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ABSTRACT

Agent-based models have been used for diverse domains such as military, sociology, and urban planning.
There is a growing concern about the incrementality and the flexibility of the agent-based models in fur-
ther sophisticated and large-scale utilization. To resolve this concern, we suggest that specifying agent-
based models formally will resolve the problems of incrementality and flexibility of the agent-based mod-
els through an organized composition of model components. To organize the composition of agent-based
models, we survey formalisms that are applicable to agent-based models, including formalisms from the
discrete event models, i.e., DEVS, MDEVS, and Cell-DEVS, as well as formalisms used in the communi-
ties of agent-based models, i.e., BDI, MDP, and Game Theory. Then, we compare, contrast, and propose
an overarching formal specification for agent-based models that embody the key nature of agents. As an
example, we show how to incrementally merge and flexibly manage traditional agent-based models
through proposed formal specifications.

1 INTRODUCTION

Agent-based modeling and simulation has been a successful approach in providing insights and predicting
the future in sociology (Sakoda 1971), biology (Auyang 1999), management (Robert 1999), military (mit-
tal et al 2007), urban-growth (Benenson 1998), logistics (Barbuceanu, Teigen, and Fox 1997), etc. This
success has led to the development of a large number of agent-based models (Heath, Hill, and Ciarallo
2009). For further development and utilization of agent-based models, now the modelers should be able to
incrementally build their agent-based models by depending on other modelers’ models (Moon and Carley
2007). In the 1970s and 1980s, simple models, such as Schelling’s segregation (Schelling 1971), Epstein
and Axtell’s sugarscape (Epstein and Axtell 1996), and Carley’s construct (Carley 1991), provided pro-
found insights into our society. However, to show today’s complex socio-economic systems, we need
more modeling features that go over more than the coverage of a single model or a single modeler. Fur-
thermore, the sophistication of the modern agent-based models requires more systematic modeling and
implementation approaches, while in the past the algorithm, the pseudo-codes and even the source codes
of the traditional agent-based models are published in papers. Such model description is now done by uti-
lizing flowcharts, UML notations, or simple textual descriptions. To create more comprehensive models
for today’s applications, such as a city-scale epidemic model considering the traffic and the social net-
work effects, modelers from different discipline should collaborate and build their models on top of the
others’. This collaboration includes not only building incrementally, but also testing and modifying the
incrementally built models by changing the incremental composition of its dynamic execution. Enabling
such collaboration requires a common ground for their representation, modeling, implementation, and
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model execution management. We propose that the common ground for modeling is a formal specifica-
tion for agent-based models.

This paper discusses how to incrementally and flexibly develop and integrate agent-based models
through the formal specifications that we propose in this paper. The substance of our approach is specify-
ing a multiple agent-based model in our proposed formal specification in a distributed way that means
two modelers are individually developing the models by the same formal specifications. Then, we incre-
mentally compose the specified multiple agent-based models to execute them in the same simulation exe-
cution context. Also, we flexibly modify the composition of the multiple models to add and remove some
of the models. The incremental composition and the flexible management are enabled by the formal spec-
ification of the models because the formal specifications become the protocol in developing, running, and
managing the models.

As we point out the importance of the formal specification, to our knowledge, there is no single dom-
inant formalism in the agent-based modeling community. So far, some formalisms specifically designed
for agent-based models have been proposed, which will be compared to our approach in the discussion
section, yet theses formalisms are not widely used. Therefore, our underlying goal for the above incre-
mental and flexible modeling and simulation is proposing another, more usable formalism for the agent-
based modeling community. The existing formalisms for agent-based models can be categorized into two
types. First, there are formalisms in some theoretic domains of the agent-based models. For instance, par-
tially observable markov decision-process, or POMDP (Bertsekas 1976), has its own distinct formalism
though POMDP is limited in being utilized, i.e., modeling robotic behaviors in a simple environment. Se-
cond, there are formalisms reduced from a more general modeling and simulation theory, such as the the-
ory of discrete event system specification, or DEVS (Zeigler, Prachofer, and Kim 2000). For example,
DEVS community has suggested a number of formalisms, such as MDEVS (Kim and Kim. 2000), yet
these are not popularly used by the agent-based modeling community.

