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ABSTRACT

In this paper, we introduce a new approach to constructing unbiased estimators when computing expectations
of path functionals associated with stochastic differential equations (SDEs). Our randomization idea is
closely related to multi-level Monte Carlo and provides a simple mechanism for constructing a finite
variance unbiased estimator with “square root convergence rate” whenever one has available a scheme that
produces strong error of order greater than 1/2 for the path functional under consideration.

1 INTRODUCTION

We have recently developed a general approach to constructing unbiased estimators, given a family of
biased estimators. It turns out that the conditions guaranteeing its validity are closely related to those
associated with multi-level Monte Carlo methods; see Rhee and Glynn (2012) for details and a more
complete discussion of the theory. In this paper, we briefly describe the idea in the setting of computing
solutions of stochastic differential equations and provide an initial numerical exploration intended to shed
light on the method’s potential effectiveness. As we will see below, the conditions under which our estimator
produces an algorithm with “square root convergence rate” essentially coincide with the conditions required
by multi-level Monte Carlo to converge at the same rate.

In particular, suppose that we wish to compute an expectation of the form α = Ek(X), where X =
(X(t) : t ≥ 0) is the solution to the SDE

dX(t) = µ(X(t))dt +σ(X(t))dB(t), (1)

B = (B(t) : t ≥ 0) is an m-dimensional standard Brownian motion, µ : Rd → Rd , σ : Rd → Rd×m, k :
C[0,∞)→ R, and C[0,∞) is the space of continuous functions mapping [0,∞) into Rd . The functions µ

and σ are “model primitives” specified by the simulationist that are intended to respectively model the
state-dependent drift and volatility of the associated process X . In general, the random variable (rv) k(X)
cannot be simulated exactly, because the underlying infinite-dimensional object X cannot be generated
exactly. Instead, one typically approximates X via a discrete-time approximation Xh(·). For example, the
simplest such approximation is the Euler time-stepping algorithm given by

Xh(( j+1)h) = Xh( jh)+µ(Xh( jh))h+σ(Xh( jh))(B(( j+1)h)−B( jh)) (2)

that defines Xh at the time points 0,h,2h, ..., with Xh defined at intermediate values via (for example) linear
interpolation. Because (2) is only an approximation to the dynamics represented by (1), the rv k(Xh) is only
an approximation to k(X), and consequently k(Xh) is a biased estimator for the purpose of computing α .
The traditional means of dealing with this is to intelligently select the step size h and number of independent
replications R as a function of the computational budget c, so as to maximize the rate of convergence.
However, as pointed out by Duffie and Glynn (1995), such biased numerical schemes inevitably lead to
Monte Carlo estimators for α that exhibit slower convergence rates than the “canonical” order c−1/2 rate
associated with Monte Carlo in the presence of unbiased finite variance estimators.
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However, Giles (2008a) introduced an intriguing multi-level idea to deal with such biased settings that
can dramatically improve the rate of convergence and can even, in some settings, achieve the canonical
“square root” convergence rate associated with unbiased Monte Carlo. His approach does not construct
an unbiased estimator, however. Rather, the idea is to construct a family of estimators (indexed by the
desired error tolerance ε) that has controlled bias. In this paper, we show how it is possible, in a similar
computational setting, to go one step further and to produce (exactly) unbiased estimators. The remainder
of this paper is organized as follows: We discuss the idea in Section 2 of this paper, while Section 3 is
devoted to an initial computational exploration of this approach.

