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ABSTRACT

This study analyzes the transportation network of a major rail freight operator in order to obtain a model
of delay propagation of trains connecting intermodal terminals. Operational management of a rail freight
operator needs to take into account deviations due to unexpected events such as unplanned maintenance,
strikes, railroad works, traffic congestion. The dispatcher makes train assignment decisions based on a
number of performance indicators and also on the expectancy that a given train, currently delayed, could
recover or limit the amount of delay in the future. We have developed a Markov-chain based model in
order to evaluate the evolution of train delays as a train visits successive terminals. Our model is based
on the examination of a large set of historical data and we show how we can classify different terminals
according to their ability either to absorb or to amplify delays.

1 INTRODUCTION

Rail freight transport has been constantly declining in Europe, despite all the efforts apparently made by
political institutions such as the European Community to favour a modal switch from road to rail. In 2000
railways were transporting 19.7% of all freight, and road 73.7% while in 2009 the railways percentage
went down to 16.5% and road went up to 77.5% (European Commission Eurostat 2012)

While there are a number of political causes in such an unexpected and undesirable decline, ranging
from insufficient and badly aimed subsidies to strong lobbying by road transport operators, we wanted
to shift our attention to the inefficiencies in rail freight transport, which can be divided into structural,
bureaucratic, management and operational inefficiencies. In particular, given our scientific and research
background, we decided to tackle the problem of the design and implementation of algorithms to improve
the management and operational performance of rail-based freight transport.

In order to do so, we developed a joint project with Hupac Intermodal SA, a Swiss based company,
which is one of the leading operators for combined transport in Europe. Hupac operates a network of 100
trains each day between Europe’s main economic areas. In 2011, the traffic volume was around 724,000
road consignments (Hupac 2012). The project, codenamed WHATIF, had the objective of developing
methodologies, algorithms and tools to assist a rail freight company, such as Hupac, in the planning and
the management of its operations.

Combined transport operators offer their customers access to a network of intermodal terminals, where
the customers can deliver and pick up transport units which are then transported by the combined transport
operator over a rail network. The advantage of combined transport is that trains are used to cover the
longest parts of the transport, while trucks are used only for the pick-up from origin and the deliver to
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final destination, covering a small part of the overall transport. This approach combines the flexibility of
trucks with the performance and efficiency of trains.

Operating an intermodal transport company requires solving a number of complex management problems,
over different time horizons: from forecasting demand and structuring the network of connections among
terminals, to dimensioning the size and capacity of intermodal terminals; from the operational management
of terminals to planning the timetables of trains serving the network of terminals, down to dispatching
trains from terminals according to the current state of the rail network. Such problems have attracted the
attention of researchers for many years. Even limiting a search to papers appeared in previous Winter
Simulation Conferences, the scope and breadth of research is considerable. As early as in 1969 the problem
of designing and implementing a simulation model of the rail network of the United States was introduced
(Minger and Cetinich 1969). Simulation of the rail network has always been an intensely investigated topic,
as shown by later works (Leilich 1998; Lewellen and Tumay 1998; Huang, Seck, and Verbraeck 2010).
Simulation has more recently also focused on the description of what happens within the rail terminals,
which are the main hubs of interconnection between various modes of transport, from sea, to road, to rail
(Rizzoli, Fornara, and Gambardella 2002; Benna and Gronalt 2008; Lin and Cheng 2009).

Simulation plays therefore a major role in the exploration of the possible future evolution of a system
in order to devise the best strategies at various levels, from strategic down to planning and operational
management. For this reason we focus our attention to the use of simulation techniques to support train
dispatching at the terminal level. Given the train timetable, the role of the dispatcher is to assign incoming
trains in a terminal to outgoing trains, respecting the original plan. Unfortunately delays, disruptions,
unexpected maintenance interventions, strikes, can always alter the normal state of circulation of trains on
a complex network thus making the planned assignments impossible. The dispatcher can therefore come
up with contingency solutions, that require choosing different trains than those originally planned to serve
some soon to depart connections. Such reassignments require the evaluation of a number of performance
indicators and also an estimate of the possible evolution of the delay that has been accumulated. The ability
to forecast the propagation of delays is essential for operational decision making, as the manager needs to
know what could be the possible evolution of a delay which has been accumulated by an incoming train
in order to make the best decision in order to re-route such train on a next connection.