This paper aims to present a third type of formal specification that is adapted more to the agent-based
models with its root in DEVS formalism, and we expect more facilitated adoption of it by the agent-based
modelers. We present the formal specification in terms of how the specification inherits two cores of the
agent-based models and DEVS. We subsequently show a demonstration of our formal specification by
applying the specifications to two well-known tradition agent-based models, and then we illustrate how to
incrementally compose the fusion model by inheriting the specification of the two models.

2 PREVIOUS RESEARCH

For supporting incrementality and flexibility in the model composition, the formal specifications of mod-
els are critical. Since the formal specifications rely on a strict specification basis, such as mathematics, the
formal specification becomes the common, comprehensive and accurate protocol in model representing
and implementation. Also, if the formal specifications support modular and hierarchical compositions, the
specified models are easier to incrementally and flexibly compose as an over-arching model. Then, the
question is whether or not the existing formalisms in the agent-based modeling community are 1) com-
prehensive in modeling agents and 2) hierarchical and modular in composing more than two agent models.

2.1 Existing Formalisms from Discrete Event Models and Agent Models

Agent-based models describe that individual agents interact with other agents and environment. In detail,
the agent-based models have three main components: agents, environment, and interactions between them.
We surveyed existing formalisms by categorizing the elements of the formalisms into the three categories
of the components. This categorization becomes one axis of our survey on formalisms. The second axis of
the survey is the origins of the formalisms. Some formalisms adapted to the agent-based models are di-
rectly inherited from the cellular automata from the Von Neumann era (Neumann 1966). Another set of
formalisms are specialized formalisms from the general discrete event modeling formalism, or DEVS. Fi-
nally, some formalisms originated from the Al field to model the details of the agents, such as POMDP,
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BDI (Bratman 1987), and Game Theory (Neumann and Morgenstern 1944) .

Table 1 is the result of our survey and is organized with the row axis for key components of agent-
based models and the column axis for the origins of the formalism. From the table 1, we recognize that
there is no single formalism that comprehensively covers modeling features of agents, environment, and
interactions. For instance, Cell-DEVS (Wainer 1998) is one of the most comprehensive formalisms, but it
lacks the objective component, such as the desire in BDI agents. Furthermore, we suspect that a more sig-
nificant barrier in adopting DEVS-oriented formalisms in the general agent-based modeling community is
the difficulty in matching and mapping DEVS formalism elements to the features in the agent-based
modeling field. For instance, the agent model should autonomously perceive, decide, and act upon the
outside stimuli. DEVS oriented formalisms model these critical components, such as perception, action,
and decision-making; as input events, output events, and state transition functions. However, this map-
ping is not well communicated among the agent-based modelers who do not have knowledge of DEVS. In
spite of the difficulties in mapping between DEVS and agent-based model, there are many researches
solving agent-based models using DEVS. For example, (Sarjoughian, Zeigler and Hall 2001) adopted a
layered architecture which is used in DEVS community to agent-based models, (Akplogan et al. 2010)
developed agent-based models in agriculture based on DEVS and (Zhang, Chan and Ukkusuri 2011) de-
veloped transportation evacuation models using hybrid simulation based on DEVS. Furthermore, there is
a recent research about formal semantics of multi-agent simulations based on DEVS formalism, called M-
DEVS (Miiller 2009).

On the other hand, the formalisms in modeling the agent behavior are often limited to the detailed de-
scription of the agent itself. Table 1 shows that the formalisms from the Al have a limited collection of
environment- and interaction-related features. Furthermore, the formalisms model one action of an agent,
which is just one facet of multiple actions that the agent might exhibit. Also, these formalisms are often
used for developing prescriptive models that generate behavior through inferences, rather than descriptive
models that have fixed behavior details. Therefore, modelers using simple rules or detailed descriptions of
behavior may not be able to use the Al oriented formalisms for the agent models. Having said this, the
formalisms from Al are more adaptable to the agent-based models in terms of the taxonomy wording of
the formalisms. They name the elements as actions, observations, utility, etc., which are naturally under-
stood by the agent-based modelers unlike DEVS’s taxonomy. Formal specification

3 FORMAL SPECIFICATION

This section illustrates 1) how agent-based models are structured in general and 2) key elements, which
are actions, agents, and multi-agents, in our formal specification.

