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ABSTRACT

Ambulance deployment involves controlling a fleet of ambulances, often in real time, in an attempt to
keep response times small. Simulation has been used to devise redeployment policies, and bounds have
been obtained from a combination of comparison methods for queues (coupling) and simulation. These
techniques yield varying results on two realistic examples. In an attempt to understand the varying results,
we explore the performance of the policies and bounds on artificial models.

1 INTRODUCTION

Ambulance deployment is the practice of positioning ambulances around a city, perhaps using real-time
information. Positions are chosen to attempt to keep response times – the time from when a call is received
until an ambulance arrives at the scene of the call – small. Response times are usually summarized by the
fraction of calls with response times under some time threshold that is typically taken to be 8 or 9 minutes.
We describe a call as “late” if its response time exceeds the time threshold. An important practical goal,
then, is to choose a deployment policy that minimizes the fraction of calls that are late.

Recently, methods have been proposed for computing bounds on what can be achieved with any
deployment policy, whether the policy uses real-time information or not (Maxwell et al. 2012). Such
bounds can be used to

1. help identify when a given policy is close to optimal, and
2. help determine whether deployment strategies have the potential to improve performance to within

some target, or to firmly establish that some other approach, such as increasing resources, is needed.

The computational results in Maxwell et al. (2012) showed that the difference in performance between
an implementable policy and the bound (henceforth called the gap) was small (about 2%) in one realistic
example of a city, and large (about 10%) in another. A gap of 2% indicates that the given policy is near
optimal, but the gap of 10% suggests that either the policy or the bound, or both, can be greatly improved.

We want to understand why the gap varies in this way. In particular, what characteristics of a city will
lead to small gaps, and in cases where the gap can be expected to be large, are there other bounds that can
be derived? In this paper we provide a simulation study that attempts to shed light on this question. We
generate a number of artificial “cities” that have varying characteristics that we hypothesize might have an
impact on the gap. We then use a simulation study to compute the gaps for each artificial city and look
for important factors.

The factors we consider are
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1. the number of modes in the two dimensional probability distribution for the location of incoming
calls,

2. the degree to which the location distribution is concentrated around the modes, and
3. the degree to which the locations where ambulances can park (called bases here, even though they

may be as simple as a vacant carpark) are concentrated around the modes of the location distribution.

The remainder of this paper is organized as follows. Section 2 discusses methods for choosing a
redeployment policy and reviews one such method that we use in our computational study. Section 3 reviews
a method for obtaining performance bounds that we use in our computational study. The computational
study itself is described in Section 4. Section 5 discusses the results and concludes the paper.

2 CHOOSING A POLICY

There are a large number of methods for determining how to position ambulances in a city. These methods
can be divided into static policies, wherein each ambulance operates out of a given location throughout
its shift, returning to that location when it is not engaged with a call, and dynamic policies that relocate
ambulances throughout their shifts. Dynamic methods may involve real-time control, making decisions on
ambulance locations in real time using real-time information on ambulance location and status. Policies
using real-time information are often called “system-status management” policies or “move-up” policies.

Techniques for designing static policies date back to the 1960s, e.g., Bell and Allen (1969), with Church
and ReVelle (1974) and Daskin (1983) being particularly important references. Two excellent surveys are
Swersey (1994) for work up to the early 1990s, and Brotcorne, Laporte, and Semet (2003) for more recent
work.

Dynamic methods that do not involve real-time control include Rajagopalan, Saydam, and Xiao (2008),
Schmid and Doerner (2010).

If one has the added benefit of real-time information on the location and status of ambulances, then
one can use real-time methods that exploit this information. Real-time methods may be constructed by
solving integer programs in real time (Gendreau, Laporte, and Semet 2001; Brotcorne, Laporte, and Semet
2003; Richards 2007; Nair and Miller-Hooks 2009). Alternatively, one can construct a look-up table, called
a compliance table, giving desirable locations of ambulances as a function of the number of available
ambulances. Dispatchers then attempt to dispatch ambulances to adhere to the compliance table, so the
policies depend not just on the table but also on dispatching. Compliance tables can be constructed by
presolving integer programs (Gendreau, Laporte, and Semet 2006), or by screening potential tables with
fast approximate models and then checking the top contenders through simulation (Alanis, Ingolfsson,
and Kolfal 2012). Real-time policies can also be obtained by solving or approximately solving stochastic
dynamic-programming formulations. Exact formulations that yield insight include Berman (1981a), Berman
(1981c), Berman (1981b), Zhang, Mason, and Philpott (2010), Zhang (2010). Approximate formulations
that scale to realistic problems include Maxwell et al. (2010), Maxwell, Henderson, and Topaloglu (2011),
Schmid (2012). One can also develop policies through heuristic approaches such as the preparedness
concept (Andersson 2005; Andersson and Vaerband 2007). In the remainder of this section we go into
more detail on the method for designing real-time policies in Maxwell, Henderson, and Topaloglu (2011),
because it is used to obtain a feasible policy, and therefore an upper bound on the fraction of late calls, in
the computational study to follow.