Propagating delays over a rail freight network might seem like a trivial exercise, as it might be sufficient
to add up the travel time on the different legs of the rail transport, and to compute the amount of time
required to shunt, unload and load the train at each terminal stop. Actually, such times are very rarely
deterministically known, and sometimes, especially for terminals which are not directly operated by the
intermodal transport company (which are the majority for a company such as Hupac) are not available at
all. For this reason we have developed a statistical model to estimate the propagation of delays on a rail
network.

In the remainder of this paper in Section 2 we first describe this problem in detail, then we introduce the
mathematical model of the problem in Section 3, and in Section 4 we analyze the results of the performance
of our algorithm in the case of the Hupac network.

2 THE DELAY PROPAGATION PROBLEM

Combined transport operators offer their customers various transport services from terminal to terminal.
Such transports are structured on a timetable that specifies the closing time, the time at which the departing
train stops accepting new loads, and the ready time, the time when loading units such as semi-trailers and
containers are ready to be picked up at destination.

Various authors have been studying rail networks since the 60s in the past century, and notably (Assad
1979) presented a first classification of the various Operations Research problems which could be identified
in the rail freight context. Among the various problems, which range from finding the best location for
terminals down to yard management operations within each terminal, particular attention has raised the
problem of the definition of timetables (Caprara, Fischetti, and Toth 2002).
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In our model, given a timetable, the set of trains in it is given by the circulation plan, which defines the
rotations of train compositions over the network. A train composition is a specific set of wagons with given
characteristics (length, height, maximum load, etc.) to accommodate specific loading units. We define the
relation as a service between two terminals. The above mentioned rotation can now be defined as the
sequence of connections between relations performed by the same train composition. A rotation is therefore
also identified by departure and arrival times at the terminals. Once the train composition comes back to the
origin terminal, it will start again following the same rotation pattern. The same composition can assume
different train numbers according to the time of departure. For instance, in the Hupac network, the relation
between the BUS2 terminal (Busto Arsizio, Italy) and the ROTT terminal (Rotterdam, The Netherlands) is
a simple and direct link, and a rotation is a sequence of return trips between the two terminals performed a
number of times over a specified period. If we analyze a typical week, the ROTT-BUS2 link is served by
three rotations, the first two rotations use three train compositions, while the last one needs two trains. In
other words, a rotation is a composition that travels from a terminal Ti to a terminal Tj through a number of
intermediate terminals. The simplest case is a sequence {Ti,Tk,Ti}, but there are more complex situations,
with trains being split at specific terminals and routed to different destinations, and then being recomposed
on their way back.

A transport can be therefore seen as a sequence of activities which are: loading of units on rolling
stock, train formation (traction of loading stock with a locomotor), train travel over the rail network, arrival
to terminal and train shunting, unloading of units. Along any one of these activity problems might occur;
for instance, a wagon might be discarded because of a breakdown, the terminal might be congested, and
loading/unloading operations can be delayed because of lack of resources, trains are delayed on the rail
network because of congestion or works on the line.

Any type of delay, independently on its cause, may disrupt the circulation plan: an incoming composition
which was due to depart for the next link does not arrive on time, and the dispatcher must decide whether
to wait for the late composition or reassign another available composition to serve the outgoing link.

Many authors have been investigating the problem of delays in rail networks. Higgins and Kozan
(1998) adopted an analytic approach to compute the propagation of delays, while Özekici and Sengör
(1994) used Markov chain techniques to compute cascade delays for urban passenger trains. More recent
efforts, such as the one by (Acuna-Agost, Michelon, Feillet, and Gueye 2011) have focused on the use
of the information produced by delay propagation techniques for an efficient rescheduling of operations.
(D’Ariano, Pacciarelli, and Pranzo 2007; D’Ariano and Pranzo 2009) considered optimal train rescheduling
in the case of disruptions. In the context of the WHATIF project we are also trying to provide operational
tools to assist dispatchers in the minimization of the adverse effects of unexpected delays.