3.1 Hierarchical Structure of Agent-Based Model

Before introducing the formal specification for agent-based models, we illustrate a general structure of
agent-based models. Traditionally, the big picture of agent-based models is described as a diagram(Russel
and Norvig 1995) in Figure 1.

Agent Environment

Sensors < 1
rcepgs

What is the
world like now?

(Awareness)

Condition Actions
Action Rules To be done

l Acts

Actuators >

Figure 1: Simplex agent and environment
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The diagram shows how agents and environments interact with each other, and the simplified internal
architecture of agents. As this diagrams capture the key elements, i.e., agents, perceptions, actions, envi-
ronments, etc., of the agent-based models, our specification should be accommodated to specify the cap-
tured elements.

From the perspective of model composition, Figure 2 shows the hierarchy of the general structure of
the agent-based models. Generally, the agent-based models have agents and environments. The interac-
tions between agent models and between an agent model and an environment model are enabled through
the composition of agents and environment by the multi-agents models and the agent-based model, re-
spectively, in Figure 2. This means that the agent-based model takes a role of a collective model propa-
gating interactions between the multi-agents model and the environment. The multi-agents model contains
multiple agent models, and the multi-agents model becomes the broker to transfer interactions between
agent models. This composition and role goes same to the environment model. The agent model can per-
form multiple actions as modeled in action models. We limited our description on the environment mod-
els because this paper is limited to introducing only the action, the agent, and the multi-agents models’

specifications.
Agent Based
Model

[Structure [

Multi-Agents
Model

Model

Environment
Model

i — —

-
Structure Agent . Agent Physical Virtual
+ Behavioral Model Model Model Model
Level \

1

[ 1 |
Behavioral Action Action S?J:SE GIS NS?Cial .
Level o LB etwor
Model Model Model Model hrisiiel

Figure 2: Hierarchy of the general structure of agent-based models

3.2 Formal Specification of Action Model

The action model in Figure 2 describes an agent’s behavior in a single facet under the assumption that
agents may exhibit multiple actions in different domains. For example, let’s imagine. An ambulance as a
car in the traffic and as a rescue resource in the emergency medicine. The ambulance may exhibit the ma-
neuver action and the health-care action, simultaneously. This action model describes a single action out
of two facets of the agent’s action. In order to specify an action model, we consider the general proce-
dures of the agent’s actions. According to agent’s skeleton in Figure 1, the action of an agent can be ex-
pressed into three stages: the perception stage, the decision stage and the action stage.

e Perception stage: Agents recognize the external information from environments or other agents
e Decision stage: Agents decide his next actions as response
e Action stage: Agents affect the environments or other agents with their actions

Such procedures of action take parameters from the state of action model. In order to specify the
states, we split the states into three types : situation awareness, action, and condition. This separation of
states is one of the distinct aspects of our formal specification. As we separate the actions into three stages,
some states are exclusively used for a certain action stage, i.e., situation awareness in perceiving the stim-
uli of agents. Therefore, we separated the states into three sets to further specifically describe the action
model rather than having a single state set.
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e States of situation awareness: States from the external information from environments and other
agents
States of action: States of executing a certain action

e States of condition: States describing condition-action rules in the decision-making process

The above characterization of actions results in the formal specifications for action model below. An
action model is formally specified by five sets and four functions. Below, X means an input event set from
external models, such as other agents and environments. ¥ means an output event set which is generated
by the action model. The states of the action model are divided into three types : states of situation aware-
ness(S,,), states of actions(S,.,), and states of conditions(S,..s). Using these state sets, four functions need
to be specified, and the four functions include three basic functions from the agent’s skeleton in Figure 1
and a time advance function that is essential in discrete event system. The perceive function (P) means,
when the external events come in, an action model changes its situation awareness states by the external
inputs. The decision function (D) specifies the transition of its action states according to its situation
awareness, action in progress, and decision conditions. The action function (4) describes an action model
generating an output event from the action states. Lastly, the time advance function defines the time of the
action completion by the chosen output action. While the mathematical notations are described below,
Figure 3 shows the structure of the action model in the formal specification .