2 THE BASIC IDEA

We consider here a sequence (Xhn : n≥0) of discrete-time time-stepping approximations to X that are all
constructed on a common probability space in such a way that:

i) Ek(Xhn) = Ek(X)+O(hn) as hn→ 0;
ii) E|k(Xhn)− k(X)|2 = O(h2r

n ) as hn→ 0

for some r > 0, where O( f (n)) represents a function which is bounded by some constant multiple of f (·)
as hn → 0. Assuming, as is often the case for such discretization schemes, that the scheme generates
normal rv’s that are intended to mirror the Brownian increments of the process B driving the SDE (as in the
Euler scheme (2) above), the easiest way to algorithmically obtain an approximating sequence Xhn to X in
which the Xhn’s are jointly defined on the same probability space is by successive binary refinement, so that
hn = 2−n. In this setting, the new Brownian motion values (B( j2−(n+1)): j odd) required at discretization
2−(n+1) can be obtained from the existing values (B( j2−n) : j ≥ 0) by generating B((2i+1)2−(n+1)) from
its conditional distribution given B(i2−n) and B((i+1)2−n). On the other hand, one’s ability to obtain i)
and ii) depends both on the path functional k and on one’s choice of discretization scheme.

In particular, if k is a Lipschitz functional on C[0,∞) (e.g., k(x) = g(x(1)) for some Lipschitz function
g : Rd → R), condition ii) is implied by

E sup{|Xh( jh)−X( jh)|2 : 0≤ j ≤ bt/hc}= O(h2r),

which in turn is closely related to establishing that the discretization Xh exhibits strong order r; see Kloeden
and Platen (1992), p.323, for the definition. In addition, if k is further assumed to be smooth with |k(X)|
integrable, then i) is satisfied whenever the discretization Xh is known to be of weak order 1 or higher; see
Kloeden and Platen (1992), p.327, for the definition. It should be noted that these conditions are (very)
closely related to those that appear in the literature on multi-level Monte Carlo for SDEs.

Note that each of the k(X2−n)’s is a biased estimator for α = Ek(X). To obtain an unbiased estimator,
observe that ii) implies the existence of p > 0 such that

∞

∑
n=1

E2np|k(X2−n)− k(X2−(n−1))|2 < ∞.

Consequently,

∞

∑
n=1

2np|k(X2−n)− k(X2−(n−1))|2 < ∞ a.s.

from which it follows that

|k(X2−n)− k(X2−(n−1))|2 = O(2−np) a.s.
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as n→ ∞, and hence (in view of ii),

k(X) = k(X1)+
∞

∑
n=1

(k(X2−n)− k(X2−(n−1))). (3)

(It has been pointed out to us that this representation for the rv k(X) as an infinite “collapsing sum” was
previously and independently developed by McLeish (2011) in a paper that also focuses on construction
of unbiased estimators, but which does not apply this idea to SDEs in the way suggested here.)

Because the infinite sum (3) requires infinite work to compute, we use a randomization idea to create
a “finite work” estimator with the same expectation. Prior applications of this idea can be found in Glynn
(1983) and Fox and Glynn (1989). Specifically, we now introduce a rv N, independent of B, that takes
values in the positive integers and has a distribution with unbounded support (so that P(N ≥ n) > 0 for
n≥ 1). For such a rv N,

Ek(X) = Ek(X1)+
∞

∑
n=1

E
[
(k(X2−n)− k(X2−(n−1)))I(N ≥ n)

]
/P(N ≥ n)

= E

[
k(X1)+

N

∑
n=1

(k(X2−n)− k(X2−(n−1)))/P(N ≥ n)

]
, EZ.

Note that Z is an unbiased estimator for α . This suggests computing α by generating iid replicates of
the rv Z. Of course, the “square root” convergence rate of such an estimator is not guaranteed. Given the
role that finiteness of the variance plays in obtaining such convergence rates, we next study this issue.

Set ∆i = k(X2−i)− k(X2−(i−1)) for i≥ 1 and observe that

EZ2 = Ek2(X1)+E
N

∑
i=1

∆
2
i /P(N ≥ i)2 +2Ek(X1)

N

∑
i=1

∆i/P(N ≥ i)+2E
N

∑
i=1

N

∑
j=i+1

∆i∆ j/(P(N ≥ i)P(N ≥ j))

= Ek2(X1)+
∞

∑
i=1

E∆
2
i /P(N ≥ i)+2Ek(X1)

∞

∑
i=1

∆i +2
∞

∑
i=1

∞

∑
j=i+1

E∆i∆ j/P(N ≥ i)

= Ek2(X1)+
∞

∑
i=1

E∆
2
i /P(N ≥ i)+2Ek(X1)(k(X)− k(X1))+2

∞

∑
i=1

E∆i(k(X)− k(X2−i))/P(N ≥ i)

≤ Ek2(X1)+2Ek(X1)(k(X)− k(X1))+
∞

∑
i=1

O(2−2ri)/P(N ≥ i),

so that varZ < ∞ if P(N ≥ i) ∼ c2−γi as i→ ∞, for 0 < γ < 2r (where ai ∼ bi means that ai/bi → 1 as
i→ ∞).