We have observed that dispatchers, in case of delays, choose the assignment of an incoming train to an
outgoing composition based on an estimate of the ability of a given rotation to “absorb” the accumulated
delay. This estimate is based on the personal experience of the dispatcher and it depends on a number
of factors, such as the sequence of terminals to be visited and the route followed by the train. Terminals
are important, as some terminals are better equipped to deal with delays, and they can recover or mitigate
them; the route is also important, as some routes are chronically congested and once a train is delayed is its
likely that things will get worse. We have therefore decided to develop a model based on the data obtained
from the train circulation on the rail network, to discover the probability of absorbing or propagating delays
over the rotations travelled by the compositions.

3 A MARKOV CHAIN BASED MODEL

We consider the delay propagation problem introduced in Section 2. Let t0 be an arriving train with a
delay δ0 and {t1, t2, . . . , tn} the rotation that follows train t0. The propagation of the delay δ0 on the train
sequence {tk}k=1,...,n can be modeled by a stochastic sequence {Xk}k=0,...,n, where each Xk is a random
variable describing the state of the delay at the arrival of train tk.
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In order to deal with a finite number of delay states we define a set of delay clusters X = {C0, . . . ,CN},
so that for any delay δ ∈ R+ there is exactly one cluster Cl ∈X such that δ ∈Cl . In the remainder of
the paper we will use for the state space X = {C0, . . . ,CN} the simplified notation X = {0, . . . ,N}. Each
random variable Xk of the stochastic sequence can assume any of the delay states {0, . . . ,N}.

In this context it is reasonable to assume that the delay state at the next time instant (k+1) depends
only on the current delay state at time instant k and not on previous delay states. In other words we assume
that the memoryless property holds in our model. As a consequence, the stochastic sequence {Xk}k=0,...,n
can be classified as a discrete-time Markov chain.

A crucial issue that has to be addressed at this point is the definition of the transition probabilities
from a given delay state i at time instant k to a delay state j at the next time instant (k+1), that is

pi j(k) = P[Xk+1 = j | Xk = i]. (1)

The key idea of our approach is to extrapolate the transition probabilities of the delay propagation Markov
chains from the historical delay data set. In other terms we define the transition probabilities in such a
way, that the Markov chains generated are consistent with the real delay propagation patterns observed in
the past. In order to generate the transition matrices P(k) = [pi j(k)] we focus on the delay propagation
pattern of each couple of consecutive trains {tk, tk+1} in the chain, where k = 0, . . . ,n−1.

With each couple of consecutive trains {tk, tk+1}we can associate the corresponding couple of consecutive
relations {r(tk),r(tk+1)}. Usually trains transiting on the same relation have similar delay patterns. Therefore
it is reasonable, from a statistical point of view, to aggregate the historical delay data per couples of consecutive
relations.

More precisely, for each couple of relations {r1,r2} that has occurred in this sequence in the past we
count how many times a delay state i on relation r1 has been followed by a delay state j on relation r2.
Definition 1 Given a couple of relations {r1,r2} we denote by hi j(r1,r2) the number of occurrences in the
historical data of a delay transition from state i to state j on the couple of relations {r1,r2}. In the sequel
we refer to the matrix H(r1,r2) = [hi j(r1,r2)] as the histogram of the couple of relations {r1,r2}.

Since the components hi j(r1,r2) of a histogram return the number of samples observed in the historical
data, the corresponding transition probabilities pi j(r1,r2) can be obtained as

pi j(r1,r2) =
hi j(r1,r2)

∑
N
j=0 hi j(r1,r2)

. (2)

Definition 2 The transition probability pi j(r1,r2) expresses the probability that a delay state i on relation
r1 is followed by a delay state j on relation r2. We refer to the matrix P(r1,r2) = [pi j(r1,r2)] as the
transition matrix of the couple of relations {r1,r2}. The transition matrix of a couple of consecutive
relations {r(tk),r(tk+1)} in the Markov chain will be denoted simply by P(k).