ACT = <X Y’ Sam Sactr Scundr P, D’ A: ta>

X = Set of input event

Y = Set of output event

S..» = Set of states about situation awareness
S, = Set of states about action

Seona = Set of states about the agent’s conditions

P: (X x S,,) =S XS.na=Perceive function
D: (S, X Suct X Seond) = Saee= Decide function
A: (S,.) — Y= Action Function

ta: (S, — R" = Time Advance Function

33 Formal Specification of Agent Model

The agent model in Figure 2 specifies an agent entity performing multiple actions specified in its action
models. When the model is executed, the agent model performs the actions dynamically composed with
respect to the agent model’s states and external events generated by either other agents or environments.
This dynamic action composition is enabled by the coupling structure between the action models within
the agent model. To express this action composition in an agent, the following is a formal specification of
an agent model

AM=<XY,S, 4, o, C, SELECT >

X = Set of input event

Y = Set of output event

S = Set of states about coupling structure

A = Set of action models

0: (X x§) — S = State Transition Function

C = {sEIC, sEOC, sIC}, Coupling Structure set
SEIC 8§ x X x UX;, where X; € X of A, state based External Input Coupling
SEOC & § x X x UX;, where X; € X of A, state based External Output Coupling
sIC &8 x UY; x UX;,, where X; € X of A and Y; € Y of A, state based Internal Coupling

SELECT: 2% —p — A, Select Function,
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An agent model consists of seven tuples. X and ¥ mean the sets of the inputs and the output events of
the agent model, respectively. S means the set of the states about coupling structure. 4 means the set of
actions in the agent model. C describes coupling relations between an agent model and its action models.
The coupling relations consist of sEIC, sEOC, and sIC. sEIC describes relations between an input event
of the agent model and an input event of one of its action models. sEOC is similar to sE/C while sSEOC
handles the outputs. s/C describes relations between an input event and an output event of action models
in the agent model. The state transition function (8) determines the composition state of the actions of the
agent model. The select function (SELECT) determines the priority of executing an action when multiple
actions are required to be executed by an input. This select function is adapted from DEVS formalism
with minimal change, so further details is in (Zeigler, Prachofer, and Kim 2000).

3.4  Formal Specification of Multi-Agents Model

The multi-agents model in Figure 2 describes interactions between agents. The multi-agents model in-
cludes multiple agent models with a coupling structure. This coupling structure might be changed by ei-
ther output of agent models (i.e. the movement of an ambulance) or input events from environment mod-
els. The coupling structure at a certain moment is determined by the coupling structure state. If we
substitute 1) the agent models with the action models and 2) the multi-agents model with the agent models,
the composition of the multi-agents model is same to the composition of the agent model in the previous
section except one difference. The difference is that the multi-agents model changes its coupling structure
by the output events generated by its agent models and the input events from external models, while the
agent model changes its coupling structure by input events to the agent model itself. This difference is an-
notated in Figure 3.

MAM =< X, Y, S, AM, C, 5, SELECT>

X = {X. UX,,}, where X, = Set of structure change events and X, = Set of input events

Y = Set of output events

S = Set of states about coupling structure

AM = Set of agent models

0 =X, xS =8, Coupling Structure transition function

C = {sEIC, sEOC, sIC, sCS}, Coupling Structure set
SEIC & § x X x UX, where X; € X of AM, state based External Input Coupling
SEOC & § x X x UX;, where X; € X of AM, state based External Output Coupling
sIC &8 x UY; x UX;, where X; € X of AM and Y; € Y of AM, state based Internal Coupling
sCS & § x UY; x X, where Y; € Y of AM, Coupling Structure Relation

SELECT : 2™ — 5 — AM, Select Function,

To explain the formal specification of the multi-agents model, we only explain the different elements
compared to the formal specification of the agent model. Coupling structure relation (sCS) is added to
link the outputs of the agent model to the multi-agents model’s state-changing inputs (X,,). Following fig-

ure 3 show the structures of the action, the agent and the multi-agents model specifications.
Action Model (ACT) Agent Model (AM) Multi-Agents Model (MAM)
/

@ @ . = ; ACT : A
O :Stateset | ‘ L ) @ @
: Transition Function X - _.{ .'-= | -I 0 . l ’ 2 | E]_ ~YX | M X I 1 -Y

] ;
D : Model Component E ‘,/_'\M i L E ACT 1 i -“I’
RO ahnl -

N

Figure 3: Structure of the action model (left), agent model (mid) and multi-agents model (right)
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35 Reduction to DEVS Formalism

