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ABSTRACT 

Agent-based models have been used for diverse domains such as military, sociology, and urban planning. 
There is a growing concern about the incrementality and the flexibility of the agent-based models in fur-
ther sophisticated and large-scale utilization. To resolve this concern, we suggest that specifying agent-
based models formally will resolve the problems of incrementality and flexibility of the agent-based mod-
els through an organized composition of model components. To organize the composition of agent-based 
models, we survey formalisms that are applicable to agent-based models, including formalisms from the 
discrete event models, i.e., DEVS, MDEVS, and Cell-DEVS, as well as formalisms used in the communi-
ties of agent-based models, i.e., BDI, MDP, and Game Theory. Then, we compare, contrast, and propose 
an overarching formal specification for agent-based models that embody the key nature of agents. As an 
example, we show how to incrementally merge and flexibly manage traditional agent-based models 
through proposed formal specifications. 

1 INTRODUCTION 

Agent-based modeling and simulation has been a successful approach in providing insights and predicting 
the future in sociology (Sakoda 1971), biology (Auyang 1999), management (Robert 1999), military (mit-
tal et al 2007), urban-growth (Benenson 1998), logistics (Barbuceanu, Teigen, and Fox 1997), etc. This 
success has led to the development of a large number of agent-based models (Heath, Hill, and Ciarallo 
2009). For further development and utilization of agent-based models, now the modelers should be able to 
incrementally build their agent-based models by depending on other modelers’ models (Moon and Carley 
2007). In the 1970s and 1980s, simple models, such as Schelling’s segregation (Schelling 1971), Epstein 
and Axtell’s sugarscape (Epstein and Axtell 1996), and Carley’s construct (Carley 1991), provided pro-
found insights into our society. However, to show today’s complex socio-economic systems, we need 
more modeling features that go over more than the coverage of a single model or a single modeler. Fur-
thermore, the sophistication of the modern agent-based models requires more systematic modeling and 
implementation approaches, while in the past the algorithm, the pseudo-codes and even the source codes 
of the traditional agent-based models are published in papers. Such model description is now done by uti-
lizing flowcharts, UML notations, or simple textual descriptions. To create more comprehensive models 
for today’s applications, such as a city-scale epidemic model considering the traffic and the social net-
work effects, modelers from different discipline should collaborate and build their models on top of the 
others’. This collaboration includes not only building incrementally, but also testing and modifying the 
incrementally built models by changing the incremental composition of its dynamic execution. Enabling 
such collaboration requires a common ground for their representation, modeling, implementation, and 
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model execution management. We propose that the common ground for modeling is a formal specifica-
tion for agent-based models.  

This paper discusses how to incrementally and flexibly develop and integrate agent-based models 
through the formal specifications that we propose in this paper. The substance of our approach is specify-
ing a multiple agent-based model in our proposed formal specification in a distributed way that means 
two modelers are individually developing the models by the same formal specifications. Then, we incre-
mentally compose the specified multiple agent-based models to execute them in the same simulation exe-
cution context. Also, we flexibly modify the composition of the multiple models to add and remove some 
of the models. The incremental composition and the flexible management are enabled by the formal spec-
ification of the models because the formal specifications become the protocol in developing, running, and 
managing the models.  

As we point out the importance of the formal specification, to our knowledge, there is no single dom-
inant formalism in the agent-based modeling community. So far, some formalisms specifically designed 
for agent-based models have been proposed, which will be compared to our approach in the discussion 
section, yet theses formalisms are not widely used. Therefore, our underlying goal for the above incre-
mental and flexible modeling and simulation is proposing another, more usable formalism for the agent-
based modeling community. The existing formalisms for agent-based models can be categorized into two 
types. First, there are formalisms in some theoretic domains of the agent-based models. For instance, par-
tially observable markov decision-process, or POMDP (Bertsekas 1976), has its own distinct formalism 
though POMDP is limited in being utilized, i.e., modeling robotic behaviors in a simple environment. Se-
cond, there are formalisms reduced from a more general modeling and simulation theory, such as the the-
ory of discrete event system specification, or DEVS (Zeigler, Praehofer, and Kim 2000). For example, 
DEVS community has suggested a number of formalisms, such as MDEVS (Kim and Kim. 2000), yet 
these are not popularly used by the agent-based modeling community.  