It has to be remarked that in equation (2) we assume that none of the rows of the histogram H(r1,r2)
is zero. In this case each row of the transition matrix P(r1,r2) satisfies the property

N

∑
j=0

pi j(r1,r2) = 1 (3)

and thus represents a probability distribution. In the Section 4, devoted to the application of the Markov
model to the Hupac network, we will address the issue of the empty rows in the histograms.

3.1 A Model for Delay Propagation

Given an initial delay δ0 on a train t0, the Markov model described above enables us to calculate a forecast
of the delay distribution over a rotation {t1, . . . , tn}. For this purpose we need the following definition of a
delay distribution.
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Definition 3 We refer to d(k) as the probability distribution of the delay at time instant k. Each component
of the distribution d(k) is defined as di(k) = P[Xk = i] and represents the probability that at time instant k
the delay state is i.

It is easy to see that for any time instant k the components di(k) sum to 1, that is ∑
N
i=0 di(k) = 1. The

key property of the propagation of the delay distribution d(k) is formulated in the next theorem, based
on the Chapman-Kolmogorov equation (see for instance Cassandras and Lafortune (1999)), which can be
easily proved.

Theorem 1 Given a delay distribution d(k) at the time instant k of the Markov chain {Xk}k=0,...,n, the
delay distribution d(k+1) at the next time instant can be calculated as

d(k+1) = P(k)T ·d(k), (4)

where P(k) is the corresponding transition matrix.
By iterating equation (4) we immediately obtain the following property.

Corollary 2 Let be d(0) the initial delay distribution. The distribution d(n) at time instant n can be
calculated as

d(n) = (
n−1

∏
k=0

P(k))T ·d(0). (5)

Note that in our application the initial delay δ0 is given. Therefore we initialize the delay distribution
d(0) as follows:

di(0) =

{
1 if δ0 ∈Ci

0 otherwise

that is 1 for the delay state associated with δ0 and 0 otherwise. The distribution d(n) represents the delay
forecast for the time instant n, that is when the sequence of travels {tk}k=1,...,n has been completed.

4 USING THE MODEL ON THE HUPAC NETWORK

The delay propagation model of Section 3 is based on delay patterns observed in the past. In order to obtain
the delay distributions and to generate the transition matrices needed in the Markov model, we analyzed
the delay data of 20’000 compositions that circulated on the Hupac transportation network. The Hupac
source data contained the arrival delays in minutes of each composition.

4.1 Delay Clusters

First of all we classified the delays of the compositions in five clusters, as this rough classification is the
one usually adopted by the train dispatchers in our case study. This choice is arbitrary and it might not suit
every other rail freight company. Data mining algorithms could also be used to find out the best separation
into clusters, but we did not applied them in this work. In Table 1 we report for each cluster Cl its span
in minutes and the percentage of the compositions with an arrival delay δ ∈Cl .

In the following we refer to X as the set of five delay states X = {C0, . . . ,C4} or simply X = {0, . . . ,4}.

4.2 Delay Distributions Over Relations

A first overview of the source data reveals that, on average, some relations are much more affected by
delays than others. An explanation of this phenomenon might be that as the circulation plan is iterated,
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Table 1: Delay clusters.

cluster extension (min) compositions (%)
C0 δ = 0 69.2
C1 0 < δ ≤ 60 10.6
C2 60 < δ ≤ 180 7.8
C3 180 < δ ≤ 360 4.4
C4 δ > 360 8.0

also the delays occur periodically according to similar patterns, caused for instance by critical idle times
or lack of efficiency at certain terminals or by systematic traffic congestions.