In this section, we prove that our formal specification is reducible to DEVS formalism. The reducibility to
DEVS will show that the suggested formal specification is sufficient for modeling in the hierarchical and
modular fashion, and our formal specification belongs to a special case of DEVS formalism. Table 2
shows that our formal specification has matching and more elements to DEVS formalism. This means
that our formal specification is reducible to DEVS formalism by removing some information in our speci-
fication. In detail, the action model is reducible to the atomic model in DEVS. These two models are
same except our specification splits the state set of DEVS into three sets in our model. The agent model is
reducible to the coupled model in DEVS while our model has its own state set and transition function de-
termining the coupled structure. Having the state set and the transition function is first introduced by the
MDEVS formalism (Kim and Kim 2000) that we surveyed before, yet we simplified and reorganized the
formalism to match the agent-based modeling context. The multi-agents model is another extension of
DEVS coupled model, and the result of the reduction is the same as the agent model’s reduction.

Table 2: Reduction from the proposed formal specification to DEVS formalism

DEVS Formalism Formal Specification for Agent-Based Models
Atomic Coupled Action Agent Multi-Agents
Model Model Model Model Model
Input Event X X X X X, UXy
Output Event Y Y Y Y Y
States S Saw X Sacz X Dcond N N
External Transition ) P (X x8u) =S < c _ _
Function Oeu: (X ¥ §) =8 Seond 5=AXxS5) =S, 0=KXsx8) =8
Internal Transition
D (Saw X Saet X Scond) =
Function Om: S =8 ¢ S ' J
act
Output Function 1:S—>Y A: S =Y
Time Advance Func- + N
tion ta:S —R ta: Sei =R
Component Model M A AM
Coupling Structure {EIC, IC, {sEIC, sEOC, sIC,
EOC) {sEIC, sEOC, sIC} sy
SELECT Function SELECT SELECT SELECT

3.6 Example : Construct-Spatial Model

We give an example to demonstrate the formal specification of agent-based models. Whereas there are
few agent-based models that incrementally and flexibly integrates existing models, some integration
models (Moon and Carley 2007) are created by manually integrating two existing models without any
support from formalisms. Construct-spatial is one attempt to create a mixture of two agent-based models
in the spatial and the network domains. Construct-spatial model is an agent-based model of mixing 1) the
action of the sugarscape agent (Epstein and Axtell 1996) that moves in a physical environment and 2) the
action of the construct agent (Carley and Hill 2001) that communicates on a social network environment.

® Sugarscape Action (SA) : an action about moving toward resources (i.e. sugar)

® Construct Action (CA) : an action about communicating knowledge with other agents

® Construct-Sugarscape Agent (CSA) : an agent who can perform one of SA and CA on the
specific condition.

3.6.1 Action Model : Sugarscape Action Model
The sugarscape action model describes moving toward resources (i.e. sugar). This action model gets the

location of resources within their vision and generates their updated position. If the action model finds the
location of resource, it goes toward the resource. Otherwise, it stays. Although the action model finds the
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resource, it may not move by the condition set. the formal specification of the sugarscape action model is
below.

Sugarscape Action Model (SA)=<X,Y, Saw Sacts C, P, D, A, ta>

X = { Gridyes , Agentyes | Gridres = (Xgrid> Yerids sgr,d) Xerid = X coord. of grid environment in vision range,
Yeria = y coord. of grid environment in vision range, Sgiq = amount of sugar distribution ,
Agentres (Xi, Yi> Si» @), Xj, i and s; are same definitions in Grid,,

= index of agent who sends the information of sugar to agent including CA }
- { LOCagent' Locagent (Xagenta yagenta aagent)
, Xagent> Yagent =X, y coord. of grid environment where agent is located, Aagent = index of the agent including SA }
= { Target,es= (Xtar» Year» Star) | Xtar» Yiar, a0d S Use the same definitions in X }

S.«t= { (movement action) | movement action=either GoResource(x,y (X,y coord. of resource)) or Stay}
Scond = { KioesYiocs health)‘| Xiocs Yioe =X, ¥ coord. of the agent location,  health=either hungry or full}
p: (X X Saw>< Scond) —S aw < S cond