2.1 Dynamic Programming Formulation

In the system we consider, arriving patient calls are served in first-come-first-serve fashion. To handle a
call, an ambulance moves to the scene of the call and provides service. After completion of service, the
ambulance may or may not have to transport the patient to a hospital. After the patient is transported to
a hospital, if necessary, the ambulance is available to serve another call. If there is one such call, then
the ambulance moves to the scene of the next call and a similar cycle is repeated. Otherwise, we need
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to decide where to reposition the available ambulance to serve future calls in the most effective fashion.
Thus, the crucial decision in the problem is where to reposition an ambulance once it becomes available
after serving a call.

Our approach in this paper is based on formulating the ambulance deployment problem as a stochastic
dynamic program and using tractable approximations of the value functions. To represent the state of the
system, we assume that there are N ambulances and keep track of the state of the ambulances by using an
N-tuple whose components give information relevant to the state of each ambulance. The state of ambulance
i is given by ai = (σi, `i,di, ti), where σi is the status of the ambulance, `i and di are respectively the origin
and destination locations of the ambulance and ti is the starting time of any ambulance movement. The
status of an ambulance can take values such as “idle at base,” “going to call,” etc. If ambulance i is moving
towards a certain location, then ti corresponds to the time this movement began. Otherwise, ti represents
the starting time of the current phase in the service cycle, which, for example, may correspond to the time
at which the ambulance began serving a call.

We assume that we can keep at most M calls in the waiting call list. The state of call j in the waiting
call list is given by c j = (δ j, p j,ζ j), where δ j is the status of the call, p j is the location of the call and ζ j
is the time at which the call arrived into the system. The status of a call can take values such as “assigned
to ambulance i,” “waiting for service,” etc. The system is driven by events and we keep track of the state
of the system at these event times only. The possible events in the system are “call arrives and is placed
in the jth position,” “ambulance i departs for scene of call j,” “ambulance i arrives at scene of call j,”
“ambulance i leaves scene of call j for hospital,” “ambulance i arrives at hospital,” “ambulance i finishes
at hospital” and “ambulance i arrives at base.” We make decisions only at the times of these events.

Given that we make decisions only at event times, we represent the state of the system at a time point
by s = (τ,e,A,C), where τ is the current time, e is the current event, A = (a1, . . . ,aN) captures the state of
the ambulances and C = (c1, . . . ,cM) captures the state of the calls in the waiting call list. This setup still
allows us to make decisions at other times, if we simply define those times as event times.

We use X (s) to denote the set of feasible actions in state s. Given that we are in state s, if the current
event corresponds to completing a call, meaning that the ambulance serving a call becomes available, and
there are no other calls in the waiting call list, then X (s) includes all possible locations that the ambulance
can be repositioned to. We assume the existence of a systems dynamics equation f (·) such that f (s,x,U)
gives the next state of the system as a function of the current state s, current action x and the random
noise captured by the vector of uniform random variables U . We use c(s,x,U) to denote the cost of our
decisions, capturing the cost incurred when we take action x in state s and the random noise turns out to
be U . For our application, the cost function tracks the late calls. Thus, if the action x involves assigning
an ambulance to a call and the ambulance cannot reach the call on time given that the state of the system
is s, then we incur a cost of one, and otherwise the cost is zero. In this case, we can formulate the problem
as a dynamic program as

V (s) = min
x∈X (s)

E
{

c(s,x,U)+V ( f (s,x,U))
}
. (1)

Throughout, we assume that the cardinality of the set of feasible actions X (s) is small enough that we can
solve the minimization problem on the right side above by enumerating all elements of X (s). However,
even if the cardinality of the set of feasible actions is small, solving the optimality equation above requires
computing an expectation. Due to the need to compute this expectation, even following the policy induced
by a value function can be computationally intractable. In the next section, we describe an approach that
sidesteps the difficulty associated with the expectation.

