P1 1.26 2200 Yes
P2 1.25 1500 Yes
P3 1.18 800 No

Child and Wilsey

Figure 6: Energy and Performance of various Time Warp governors relative to the Fixed governor.

Normalized energy is given by Equation (8). To obtain normalized energy, Equation (6) was evaluated
using the steady-state frequencies set by each governor (See Table 1) and divided by the energy of the
fixed governor. Normalized energy is plotted alongside normalized delay for each Time Warp governor in
Figure 6 for 2, 4 and 6 cores.

NormalizedEnergyi =
PiDi

Pf ixedD f ixed
(8)

Figure 6 shows normalized (with respect to the Fixed governor) energies and delays for each of the
other governors, for 6, 4, and 2 cores. It was generated from the same data plotted in Figure 5. Values
less than 1 represent a performance/energy gain, while values greater than one represent a loss. For this
energy-performance analysis, data points of message density 32 were taken, as those show the greatest
variance between Time Warp governors, and also appear to be the most promising in terms of performance
and energy savings.

The results show that for 6 cores, both the Performance and Hybrid governors are faster and more
energy efficient than the Fixed governor. The Performance governor achieves slightly better performance
but with significantly more energy than the Hybrid governor. As expected, the LowPower governor saves
significant energy (∼ 27%) with a minimal increase in simulation time (∼ 1%). Also as expected, the
performance of the Hybrid and Performance governors is roughly the same for 2 cores.

It was expected that fewer cores would result in less performance and energy savings, but curiously
all three governors ran slower than the Fixed governor for 2 and 4 core simulations, which affected both
performance and energy. The results appear to show that savings increases with number of cores, but it
is unclear where savings will level off. Emerging many-core CMPs will provide the answer in the near
future.

The Performance and Hybrid Time Warp governors represent theoretical gains if Turbo Boost-style over
clocking were possible with software. In this scenario, the Fixed governor provides an artificial frequency
ceiling, and Performance and Hybrid are replacements for the Turbo Boost algorithm. Performance and
Hybrid show that performance and energy can be simultaneously optimized in Time Warp, but are not
directly applicable to Time Warp simulations on current CMPs. The results of the LowPower governor,
however, are more general and show that significant energy savings with minimal performance loss are
achievable with DVFS in Time Warp, on CMPs and possibly on DVFS-enabled clusters. Note that the
reported savings in performance and energy seem to be highly dependent on message density.

Child and Wilsey

7 CONCLUSIONS AND FUTURE WORK

We have discussed Time Warp and the concept of useful work, and compared load balancing in Time Warp
to traditional load balancing. Various metrics of useful work were compared. It was shown how estimates
of useful work can be used to dynamically balance Time Warp simulations using DVFS, achieving faster
performance, energy savings and fewer rollbacks. Unfortunately, gains appear to be highly sensitive to
model parameters such as message density, as well as number of LPs.

It is known that CPU-boundness affects the sensitivity of application runtime to changes in clock
frequency (Etinski et al. 2012), so it would be interesting to investigate how event granularity affects
Time Warp simulations under DVFS. Also, we have demonstrated power savings with the LowPower on
a shared-memory multi-core processor, but the same algorithm should theoretically be applicable to Time
Warp on a DVFS-enabled cluster, by using cpufreq to raise the P-states of nodes with low useful work
indexes. This is a possible avenue of exploration in future Time Warp research.

The hot spot variant of the PHold model with N=10 is extremely imbalanced and remains that way
throughout the duration of the simulation if DVFS is not used. The DVFS algorithms presented here could
be evaluated against other imbalanced models with dynamically changing workloads to test their ability
to adapt. We also have not seen the effect of using DVFS with Time Warp on a CMP with more than 6
cores, where further energy savings might be possible.

Finally, the threshold of change from the useful work measurements used to trigger a frequency
adjustment in this study were determined by comparing each measurement to the average. This approach
can theoretically be problematic if the average is heavily skewed by an outlier. A possible solution that
remains to be tested is setting the threshold to the average plus and minus the inverse standard deviation
scaled by some constant factor.

ACKNOWLEDGMENTS

Support for this work was provided in part by the National Science Foundation under grant CNS–0915337.

REFERENCES

Ahmed, H., R. Rönngren, and R. Ayani. 1994, January. “Impact of event scheduling on performance of time
warp parallel simulations”. In Proceedings of the Twenty-Seventh Hawaii International Conference on
Systems Sciences, Volume 2, 455–462.

Ball, D., and S. Hoyt. 1990, January. “The Adaptive Time-Warp Concurrency Control Algorithm”. In
Distributed Simulation, 174–177. Society for Computer Simulation.

Brooks, D. M., P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu, J.-D. Wellman,
V. Zyuban, M. Gupta, and P. W. Cook. 2000, November. “Power-Aware Microarchitecture: Design and
Modeling Challenges for Next-Generation Microprocessors”. IEEE Micro 20 (6): 26–44.

Buntinas, D., G. Mercier, and W. Gropp. 2006, May. “Design and evaluation of Nemesis, a scalable,
low-latency, message-passing communication subsystem”. In Cluster Computing and the Grid, 2006.
CCGRID 06. Sixth IEEE International Symposium on, Volume 1, 10 pp. –530.