In order to visualize the different delay patterns, we aggregated the delay data per relations. We
remind that a relation connects a departure and a destination terminal. The Hupac transportation network
is composed by about 170 relations. It has to be observed that there is a great variance in the intensity
of the traffic on the relations. Some are run daily or even more times a day, others only weekly. In our
analysis we focus on relations that provide a high number of samples. In Table 2 we show the delay
distributions of 30 relevant relations that are run with a very high frequency. In the observation period of
six months each relation reported has been served between 150 and 500 times. In the first column we report
the codenames of the departure and destination terminals of the relations. In the central column we show
the distributions of the observed delays with respect to the five clusters C0, . . . ,C4. The last two columns
contain the expected value (Avg) and the standard deviation (Std) of the corresponding delay distribution.
The expected value of a given delay distribution d is calculated as C̄ = ∑

4
i=0 i ·di. As an example, on the

relation AARA-STAB 98% of the observed trains had no delay, while 2% were in delay cluster C2. The
expected value is 0.03, which means that, on average, trains in this relation run in the delay cluster C0.
The low value 0.23 of the standard deviation suggests that the relation AARA-STAB is not affected by
significant delay fluctuations.

The relations in Table 2 are ordered by an increasing value of the averages. The table clearly shows
that there is a strong difference in the delay patterns of the relations. Some relations never report delays,
others occasional delays and finally there are relations with frequent heavy delays. The moderate size of
the standard deviations suggests that the delay patterns are quite stable on the observation period. However,
it is interesting to remark that in general the standard deviations grow together with the averages. This fact
means that usually the relations with frequent heavy delays are also the more unpredictable.

Table 2: Delay distributions of 30 relations.

From To C0 C1 C2 C3 C4 Avg Std
ANMU BIRR 1.00 0.00 0.00 0.00 0.00 0.00 0.00
MALM TAUL 1.00 0.00 0.00 0.00 0.00 0.00 0.00
TAUL MALM 1.00 0.00 0.00 0.00 0.00 0.00 0.00
HOTA TAUL 1.00 0.00 0.00 0.00 0.00 0.00 0.00
TAUL HOTA 1.00 0.00 0.00 0.00 0.00 0.00 0.00
AARA STAB 0.98 0.00 0.02 0.00 0.00 0.03 0.23
BUS2 POME 0.96 0.02 0.02 0.00 0.00 0.06 0.31
POME BUS2 0.84 0.13 0.02 0.01 0.00 0.21 0.53
BUS2 TAUL 0.91 0.02 0.03 0.01 0.03 0.23 0.83
STAB AARA 0.81 0.15 0.04 0.00 0.00 0.24 0.53
MALU SCHD 0.81 0.07 0.09 0.02 0.01 0.34 0.78
BIRR ANMU 0.81 0.06 0.06 0.02 0.05 0.46 1.06
SCHD MALU 0.82 0.04 0.04 0.01 0.09 0.50 1.21
BUNA MALU 0.82 0.04 0.04 0.01 0.09 0.50 1.21
MICE SINN 0.58 0.33 0.03 0.00 0.06 0.65 1.03

From To C0 C1 C2 C3 C4 Avg Std
AARA ANMU 0.70 0.11 0.08 0.03 0.08 0.69 1.24
BUS2 MALU 0.68 0.12 0.10 0.03 0.07 0.70 1.20
ANMU BASE 0.60 0.22 0.07 0.03 0.08 0.79 1.22
SINN MICE 0.66 0.05 0.12 0.16 0.01 0.80 1.21
BUS2 ANMU 0.71 0.05 0.05 0.06 0.13 0.86 1.46
BASE ANMU 0.61 0.14 0.12 0.03 0.10 0.88 1.33
BUS2 KOEL 0.57 0.15 0.14 0.04 0.10 0.98 1.35
KOEL BUS2 0.41 0.29 0.16 0.05 0.09 1.11 1.25
MALU BUNA 0.24 0.42 0.18 0.09 0.07 1.34 1.15
TAUL BUS2 0.34 0.23 0.17 0.04 0.22 1.54 1.52
MALU BUS2 0.38 0.17 0.15 0.11 0.19 1.55 1.54
ROTT NOVA 0.53 0.05 0.03 0.06 0.33 1.63 1.85
NOVA ROTT 0.45 0.08 0.09 0.07 0.31 1.72 1.77
ANMU BUS2 0.27 0.26 0.17 0.07 0.23 1.76 1.51
ANMU AARA 0.12 0.20 0.23 0.38 0.07 2.10 1.15
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4.3 Propagation of Delays Through Consecutive Relations

After the results obtained through the statistical analysis of the delays on single relations, we focused our
study on the delay propagation patterns on couples of consecutive relations. More precisely, according to
the procedure defined above, starting from the historical delay data set of the Hupac network, we generated
the transition matrices P(r1,r2) for all the couples of relations {r1,r2} that have been served consecutively.