This paper aims to present a third type of formal specification that is adapted more to the agent-based 
models with its root in DEVS formalism, and we expect more facilitated adoption of it by the agent-based 
modelers. We present the formal specification in terms of how the specification inherits two cores of the 
agent-based models and DEVS. We subsequently show a demonstration of our formal specification by 
applying the specifications to two well-known tradition agent-based models, and then we illustrate how to 
incrementally compose the fusion model by inheriting the specification of the two models.  

2 PREVIOUS RESEARCH 

For supporting incrementality and flexibility in the model composition, the formal specifications of mod-
els are critical. Since the formal specifications rely on a strict specification basis, such as mathematics, the 
formal specification becomes the common, comprehensive and accurate protocol in model representing 
and implementation. Also, if the formal specifications support modular and hierarchical compositions, the 
specified models are easier to incrementally and flexibly compose as an over-arching model.  Then, the 
question is whether or not the existing formalisms in the agent-based modeling community are 1) com-
prehensive in modeling agents and 2) hierarchical and modular in composing more than two agent models. 

2.1 Existing Formalisms from Discrete Event Models and Agent Models 

Agent-based models describe that individual agents interact with other agents and environment. In detail, 
the agent-based models have three main components: agents, environment, and interactions between them. 
We surveyed existing formalisms by categorizing the elements of the formalisms into the three categories 
of the components. This categorization becomes one axis of our survey on formalisms. The second axis of 
the survey is the origins of the formalisms. Some formalisms adapted to the agent-based models are di-
rectly inherited from the cellular automata from the Von Neumann era (Neumann 1966). Another set of 
formalisms are specialized formalisms from the general discrete event modeling formalism, or DEVS. Fi-
nally, some formalisms originated from the AI field to model the details of the agents, such as POMDP,
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 States of situation awareness: States from the external information from environments and other 
agents 

 States of action: States of executing a certain action 
 States of condition: States describing condition-action rules in the decision-making process 

  
  The above characterization of actions results in the formal specifications for action model below. An 
action model is formally specified by five sets and four functions. Below, X means an input event set from 
external models, such as other agents and environments. Y means an output event set which is generated 
by the action model. The states of the action model are divided into three types : states of situation aware-
ness(Saw), states of actions(Sact), and states of conditions(Scond). Using these state sets, four functions need 
to be specified, and the four functions include three basic functions from the agent’s skeleton in Figure 1 
and a time advance function that is essential in discrete event system. The perceive function (P) means, 
when the external events come in, an action model changes its situation awareness states by the external 
inputs. The decision function (D) specifies the transition of its action states according to its situation 
awareness, action in progress, and decision conditions. The action function (A) describes an action model 
generating an output event from the action states. Lastly, the time advance function defines the time of the 
action completion by the chosen output action. While  the mathematical notations are described below, 
Figure 3 shows the structure of the action model in the formal specification . 

 
ACT = <X, Y, Saw, Sact, Scond, P, D, A, ta> 
X = Set of input event 
Y = Set of output event 
Saw = Set of states about situation awareness  
Sact = Set of states about action 
Scond = Set of states about the agent’s conditions 

P: (X ⅹ Saw) → Saw ⅹScond = Perceive function 

D: (Saw ⅹ Sact ⅹ Scond) → Sact = Decide function 

A: (Sact) → Y = Action Function 

ta: (Sact) → R+ = Time Advance Function 

3.3 Formal Specification of Agent Model 

The agent model in Figure 2 specifies an agent entity performing multiple actions specified in its action 
models. When the model is executed, the agent model performs the actions dynamically composed with 
respect to the agent model’s states and external events generated by either other agents or environments. 
This dynamic action composition is enabled by the coupling structure between the action models within 
the agent model. To express this action composition in an agent, the following is a formal specification of 
an agent model 

 
AM = < X, Y, S, A,  δ, C, SELECT > 
X = Set of input event 
Y = Set of output event 
S = Set of states about coupling structure 
A = Set of action models 

δ: (XⅹS) → S = State Transition Function 
C = {sEIC, sEOC, sIC}, Coupling Structure set 
 sEIC ⊆ S × X × ∪Xi, where Xi ∈ X of A, state based External Input Coupling 
 sEOC ⊆ S × X × ∪Xi, where Xi ∈ X of A, state based External Output Coupling 
 sIC ⊆ S × ∪Yi  × ∪Xi, where Xi ∈ X of A and Yi ∈ Y of A, state based Internal Coupling 
SELECT: 2{A} – ø → A, Select Function, 
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3.5 Reduction to DEVS Formalism 