(Xgrid: Ygrid; Sgrid) ><(Xtar:v ym.r, Star)x(xloc: ylom Full) - (Xtara ymn Star)xHungry
(Xgrid: Ygrid; Sgrid) ><(Xtar:v ym.r, Star)x(xloc: ylom HUﬂgry) - (Xgrith Ygrids Sgrid)XHungry 5 lf (Sgrid> Ssa)
(Xgrid: Ygrid; Sgrid) ><(Xtar:» Yta.r, Star)x(xloc: yloc’ Hungr}’) - (Xsm YS:h Ssa)XHungry s lf (Sgrid <= Ssa)
(Xis Yis Si, ai) X(Xtars ymr» Star)x(xloc: y1003 Full) - (Xtars ymrs Star)XHungry
(Xis Yis Si, ai) X(Xtars ymr» Star)x(xloc: y1003 Hungry) - (Xgrids Ygrids Sgrid)XHungry D lf (Si > Ssa)
(Xia Yi> Si» ai) X(Xlars ytaro‘ Slar)X(Xlom Yiocs Hungry) - (Xsaa Ysas Ssa)XHungry > if (si <= Ssa)
D: (Saw X Sact X Scond) — S act
(Xtara Ytar, Star)xsactx(xlocn Yioes Full) - Sta}’
(Xtara Yitars Star)xsactx(xloca Yiocs Hungf}’) - GORCSOHI'C@(Xtar, Ytar)
A:S,i—Y
Go_Resource(x,y)— (x’,y’)
Stay— (x,y)
ta: S, — R'
Go_Resource(9,10) — t,, € R”
Stay — o

3.6.2 Action Model : Construct Action Model

The construct action model describes communicating their knowledge about resources with other agents.
This action model communicates with other agents within vision range. The construct action model has a
list of agents within vision range and it can communicate with them. According to the condition set of the
action model, the action model decides whether it communicates with other agents or not. Once it decides
to communicate, it generates an event to change coupling structure to a multi-agents model which the ac-
tion model is in. The formal specification of the construct action model is below.

Construct Action Model (CA)=<X,Y, Sa Sact, C, P, D, A, ta>
X = { Gridyes , Agent,es, Listygen| Gridyes = (xgnd, Yerids Sgrid)> Xerid = X coord. of grid environment in vision range,
Yeria =y coord. of grid environment in vision range, Sgiq = amount of sugar distribution
Agentres (Xi, ¥i» Si» @), X;, ¥; and s; are same definitions in Grid,,
= index of agent who sends the information of sugar to agent including CA
Llstagent List of indexes of agents who are possible to communicate in the vision range }
Y={ (Agentres, NetworkChange |
Agent,es = (Xea,YcarScardca) SaMe definition in X, NetworkChange = (a,, a;), a;= index of agent; }
aw = § AgeNtres X LiStygent | AgeNtres= (XcarYcarScarea)s XcasYearScardea aT€ same definition in X
, List,eene= index of agents who are in the vision range }
Sact=1{ CommActlon | CommAction = either Communicate(Xca,Yca»Scas3cas dagent)s
XcasYcarScasdcar Aagent r€ same definition in S, or Wait  }
Scond = { Characteristic | Characterlstlc = either Friendly or Selfish }
p: (X x Saw>< Scond) —S anS cond
(Xgrida Yerids Sgrid) X ((xca9YCaasca9aca) X LiStagenl) X Scond_’ ((Xgridn Yerids Sgrids 8vca) X LiStagent) X Scond
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(Xia Yi» Si, ai) x (Xcas}/caascasaca) X Friendly - ((xinyiasi:ai) X LiStagent U {ai}) X Friendly alf (Si > sca)
(Xia Yi» Si, ai) x (Xcas}/caascasaca) X Friendly - ((xca7YCaascaaaca) X LiStagent U {ai}) x Selfish nlf (Si <= Sca)
(LiStagent) X ((XcaaYCaasca‘aaca) X aagent) x Selfish — ((Xgrida Yerid> Sgrids aca) X LiStagent X Friendly
D: (Saw X Sacl X Scond) —S act
(Saw X Saet ¥ Selfish — Wait
((Xcan}’casscanaca) X LiStagem) X Sact xF fiendly - Communicate(xca7YCaascaaacas aagent)a aagemE LiStagem
A:Su—Y
Wait — { }
Communicate(Xcq,Yca,Scasacas dagent) — Networkchange(ac,aagent)s AgeNtres(XcarYcarScardea)
ta: S, — R'
Wait —
Communicate — teomm € R

3.6.3 Agent Model : Construct-spatial Agent Model

Construct-spatial agent model is generated by composition of the sugarscape action model and Construct
action model. According to the states of the agent model and the external events from other agents or en-
vironment models, the agent model decide an action model to be executed at certain time, which is regu-
lated by changing coupling structure of the agent model. The formal specification of Construct-spatial
agent model is below.