Finally, Glynn and Whitt (1992) prove that “square root convergence rate” ensues if varZ < ∞ and
if the expected computational effort required per replication of Z is finite. The expected computational
“work” required for each Z is (roughly) given by

E
N

∑
i=0

ti,

where ti is the incremental effort required to compute k(X2−i) (given k(X1), . . . ,k(X2−(i−1))), and hence can
be expressed as

∞

∑
i=0

tiP(N ≥ i). (4)
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An approximation to ti is ti = 2i−1 (the number of additional Gaussian rv’s needed to generate X2−i).
In order that (4) be finite, we require that γ > 1. Consequently, a square root convergence rate is ensured
when 2r > 1 ( in which case we can, for example, choose γ = (1+2r)/2).

3 A PRELIMINARY COMPUTATIONAL INVESTIGATION

In this section, we implement our method and compare it to the multilevel Monte Carlo algorithm suggested
in Giles (2008a). We consider two examples:

Geometric Brownian Motion (GBM): The process under consideration here is the solution to

dX(t) = µX(t)dt +σX(t)dB(t)

subject to X(0) = 1, µ = 0.05, σ = 0.2, the functional k is k(x) = x(1). For this set of parameters,

Ek(X) = 1.05127.

Cox-Ingersoll-Ross process (CIR): Here, X solves

dX(t) = κ(θ −X(t))dt +σ
√

X(t)dB(t),

subject to X(0) = 0.04, κ = 5, θ = 0.04, and σ = 0.25. The functional k is taken here to be k(x) = x(1).
For this example,

Ek(X) = 0.04.

The numerical scheme used to solve each of the above SDE’s was the Milstein scheme; see Kloeden
and Platen (1992). For the above problems, we expect r = 1. For the purpose of this paper, we do not try
to optimize the distribution of N, and instead choose N so that

P(N ≥ i) = 2−3(i−1)/2

for i≥ 1. (In other words, we choose γ as the midpoint between 1 and 2r, although any choice in (1,2)
would provide ”square root convergence rate”.)

To compare our method to the multi-level Monte Carlo (MLMC) method, we take the view (as in Giles
2008a) that the root mean square error (RMSE) ε to be achieved by the algorithm is given. Giles (2008a)
provides a complete description of how to construct a MLMC estimator achieving approximate RMSE
ε , and Giles (2008b) demonstrates numerically that the square root convergence rate can be achieved by
MLMC with the Milstein scheme. We have used the MATLAB code provided on the author’s webpage
for Giles (2008b). For our unbiased estimator, we generate independent and identically distributed (iid)
replications of the rv Z until such time as the approximate RMSE is less than or equal to ε . In other words,
our estimator for α is

1
N(ε)

N(ε)

∑
i=1

Zi, (5)

where the Zi’s are iid replicates of Z, and

N(ε) = inf

n>10 :
1

n(n−1)

n

∑
i=1

(
Zi−

1
n

n

∑
j=1

Z j

)2

≤ ε
2


is the first time that the sample RMSE of the sample mean drops below ε . We use the stopping rule
N(ε) in order to permit easy computation for our estimator, although its use is somewhat unnatural for our
estimator (since its use induces bias in our estimator).
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Table 1: Unbiased estimation for GBM.