2.2 Post-Decision State Variable and Search for Good Policies

Given that we are in state s and we apply the action x, we use s+(x) to denote the state of the system
immediately after applying the action x but before passage of any time. For example, if the decision x
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is to send an ambulance to a particular location, then the status and the origin and destination locations
of the ambulance are updated accordingly to obtain the state s+(x), but the states of all other ambulances
remain the same. The state s+(x) is the post-decision state of s after taking action x; see Powell (2011)
for a detailed discussion of post-decision states in approximate dynamic programming. We observe that
the cost function we use can be written as a function of s+(x) and U because once an ambulance starts
moving towards a call, only the random noise will determine whether the ambulance will be late or not.
Thus, we write the immediate cost function as c(s+(x),U). Similarly, the state transition can be captured
by f (s+(x),U). In this case, the expected cost to go from being in post-decision state s+(x) is given by

E
{

c(s+(x),U)+V ( f (s+(x),U))
}
. (2)

If we use J(s+(x)) to denote the expression above, then (1) and (2) imply that given that we are in state
s, we can find the optimal action by solving

min
x∈X (x)

J(s+(x)).

The key observation is that if we have a good approximation J̃(·) to J(·), then we can find a good action to
take in state s simply by solving the problem minx∈X (s) J̃(s+(x)). Furthermore, solving the last optimization
problem does not require dealing with expectations at all.

Motivated by this observation, we approximate J(·) with a function of the form J̃(·,r), where r represents
a vector of adjustable parameters. The exact form of the function J̃(·,r) is specific to the application on
hand. In the ambulance redeployment setting, we view each base as a separate Erlang loss system with
call arrival rate equal to the rate of calls arriving within the vicinity of the base. Then, using a reasonable
approximation to the service rate and the number of ambulances assigned to the base, we can estimate
the rate of calls that are “lost” without receiving service from a particular base. (Calls are not actually
lost, but we use this approach as an approximation for the fraction of late calls.) In this case, J̃(·,r) is a
linear combination of the rate of lost calls from each of the bases, and the adjustable parameters r are the
multipliers in the linear combination. For precise details of the approximation J̃(·,r), we refer the reader
to Maxwell, Henderson, and Topaloglu (2011). Thus, for each set of adjustable parameters r, we have an
approximation J̃(·,r) to J(·). This approximation defines a policy, where the action we take in state s is
given by

min
x∈X (s)

J̃(s+(x),r). (3)

The goal is to adjust the parameters r so that J̃(·,r) is a good approximation to J(·), in which case, we
hope that the policy obtained through (3) is a good policy.

There are a number of methods to adjust the parameters r to ensure that J̃(·,r) is a good approximation
to J(·). Many of these methods can roughly be visualized as regression based methods where one chooses
r so that J̃(·,r) is a good fit to the sampled cost trajectories of the system. In this paper, we follow a more
direct approach. In particular, a value of r induces a policy through (3). Let Π(r) be the expected cost
of the policy induced by the adjustable parameters r. Then, we can try to find a good set of adjustable
parameters r by solving the problem

min
r

Π(r). (4)

The problem above tries to find a set of adjustable parameters r so that the expected cost of the policy
induced by these parameters is as small as possible. Using Problem (4) to find a good set of adjustable
parameters, rather than fitting J̃(·,r) to J(·), is a more direct approach because Π(r) gives a clear indication
of how well the policy induced by the parameters r will work in practice.
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The objective function of problem (4) is difficult to compute analytically as it corresponds to the
expected cost incurred by a particular ambulance redeployment policy. Nevertheless, it is straightforward
to obtain estimates of this expected cost by simulating the policy characterized by the adjustable parameters
r. Thus, we can use derivative-free simulation optimization methods to try to solve problem (4). Maxwell
et al. (2012) use the Nelder-Mead method to identify a solution r∗ to this problem. Given such an r we
can come up with a policy by solving problem (3) whenever we need to make a decision. It is conceivable
that the function Π is multimodal, so that one may wish to apply multiple local searches with the Nelder-
Mead algorithm from multiple randomly chosen starting points. In this paper we do not use simulation
optimization to identify r∗ but rather use a set of coefficients that yields good performance in a range of
numerical experiments. This saves us a great deal of computational time because simulation optimization
is computationally expensive. We do hope to extend our computational experiments in future to include
this optimization step.

3 BOUNDING PERFORMANCE

In the previous section we described how we can obtain a policy, and therefore an upper bound on the
fraction of late calls. We now briefly review one of two methods, derived in Maxwell et al. (2012), for
obtaining lower bounds on this quantity. For full details and a more precise derivation of the bounds, see
Maxwell et al. (2012). We review just one of the bounds, the cover bound, here because both bounds
gave similar results when tested on two realistic examples in Maxwell et al. (2012), and the cover bound
requires fewer assumptions. We only report the cover bound in our computational results.