In this section, we prove that our formal specification is reducible to DEVS formalism. The reducibility to 
DEVS will show that the suggested formal specification is sufficient for modeling in the hierarchical and 
modular fashion, and our formal specification belongs to a special case of DEVS formalism. Table 2 
shows that our formal specification has matching and more elements to DEVS formalism. This means 
that our formal specification is reducible to DEVS formalism by removing some information in our speci-
fication. In detail, the action model is reducible to the atomic model in DEVS. These two models are 
same except our specification splits the state set of DEVS into three sets in our model. The agent model is 
reducible to the coupled model in DEVS while our model has its own state set and transition function de-
termining the coupled structure. Having the state set and the transition function is first introduced by the 
MDEVS formalism (Kim and Kim 2000) that we surveyed before, yet we simplified and reorganized the 
formalism to match the agent-based modeling context. The multi-agents model is another extension of 
DEVS coupled model, and the result of the reduction is the same as the agent model’s reduction.  
 

Table 2: Reduction from the proposed formal specification to DEVS formalism 
 DEVS Formalism Formal Specification for Agent-Based Models 
 Atomic  

Model  
Coupled  
Model  

Action 
 Model 

Agent 
 Model 

Multi-Agents 
Model 

Input Event X X X X Xcs∪Xin 
Output Event Y Y Y Y Y 

States S  Saw  × Sact  × Scond S S 
External Transition 

Function δext : (X × S) → S  
P : (X × Saw) → Saw × 

Scond 
 δ = (X × S) → S, δ = (Xcs × S) → S 

Internal Transition 
Function δint : S → S  D : (Saw  × Sact × Scond) → 

Sact 
  

Output Function λ : S → Y  A : Sact → Y   

Time Advance Func-
tion ta : S → R+  ta : Sact → R+   

Component Model  M  A AM 
Coupling Structure 

 
{EIC, IC, 

EOC} 
 {sEIC, sEOC, sIC} 

{sEIC, sEOC, sIC, 
CS} 

SELECT Function  SELECT  SELECT SELECT 

3.6 Example : Construct-Spatial Model 

We give an example to demonstrate the formal specification of agent-based models. Whereas there are 
few agent-based models that incrementally and flexibly integrates existing models, some integration 
models (Moon and Carley 2007) are created by manually integrating two existing models without any 
support from formalisms. Construct-spatial is one attempt to create a mixture of two agent-based models 
in the spatial and the network domains. Construct-spatial model is an agent-based model of mixing 1) the 
action of the sugarscape agent (Epstein and Axtell 1996) that moves in a physical environment and 2) the 
action of the construct agent (Carley and Hill 2001) that communicates on a social network environment.  

 
 Sugarscape Action (SA) : an action about moving toward resources (i.e. sugar) 
 Construct Action (CA) : an action about communicating knowledge with other agents 
 Construct-Sugarscape Agent (CSA) : an agent who can perform one of SA and CA on the 

specific condition. 

3.6.1 Action Model : Sugarscape Action Model 

The sugarscape action model describes moving toward resources (i.e. sugar). This action model gets the 
location of resources within their vision and generates their updated position. If the action model finds the 
location of resource, it goes toward the resource. Otherwise, it stays. Although the action model finds the 
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resource, it may not move by the condition set. the formal specification of the sugarscape action model is 
below. 

 
Sugarscape  Action Model (SA) = < X, Y, Saw, Sact, C, P, D, A, ta> 
X = { Gridres , Agentres  | Gridres = (xgrid, ygrid, sgrid), xgrid = x coord. of grid environment in vision range,  

ygrid = y coord. of grid environment in vision range,  sgrid = amount of sugar distribution , 
  Agentres  = (xi, yi, si, ai), xi, yi  and si are same definitions in Gridres, 
  ai = index of agent who sends the information of sugar to agent including CA  } 
Y = { Locagent | Locagent = (xagent, yagent, aagent) 
 ,  xagent, yagent =x, y coord. of grid environment where agent is located, aagent = index of the agent including SA } 
Saw = { Targetres= (xtar, ytar, star) |  xtar, ytar, and star use the same definitions in X } 
Sact = { (movement_action) | movement_action=either GoResource(x,y (x,y coord. of resource)) or Stay} 
Scond = { (xloc,yloc, health) | xloc, yloc =x, y coord. of the agent location,  health=either hungry or full} 
P : ( X × Saw× Scond) → S‘