IRE 90% Confidence Interval RMSE Work
25% 1.049 ± 1.1×10−2 6.8×10−2 4.98 ×101 ± 9.0×100

10% 1.049 ± 1.1×10−2 6.7×10−2 4.99 ×101 ± 9.1×100

5% 1.0454 ± 9.5×10−3 5.8×10−2 7.32 ×101 ± 1.1×101

2% 1.0522 ± 3.1×10−3 1.9×10−2 4.40 ×102 ± 2.9×101

1% 1.0508 ± 1.6×10−3 9.8×10−3 1.725×103 ± 5.9×101

0.5% 1.05097 ± 8.3×10−4 5.1×10−3 7.38 ×103 ± 4.2×102

0.2% 1.05103 ± 3.2×10−4 1.9×10−3 4.498×104 ± 6.6×102

Table 2: MLMC estimation for GBM.

IRE 90% Confidence Interval RMSE Work
25% 1.0486 ± 3.4×10−3 2.1×10−2 3.100×103 ± 0.0×100

10% 1.0488 ± 3.4×10−3 2.1×10−2 3.100×103 ± 0.0×100

5% 1.0517 ± 3.4×10−3 2.1×10−2 3.100×103 ± 0.0×100

2% 1.0544 ± 2.4×10−3 1.5×10−2 3.204×103 ± 3.6×100

1% 1.0523 ± 1.2×10−3 7.7×10−3 3.825×103 ± 1.0×101

0.5% 1.05090 ± 6.2×10−4 3.8×10−3 6.313×103 ± 2.7×101

0.2% 1.05106 ± 2.4×10−4 1.5×10−3 2.470×104 ± 1.8×102

For each of our two examples, we provide two tables. The first table for each example concerns our new
estimator (5); IRE stands for “intended relative error”, and q% then corresponds to setting ε = (q/100)|α|.
The 90% confidence interval is then obtained by taking 100 replications of (5) for a given ε , computing
the sample mean and sample standard deviation of the 100 observations, and constructing a confidence
interval based on the normal approximation. The column corresponding to RMSE is the square root of
the average, over the 100 observations, of the square of (5) minus EZ. (Thus, RMSE is reporting the
actual root mean square error of the estimator, rather than the intended RMSE that the estimator has been
designed to attain asymptotically.) The final column, denoted “work”, reports a 90% confidence interval
for the expected number of normal rv’s generated to construct (5), based on our 100 samples. The second
table for each example provides a corresponding set of values for the MLMC estimator.

Taking the amount of work required for computation into account, our results are reasonably comparable
to those associated with MLMC, despite the fact that we have done essentially no tuning to optimize the
distribution of N for the purposes of this paper. In particular, for the CIR example, our estimator appears
to require less work for comparable accuracy, while for the GBM example, MLMC beats our estimator.
In addition, our estimator is (arguably) easier to implement than MLMC, since (in its current form) there
are no algorithmic parameters that are estimated “on the fly” within the algorithm (in contrast to MLMC).
Thus, the unbiased estimators introduced here, despite the independent randomization associated with N
(that inflates variance relative to the non-randomized “infinite work” alternative involving the infinite sum
(3)), offer a promising computational alternative to MLMC in the presence of SDE numerical schemes
having a strong order greater than 1/2.
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Table 3: Unbiased estimation for CIR.

IRE 90% Confidence Interval RMSE Work
25% 0.0406 ± 1.6×10−3 9.8×10−3 2.00 ×102 ± 2.7×101

10% 0.04045 ± 6.5×10−4 3.9×10−3 1.419×103 ± 7.1×101

5% 0.04001 ± 3.4×10−4 2.0×10−3 6.42 ×103 ± 2.9×102

2% 0.04007 ± 1.3×10−4 8.1×10−4 4.168×104 ± 1.3×103

1% 0.039938 ± 6.4×10−5 4.0×10−4 1.659×105 ± 2.8×103

0.5% 0.039988 ± 3.4×10−5 2.0×10−4 6.613×105 ± 6.3×103

0.2% 0.040014 ± 1.4×10−5 8.4×10−5 4.154×106 ± 3.9×104

Table 4: MLMC estimation for CIR.