In the observed period we identified 233 different couples of consecutive relations. For each couple
{r1,r2} we generated its histogram H(r1,r2) and the corresponding transition matrix P(r1,r2). As an
example we report in Table 3 the transition matrix of the couple of relations {BUS2-KOEL,KOEL-BUS2}
based on 166 samples.

Table 3: Transition matrix of the couple of relations {BUS2-KOEL,KOEL-BUS2}.

C0 C1 C2 C3 C4

C0 0.39 0.43 0.10 0.04 0.04
C1 0.34 0.16 0.34 0.05 0.11
C2 0.36 0.35 0.18 0.04 0.07
C3 0.56 0.22 0.11 0.00 0.11
C4 0.32 0.09 0.27 0.14 0.18

According to Definition 2 we read from Table 3 for example that 39% of the trains that arrived on time
on the relation BUS2-KOEL, came back on time to BUS2, while 43% of the trains on time the way there
report a delay in cluster C1 on the way back.

As already mentioned, equation 2, which defines the transition probabilities, requires that each row of
the transition matrix sums to one. In case the histogram that originates the transition probability matrix
(see equation 2) contains too few data, it might happen that this property is not verified; in such cases we
inserted in the corresponding row of the transition matrix P(r1,r2) the distribution obtained by the sum of
all the rows of the histogram H(r1,r2). In this way we add a weighted average of all the other rows, thus
making an extrapolation from other observations on the same relation. However, it has to be pointed out
that usually this situation does not arise when the number of available samples for a couple of relations is
sufficiently high.

A detailed observation of the 233 histograms H(r1,r2) and of the corresponding transition matrices
P(r1,r2) makes clear that the way delays are propagated from one relation to the next strongly depends on
the sequence of relations considered. Since it is not possible to present here the whole set of histograms
and transition matrices, in Table 4 we show the 20 most frequent couples of relations, characterized by
four statistical indicators. The first column of Table 4 contains the departure and the destination terminals
of the first relation r1 and of the second relation r2. In order to characterize a histogram H(r1,r2) it is
useful to compute a delay distribution d(r1) by summing up all the columns of H(r1,r2) and dividing by
the number of samples in the histogram. In an analogous way a distribution d(r2) is obtained by the sum
of the rows of H(r1,r2) divided by the number of samples. The distribution d(r1) can be interpreted as
the delay distribution right after the arrival on the first relation r1, while d(r2) is the analogous distribution
after r2. The indicators Avg 1 and Avg 2 are the expected values of the two distributions d(r1) and d(r2),
respectively, while Std 1 and Std 2 are the corresponding standard deviations. The indicators Avg 1 and
Avg 2 in Table 4 clearly show that on certain sequences delays tend to be amplified, while on others they
tend to be reduced or even absorbed. For instance, the couples of relations {SINN-DUIT,DUIT-SINN} and
{AARA-ANMU,ANMU-AARA} present a clearly increasing delay pattern. On the other hand sequences
like {BUS2-SINN,SINN-BUS2} and {TAUL-BUS2,BUS2-TAUL} have a decreasing delay pattern. Due to
this strong differentiation in the delay propagation patterns observed on couples of relations it is reasonable
to calculate a delay forecast by means of the Markov chain model.
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Table 4: Delay propagation on 20 couples of relations, averages and standard deviations.