aw × S‘
cond 

 (xgrid, ygrid, sgrid) ×(xtar, ytar, star)×(xloc, yloc, Full) → (xtar, ytar, star)×Hungry 
 (xgrid, ygrid, sgrid) ×(xtar, ytar, star)×(xloc, yloc, Hungry) → (xgrid, ygrid, sgrid)×Hungry  , if (sgrid > ssa) 
 (xgrid, ygrid, sgrid) ×(xtar, ytar, star)×(xloc, yloc, Hungry) → (xsa, ysa, ssa)×Hungry          , if (sgrid <= ssa) 
 (xi, yi, si, ai) ×(xtar, ytar, star)×(xloc, yloc, Full) → (xtar, ytar, star)×Hungry 
 (xi, yi, si, ai) ×(xtar, ytar, star)×(xloc, yloc, Hungry) → (xgrid, ygrid, sgrid)×Hungry     , if (si > ssa) 
 (xi, yi, si, ai) ×(xtar, ytar, star)×(xloc, yloc, Hungry) → (xsa, ysa, ssa)×Hungry           , if (si <= ssa) 
D : (Saw × Sact × Scond) → S‘

act 

 (xtar, ytar, star)×Sact×(xloc, yloc, Full) → Stay 
 (xtar, ytar, star)×Sact×(xloc, yloc, Hungry) → GoResource(xtar, ytar) 
A : Sact → Y 
 Go_Resource(x,y)→ (x’,y’) 
 Stay→ (x,y) 
ta : Sact → R+ 
 Go_Resource(9,10) → tgo ∈ R+ 

 Stay → ∞ 

3.6.2 Action Model : Construct Action Model 

The construct action model describes communicating their knowledge about resources with other agents. 
This action model communicates with other agents within vision range. The construct action model has a 
list of agents within vision range and it can communicate with them. According to the condition set of the 
action model, the action model decides whether it communicates with other agents or not. Once it decides 
to communicate, it generates an event to change coupling structure to a multi-agents model which the ac-
tion model is in. The formal specification of the construct action model is below. 
 
Construct Action Model (CA) = < X, Y, Saw, Sact, C, P, D, A, ta> 
X = { Gridres , Agentres, Listagent| Gridres = (xgrid, ygrid, sgrid), xgrid = x coord. of grid environment in vision range,  

ygrid = y coord. of grid environment in vision range,  sgrid = amount of sugar distribution  
  , Agentres  = (xi, yi, si, ai), xi, yi  and si are same definitions in Gridres,  
   ai = index of agent who sends the information of sugar to agent including CA  
  , Listagent = List of indexes of agents who are possible to communicate in the vision range } 
Y = { (Agentres, NetworkChange | 
  Agentres = (xca,yca,sca,aca) same definition in X, NetworkChange = (aca, ai), ai = index of agenti  } 
Saw = { Agentres × Listagent | Agentres = (xca,yca,sca,aca), xca,yca,sca,aca are same definition in X 
  , Listagent = index of agents who are in the vision range } 
Sact = { CommAction | CommAction = either Communicate(xca,yca,sca,aca, aagent),  
  xca,yca,sca,aca, aagent are same definition in Saw or Wait  } 
Scond = { Characteristic | Characteristic = either Friendly or Selfish  } 
P : ( X × Saw× Scond) → S‘

aw×S‘
cond 

 (xgrid, ygrid, sgrid) × ((xca,yca,sca,aca) × Listagent) × Scond → ((xgrid, ygrid, sgrid, aca) × Listagent) × Scond 
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 (xi, yi, si, ai) × (xca,yca,sca,aca) × Friendly → ((xi,yi,si,ai) × Listagent ∪{ai}) × Friendly  ,if (si > sca) 
 (xi, yi, si, ai) × (xca,yca,sca,aca) × Friendly → ((xca,yca,sca,aca) × Listagent ∪{ai}) × Selfish   ,if (si <= sca) 
 (Listagent) × ((xca,yca,sca,aca) × aagent) × Selfish → ((xgrid, ygrid, sgrid, aca) × Listagent × Friendly 
D : (Saw × Sact × Scond) → S‘

act 

 (Saw × Sact × Selfish → Wait 
 ((xca,yca,sca,aca) × Listagent) × Sact × Friendly → Communicate(xca,yca,sca,aca, aagent), aagent∈ Listagent 
A : Sact → Y 
 Wait → { } 
 Communicate(xca,yca,sca,aca, aagent) → Networkchange(aca,aagent), Agentres(xca,yca,sca,aca) 
ta : Sact → R+ 
 Wait → ∞ 
 Communicate → tcomm ∈ R+ 

3.6.3 Agent Model : Construct-spatial Agent Model 

Construct-spatial agent model is generated by composition of the sugarscape action model and Construct 
action model. According to the states of the agent model and the external events from other agents or en-
vironment models, the agent model decide an action model to be executed at certain time, which is regu-
lated by changing coupling structure of the agent model. The formal specification of Construct-spatial 
agent model is below. 
 