IRE 90% Confidence Interval RMSE Work
25% 0.04054 ± 9.7×10−4 5.9×10−3 3.731 ×103 ± 1.3×101

10% 0.04019 ± 4.1×10−4 2.5×10−3 1.1519×104 ± 4.5×101

5% 0.03988 ± 2.1×10−4 1.3×10−3 4.250 ×104 ± 1.4×102

2% 0.03986 ± 1.0×10−4 6.2×10−4 2.6595×105 ± 5.4×102

1% 0.040005 ± 4.4×10−5 2.7×10−4 1.0987×106 ± 6.9×103

0.5% 0.040008 ± 2.3×10−5 1.4×10−4 4.5729×106 ± 5.2×103

0.2% 0.039997 ± 1.0×10−5 5.8×10−5 2.8609×107 ± 2.8×104

REFERENCES

Duffie, D., and P. W. Glynn. 1995. “Efficient Monte Carlo Simulation of Security Prices”. Annals of Applied
Probability 5 (4): 897–905.

Fox, B. L., and P. W. Glynn. 1989. “Simulating Discounted Costs”. Management Science 35:1297–1325.
Giles, M. B. 2008a. “Multilevel Monte Carlo Path Simulation”. Operations Research 56 (3): 607–617.
Giles, M. B. 2008b. “Improved Multilevel Monte Carlo Convergence Using the Milstein Scheme”. In Monte

Carlo and Quasi-Monte Carlo Methods 2006, edited by A. Keller, S. Heinrich, and H. Niederreiter,
343–358: Springer-Verlag.

Glynn, P. W. 1983. “Randomized Estimators for Time Integrals”. Technical report, Mathematics Research
Center, University of Wisconsin, Madison.

Glynn, P. W., and W. Whitt. 1992. “The Asymptotic Efficiency of Simulation Estimators”. Operations
Research 40:505–520.

Kloeden, P. E., and E. Platen. 1992. Numerical Solution of Stochastic Differential Equations. Berlin:
Springer-Verlag.

McLeish, D. 2011. “A General Method for Debiasing a Monte Carlo Estimator”. Monte Carlo Methods
and Applications 17 (4): 301–315.

Rhee, C., and P. W. Glynn. 2012. “Improved Convergence Rates for Biased Samplers”. Working Paper.

AUTHOR BIOGRAPHIES

CHANG-HAN RHEE is currently a Ph.D. student in the Institute for Computational and Mathematical En-
gineering at Stanford University. He graduated with B.Sc. in the Departments of Mathematics and Computer
Science at Seoul National University, South Korea. His research interests include simulation, computational
probability, sensitivity analysis and stochastic control. His email address is chrhee@stanford.edu and his
web page is http://www.stanford.edu/∼chrhee/.

PETER W. GLYNN is currently the Chair of the Department of Management Science and Engineering at
Stanford University. He received his Ph.D in Operations Research from Stanford University in 1982. He



Rhee and Glynn

then joined the faculty of the University of Wisconsin at Madison, where he held a joint appointment between
the Industrial Engineering Department and Mathematics Research Center, and courtesy appointments in
Computer Science and Mathematics. In 1987, he returned to Stanford, where he joined the Department of
Operations Research. He is now the Thomas Ford Professor of Engineering in the Department of Management
Science and Engineering, and also holds a courtesy appointment in the Department of Electrical Engineering.
From 1999 to 2005, he served as Deputy Chair of the Department of Management Science and Engineering,
and was Director of Stanford’s Institute for Computational and Mathematical Engineering from 2006 until
2010. He is a Fellow of INFORMS and a Fellow of the Institute of Mathematical Statistics, has been
co-winner of Best Publication Awards from the INFORMS Simulation Society in 1993 and 2008, was a
co-winner of the Best (Biannual) Publication Award from the INFORMS Applied Probability Society in
2009, and was the co-winner of the John von Neumann Theory Prize from INFORMS in 2010. In 2012, he
was elected to the National Academy of Engineering. His research interests lie in simulation, computational
probability, queueing theory, statistical inference for stochastic processes, and stochastic modeling. His
email address is glynn@stanford.edu and his web page is http://www.stanford.edu/∼glynn/.