Dep 1 Dest 1 Dep 2 Dest 2 Avg 1 Avg 2 Std 1 Std 2
BUS2 POME POME BUS2 0.00 0.21 0.00 0.52
SINN DUIT DUIT SINN 0.00 0.94 0.00 1.25
AARA VISP VISP AARA 0.00 1.10 0.00 1.79
ROTT VRQU VRQU ROTT 0.00 2.30 0.00 1.69
POME BUS2 BUS2 POME 0.17 0.00 0.38 0.00
AARA KOEL KOEL AARA 0.52 0.68 0.67 1.24
SINN MICE MICE SINN 0.69 0.79 1.15 1.15
AARA ANMU ANMU AARA 0.80 2.03 1.29 1.14
MICE SINN SINN MICE 0.81 0.75 1.18 1.19
BUS2 SINN SINN BUS2 0.84 0.58 1.51 0.85
KOEL BUS2 BUS2 KOEL 0.92 1.24 1.09 1.38
DUIT SINN SINN DUIT 0.96 0.00 1.25 0.00
BUS2 MALU MALU BUS2 1.04 1.99 1.26 1.59
BUS2 ANMU ANMU BUS2 1.05 1.99 1.47 1.54
BUS2 KOEL KOEL BUS2 1.26 1.19 1.39 1.23
ROTT NOVA NOVA ROTT 1.45 1.71 1.82 1.74
ROTT MALU MALU ROTT 1.59 1.63 1.36 1.36
MALU ROTT ROTT MALU 1.69 1.56 1.34 1.36
TAUL BUS2 BUS2 TAUL 1.73 0.00 1.63 0.00
NOVA ROTT ROTT NOVA 1.75 1.44 1.74 1.83

4.4 Forecasting Delays

The transition matrices obtained as discussed in Section 4.3 enable us to forecast on the Hupac transportation
network the risk of delays after a given rotation. In fact, given an initial delay distribution d(0) and a
sequence of transition matrices {P(k)}k=0,...,n−1, the forecasted delay distribution d(n) is calculated by
means of equation (5).

As an example, let’s consider a train with a delay of 80 minutes on the relation BUS2-KOEL, which is
assigned to the rotation {KOEL-BUS2, BUS2-KOEL}. What kind of delay distribution might be expected
after the rotation? In order to calculate the delay forecast d(2) we set d(0) := [0,0,1,0,0]T , as δ0 = 80
minutes belongs to the cluster C2. Then there are two transition matrices involved: P(0) is the transition
matrix of the first couple of relations {BUS2-KOEL,KOEL-BUS2} shown in Table 3, and P(1) is the matrix
of the next couple {KOEL-BUS2, BUS2-KOEL}, reported in Table 5. The forecasted delay distribution
d(2) is calculated as d(2) = (P(0) ·P(1))T · d(0) = [0.43,0.21,0.19,0.05,0.12]. This result means that,
according to the delay evolution observed in similar situations in the past, we can expect that the train will
absorb the present delay with a probability of 43%, whereas a delay of cluster C1 can be expected with a
probability of 21%, and so on.

Table 5: Transition matrix of the couple of relations {KOEL-BUS2,BUS2-KOEL}.

C0 C1 C2 C3 C4

C0 0.40 0.21 0.14 0.07 0.18
C1 0.45 0.35 0.15 0.05 0.00
C2 0.45 0.00 0.45 0.01 0.09
C3 0.43 0.21 0.19 0.05 0.12
C4 0.50 0.00 0.00 0.00 0.50

In order to compare the quality of the assignment of a train t0 to different possible rotations it is
necessary to reduce the information of the output distribution d(n) to numerical indicators that can be
easily interpreted.
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Definition 4 Let be t0 a train with a delay δ0 assigned to a rotation {tk}k=1,...,n. We define the assignment
index I({tk},δ0) as

I({tk},δ0) =
1
N

N

∑
i=0

i ·di(n), (6)

where d(n) is the output distribution after the rotation {tk}k=1,...,n.
The assignment index I({tk},δ0) returns the expected value of the distribution d(n) divided by N.

Substantially, the assignment index assumes a value near to 0 if the expected delay is low, while it is near 1
if the expected delay belongs to the highest cluster CN . In the previous example we obtain I({tk},80) = 0.30,
which corresponds to the expected value 1.21 of the distribution d(2).

Since the reliability of the forecast strongly depends on the number of samples considered in each
histogram in the Markov chain, we define a reliability indicator.
Definition 5 Let be H(k) the histogram related to the couple of consecutive relations {r(tk),r(tk+1)}.
We denote by |H(k)| the total number of samples in H(k), that is |H(k)| = ∑

N
i, j=0 hi j(k). We define the

significance index of the histogram H(k) as

s(k) =


0.1 if |H(k)|< 5
0.02 · |H(k)| if 5≤ |H(k)| ≤ 50
1 if |H(k)|> 50.