Construct-Spatial Agent Model (CSA)=<X,Y, S, A, C, §, SELECT>

X = { Gridys , InAgent,, List,gen: | same definitions in CA, SA }

Y = { OutAgent,, NetworkChange, Loc,gen¢ | same definitions in CA, SA }
S = { Construct, Sugarscape, Both }

A= {CA,SA}
C = {sEIC, sEOC, sIC }, Coupling structure set
SEIC < {S X(CSA, Grid,e) X (CA, Grid,), SX (CSA, Grid,e) X (SA, Grid,s),
S X (CSA, InAgent,) X (CA, Agent,), S X (CSA, InAgent,;) < (SA, Agent,s),
SX (CSA, Listygent) < (CA, Listagent) }
sEOC & { S X (CA, Agent,) < (CSA, OutAgent,), S <X(SA, LocCagent) < (CSA, LoCygent),
SX (CA, NetworkChange) X (CSA, NetworkChange) }
sIC < { SX (CA, Agent,,) X (SA, Agent,) }
d : (Grid,s X S) — Both
(InAgent,, X S) — Both
(Listagent < S') — Construct
SELECT : 2N —g — A, Aj€ A

3.6.4 Multi-Agents Model : Construct-spatial Multi-Agents Model

Construct-spatial multi-agents model contains multiple developed Construct-spatial agent models and
specify the coupling structure of the agent models. on the contrast to Construct-spatial agent models, this
multi-agents model changes its coupling structure by the output events from its agent models. The formal
specification of the multi-agents model is below.

Construct-spatial Multi-agents Model (CSMA) =<X, Y, AM, S, C, 3, SELECT>

X = {XsUXin}, Xes = { NetworkChange }, X, = { Gridyes, Listygent}, same definitions in CSA model
Y = { LoCagent }, same definitions in CSA model

AM = {M; | M;is a CSA model with indexing i }

S={M;|M; € AM, M;is an activate agent }
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C = {sEIC, sEOC, slIC, CS}, Coupling structure set
SEIC & (S x (CSMA, Grid,es) % (M, Gridyes)), (S X (CSMA, Listygent) X (M, LiStagenr)), Mi € AM
SEOC < (S % (Mj, Locygen) X (CSMA, Locygent)), Mi € AM
sIC < (S x (M;, OutAgent,.;) * (M;, InAgent,)), M; and M; € AM
CS < (S x (M;, OutAgent,.s) X (CSMA, NetworkChange), M; & AM
0=XxS—>§’
NetworkChange(a;, a)) XS — S, a;, 3 € AM
SELECT : 2" — g — M;, M; € AM

Figure 4 shows the structure of Construct-spatial agent model and multi-agent model as the formal
specifications of the models.

anig, | COnstruct-spatial Agent (CSA) Construct-spatial Multi-Agents (CSMA) Lo, gere

LBE ey
Inagenta. l SA | et
O O
[Changing Coupling

OptAgent, .
amang CSAs)

_ [ 8 ] cA
Llil.m:_ Change Gid,,,
List,ge, |

Figure 4: Structure of Construct-spatial agent model (left) and multi-agents model (right)

NetwaorkChange “

4 CONCLUSION

This paper proposes a formal specification of agent-based models to support the incremental and the flex-
ible models development. Our formal specification, which is reducible to DEVS formalism, enables the
hierarchical and the modular modeling of the action, the agent, and the multi-agents models. Particularly,
the action models are expressed by common taxonomy in the agent-based modeling community, i.e., per-
ception, decision, and action. Additionally, we organize a simple, yet sufficient formal specification in the
dynamic composition of 1) action models in an agent model and 2) agent models in a multi-agents model.
To demonstrate the expressive power of our formal specification, we show an example of construct-
spatial model that is composed of two well-known traditional agent-based models: sugarscape and con-
struct. To sustain this formal specification, we plan to provide a model implementation platform support-
ing this formal specification.
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