Child, R., and P. Wilsey. 2012, July. “Dynamically Adjusting Core Frequencies to Accelerate Time Warp
Simulations in Many-Core Processors”. In Principles of Advanced and Distributed Simulation, 2012.
PADS ’12. ACM/IEEE/SCS 26th Workshop on.

Das, S. R. 1996, December. “Adaptive protocols for parallel discrete event simulation”. In Proceedings of
the 1996 Winter Simulation Conference, edited by J. M. Charnes, D. J. Morrice, D. T. Brunner, and
J. J. Swain, 186–193. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Etinski, M., J. Corbalan, J. Labarta, and M. Valero. 2012, April. “Understanding the future of energy-
performance trade-off via DVFS in HPC environments”. J. Parallel Distrib. Comput. 72 (4): 579–590.

Ferscha, A., and J. Lüthi. 1995. “Estimating Rollback Overhead for Optimism Control in Time Warp”. In
Annual Simulation Symposium, 2–12.

Child and Wilsey

Fleischmann, J., and P. A. Wilsey. 1995, June. “Comparative Analysis of Periodic State Saving Techniques
in Time Warp Simulators”. In Proc. of the 9th Workshop on Parallel and Distributed Simulation (PADS
95), 50–58.

Fujimoto, R. M. 1990a, October. “Parallel discrete event simulation”. Commun. ACM 33:30–53.
Fujimoto, R. M. 1990b, January. “Performance of time warp under synthetic workloads”. In Proceedings of

the SCS Multiconference on Distributed Simulation, vol. 22, 23–28. Society for Computer Simulation.
Hamnes, D. O., and A. Tripathi. 1994, July. “Investigations in Adaptive Distributed Simulation”. In Proc.

of the 8th Workshop on Parallel and Distributed Simulation (PADS 94), 20–23. Society for Computer
Simulation.

Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd., Toshiba
Corporation 2010. Advanced Configuration and Power Interface Specification. 4.0a ed. Hewlett-Packard
Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd., Toshiba Corporation.

Hopper, J. 2009, September. “Reduce Linux power consumption, Part 1: The CPUfreq Subsystem”.
Technical report, IBM.

Jefferson, D. 1985, July. “Virtual Time”. ACM Transactions on Programming Languages and Systems 7
(3): 405–425.

Labs, I. 2010, May. “The SCC Platform”. Technical report, Intel Corporation.
Palaniswamy, A., and P. A. Wilsey. 1996, September. “Parameterized Time Warp: An Integrated Adaptive

Solution to Optimistic PDES”. Journal of Parallel and Distributed Computing 37 (2): 134–145.
Quaglia, F. 2001. “A scaled version of the elastic time algorithm”. In Proceedings of the fifteenth workshop

on Parallel and distributed simulation, PADS ’01, 157–164. Washington, DC, USA: IEEE Computer
Society.

Rabaey, J. M. 1996. Digital integrated circuits: a design perspective. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc.

Reiher, P. L., and D. Jefferson. 1990. “Virtual Time Based Dynamic Load Management In The Time Warp
Operating System”. Transactions of the Society for Computer Simulation 7:103–111.

Rountree, B., D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W. Freeh, and T. Bletsch. 2009. “Adagio:
making DVS practical for complex HPC applications”. In Proceedings of the 23rd international
conference on Supercomputing, ICS ’09, 460–469. New York, NY, USA: ACM.

Srinivasan, S., and P. F. Reynolds Jr.. 1998, April. “Elastic time”. ACM Transactions on Modeling and
Computer Simulation 8 (2): 103–139.

Tay, S., Y. Teo, and S. Kong. 1997, June. “Speculative parallel simulation with an adaptive throttle scheme”.
In Proc. of 11th Workshop on Parallel and Distributed Simulation (PADS97), 116–123.

Weiser, M., B. Welch, A. Demers, and S. Shenker. 1994. “Scheduling for reduced CPU energy”. In
Proceedings of the 1st USENIX conference on Operating Systems Design and Implementation, OSDI
’94, 13–23. Berkeley, CA, USA: USENIX Association.

AUTHOR BIOGRAPHIES

RYAN CHILD is a graduate student at the University of Cincinnati School of Electronics and Computing
Systems. He is currently researching DVFS techniques to optimize performance and power consumption of
Time Warp Parallel Discrete Event Simulations on multi-core and distributed systems. His email address
is ryan.child@gmail.com and his web page is http://homepages.uc.edu/∼childrn.

PHILIP A. WILSEY is a professor in the School of Electronic and Computing Systems at the University
of Cincinnati. His is an experimentalist working in parallel and distributed systems, embedded system,
and point-of-care medical devices. He is currently studying the challenges of parallelism in multi-core and
many-core platforms and is studying the optimization of virtualized Beowulf clusters composed of multi-
/many-core processors to support efficient parallel execution of fine grained applications. His email address
is wilseypa@gmail.com and his web pages are http://secs.ceas.uc.edu/∼paw and http://github.com/wilseypa.