In other terms, to each histogram H(k) we associate a scalar value between 0.1 and 1 that increases
as the number of available samples increases. Now we are ready to define the reliability index rel({tk}).
Definition 6 Given a sequence of trains {tk}k=0,...,n we define the reliability index of the forecast on the
sequence {tk}k=0,...,n as

rel({tk}) =
n−1

∏
k=0

s(k). (7)

It is easy to see that the value of the reliability index is near to 1 only if all the histograms involved in
the sequence have a high significance value. Otherwise the reliability index assumes a value near to zero.
In the case of the previous example we obtain a reliability index rel({tk}) = 1, because both transition
matrices have a significance index equal to 1.

5 VALIDATION OF RESULTS

A question that arises naturally at this point is to what extent the delay distributions and the transition
matrices based on the historical data are consistent with the distributions observed day by day on the
transportation network. In order to validate the statistical results reported in Section 4, we compared the
historical distributions with the ones observed on the Hupac transportation network on a control period of
five months (from February to June 2011). The control data set contains the delays of about 17’000 trains.
We aggregated them per relations and computed the delay distributions. Figure 1 shows a comparison of
the averages of the 50 most frequently served relations. On the abscissa we report the averages of the
historical data and on the ordinate the averages observed in the control set.

Figure 1 shows that there is a strong correlation between the delays in the control period and the
historical delays. For instance, low delay averages in the historical data set are usually matched by low
delay averages in the control set.

Moreover, during the control period we observed the delay propagation patterns on the 50 most
significant couples of relations and compared them with the corresponding transition matrices derived from
the historical data. In particular, we calculated for each couple of relations {r1,r2} the difference between
the delay average after relation r2 (Avg 2) and the delay average after relation r1 (Avg 1). We refer to this
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Figure 1: Delay averages, comparison on 50 relevant relations.

indicator as delay variation, because it expresses the variation of the delay average from the first relation r1
to the second r2. A positive variation indicates an increasing trend of the delays on the sequence {r1,r2}, on
the other hand a negative variation means that the delays tend to decrease on the sequence. The advantage
of the delay variation indicator is that it captures the propagation pattern of each couple of relations in
a single number. In Figure 2 we report a comparison of the delay variations of 50 relevant couples of
relations between the control period and the historical period. A clear linear correlation can be observed:
to positive variations in the historical data usually correspond positive variations in the control period and
similarly for negative variations.

This is mainly due to the periodicity of the circulation plan, which generates daily, or at least weekly,
similar delay scenarios. Basically, this periodicity justifies the approach of forecasting delays on a railroad
network by means of historical data. On the other hand, in some cases considerable deviations can be
observed. An explanation might be that extraordinary events, such as railroad damages by bad weather
conditions or severe accidents, might alter the usual delay patterns. Furthermore, a seasonal fluctuation of
the delay distributions can be expected as well. In order to reduce the impact of these factors it would be
necessary to consider a significantly larger delay data set. However, such an extensive data analysis lays
beyond the scope of our present study.

6 CONCLUSIONS

In this paper we have presented an algorithm to forecast the propagation of delays in a rail freight network
based on a Markov Chain model. We have then discussed its calibration and we have run a number of
simulations to validate the results. The algorithm has been implemented in a Decision Support System,
which provides support to intermodal transport operators for both planning the optimal circulation plan,
and also in the operational dispatching of trains at the terminal level. In particular the delay propagation
algorithm is used by the dispatcher to evaluate the future impact of train assignment choices on the future
state of the train circulation. The same algorithm is also used in a matching algorithm which is used to
compute efficient train assignment choices, considering also a number of performance indicators, such as
the compliance of a composition to the desired structure of a composition serving a given relation. The
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Figure 2: Delay variation, comparison of 50 relevant couples of relations.

DSS is currently used by the team of train dispatchers at Hupac who are routing more than 100 trains per
day all over Europe.
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