Construct-Spatial Agent Model (CSA) = < X, Y, S, A, C, δ, SELECT> 
X = { Gridres , InAgentres, Listagent | same definitions in CA, SA } 
Y = { OutAgentres, NetworkChange, Locagent | same definitions in CA, SA } 
S = { Construct, Sugarscape, Both } 
A = { CA, SA} 
C = {sEIC, sEOC, sIC }, Coupling structure set 

 sEIC ⊆ {S ×(CSA, Gridres) × (CA, Gridres), S× (CSA, Gridres) × (SA, Gridres), 

   S × (CSA, InAgentres) × (CA, Agentres), S ×  (CSA, InAgentres) × (SA, Agentres), 
   S× (CSA, Listagent) × (CA, Listagent) } 

 sEOC ⊆ { S × (CA, Agentres) × (CSA, OutAgentres), S ×(SA, Locagent) × (CSA, Locagent), 

   S× (CA, NetworkChange) × (CSA, NetworkChange) } 

 sIC ⊆ {  S× (CA, Agentres) × (SA, Agentres) } 

δ : (Gridres × S) → Both 
(InAgentres × S ) → Both 
(Listagent × S ) → Construct 

SELECT : 2{A} – ø → Ai, Aj ∈ A 

3.6.4 Multi-Agents Model : Construct-spatial Multi-Agents Model 

Construct-spatial multi-agents model contains multiple developed Construct-spatial agent models and 
specify the coupling structure of the agent models. on the contrast to Construct-spatial agent models, this 
multi-agents model changes its coupling structure by the output events from its agent models. The formal 
specification of  the multi-agents model is below.  
 
Construct-spatial Multi-agents Model (CSMA) = < X, Y, AM, S, C, δ, SELECT> 
X  = {Xcs∪Xin}, Xcs = { NetworkChange }, Xin = { Gridres ,  Listagent}, same definitions in CSA model 
Y =  { Locagent }, same definitions in CSA model 
AM = {Mi | Mi is a CSA model with indexing i } 

S = { Mi | Mi ∈ AM , Mi is an activate agent } 
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C = {sEIC, sEOC, sIC, CS}, Coupling structure set 
 sEIC ⊆ (S × (CSMA, Gridres) × (Mi, Gridres)), (S × (CSMA, Listagent) × (Mi, Listagent)), Mi ∈ AM 
 sEOC ⊆ (S × (Mi, Locagent) × (CSMA, Locagent)), Mi ∈ AM 
 sIC ⊆ (S × (Mi, OutAgentres) × (Mj, InAgentres)), Mi and Mj ∈ AM 
 CS ⊆ (S × (Mi, OutAgentres) × (CSMA, NetworkChange), Mi ∈ AM 
δ = Xcs × S → S’ 
 NetworkChange(ai, aj) × S → S’ , ai, aj ∈ AM 

SELECT : 2{AM} – ø → Mi, Mj ∈ AM 
 
 Figure 4 shows the structure of Construct-spatial agent model and multi-agent model as the formal 
specifications of the models. 

 

Figure 4: Structure of Construct-spatial agent model (left) and multi-agents model (right) 

4 CONCLUSION 

This paper proposes a formal specification of agent-based models to support the incremental and the flex-
ible models development. Our formal specification, which is reducible to DEVS formalism, enables the 
hierarchical and the modular modeling of the action, the agent, and the multi-agents models. Particularly, 
the action models are expressed by common taxonomy in the agent-based modeling community, i.e., per-
ception, decision, and action. Additionally, we organize a simple, yet sufficient formal specification in the 
dynamic composition of 1) action models in an agent model and 2) agent models in a multi-agents model. 
To demonstrate the expressive power of our formal specification, we show an example of construct-
spatial model that is composed of two well-known traditional agent-based models: sugarscape and con-
struct. To sustain this formal specification, we plan to provide a model implementation platform support-
ing this formal specification.  
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