The cover bound is based on a “comparison of queues,” also known as a coupling of queues or, in the
simulation community, a careful use of common random numbers. Consider the ambulance system as a
queueing system in which ambulances are servers and the service time consists of the time from when an
ambulance is assigned to a call till the time when the ambulance completes the call, either at the scene or
at a hospital. The cover bound relies on two key ideas:

1. The distribution function of a service time for a call depends on the number and location of available
ambulances at the time the call is received. For each number of available ambulances, we find a
stochastic lower bound on this family of distribution functions.

2. Assume that at all times the available ambulances (i.e., those not currently engaged in a call) are
located at sites that minimize the probability that the next call will be late.

The cover bound is then computed by simulating a queueing system with the same call arrival process as
the real ambulance system, and service times that are computed based on Idea 1 above. This ensures that
there are always more ambulances available than in reality in this bounding system. Idea 2 is exploited in
the statistics collected: Instead of recording a “1” if a call is late and “0” otherwise, we instead record the
conditional probability that the call is late, assuming that the available ambulances at the time of the call
are distributed as in Idea 2.

To be more precise, let Gk(·;c, t) be the distribution function of the service time for a call that arrives
at time t, when there are k ambulances available, and where c gives the configuration (locations) of the k
available ambulances at time t. (In the simulation of the ambulance service, we never actually compute
this distribution function, but it is needed implicitly for computing the cover bound.) If we assume that the
distribution of call locations does not depend on time, then Gk(·;c, t) does not depend on t, and we can
then use the notation Gk(·;c). We will explain below how we can find a stochastic lower bound on Gk(·;c)
for all possible configurations c, separately for each k = 1,2, . . . ,a, where a is the number of ambulances
(available or not). Let G̃k(·) be this stochastic lower bound, so that G̃k(·) ≥ Gk(·;c) for all c, for each
k = 1,2, . . . ,a. Now suppose that, conceptually speaking, in simulating the ambulance service we generate
service times using inversion from the distribution function Gk(·;c) whenever there are k ambulances
available in configuration c when a call is received. This yields sample paths with the correct distribution.
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Let U j be the uniform random variable used to generate the jth service time. Using common random
numbers, we can simulate a bounding queueing system where the arrival process of calls is the same as
in the real system, but the jth service time is computed as G̃−1

k̃( j)
(U j), assuming there are k̃( j) ambulances

available in the bounding queueing system at the time of the jth call. Then, under the additional assumption
that G̃1(·)≤ G̃2(·)≤ ·· · ≤ G̃a(·), i.e., that the service-time distribution functions in the bounding system
are stochastically decreasing in k̃, it follows from induction on the sequence of arriving customers that the
service times in the bounding system will always be at most equal to those in the real system, and therefore
that the number of available ambulances in the bounding system will always be at least equal to the number
of available ambulances in the real system. In other words, we have defined a coupling that ensures that
the bounding system dominates the real system in terms of the number of available ambulances.

The bounding system has more available ambulances than the real system at any time, and certainly
at the times of call arrivals. But if these ambulances are poorly positioned, or if the call location is, by
chance, close to an ambulance in the real system, then the response time to the call could be smaller in
the real system than in the bounding system. To avoid this, we now employ Idea 2, assuming that in the
bounding system the ambulances are always in the position that minimizes the probability of being late on
the next call. This ensures that we obtain a lower bound on the probability of being late on the next call
in the bounding system, and by averaging this lower bound over all calls we obtain a lower bound on the
expected number of calls that are late. On any sample path, it is possible that the response time for any
call will be smaller in the simulated system than in the bounding system, but in expectation, and therefore
for sufficiently long simulation runs, this cannot happen.

This then completes the explanation of the cover bound, except for how we compute the stochastic
lower bound on the service time distribution, and for how we compute the positions that minimize the
probability that the next call will be late. These quantities are obtained by solving a number of integer
programs.

First consider the lower bound, v(k) say, on the probability that a call will be late when it arrives
and there are k ambulances available, as required for Idea 2. These k ambulances can be in any location
throughout the city, so if we solve an optimization problem that minimizes the probability that the call is
late over possible ambulance locations, then we obtain the desired lower bound. We take the set of possible
ambulance locations to be the discrete and finite set 1,2, . . . ,J to make the optimization problem tractable.
For 1≤ k ≤ a, let v(k) be the optimal objective value of the integer program (Church and ReVelle 1974)

min
J

∑
j=1

d j(1−w j)

s.t.
J

∑
i=1

xi ≤ k

w j ≤
J

∑
i=1

δ (i, j)xi ∀ j = 1,2, . . . ,J (5)

xi ∈ {0,1} ∀i = 1,2, . . . ,J

w j ∈ {0,1} ∀ j = 1,2, . . . ,J.

Here d j is the probability that the call will arise at location j, δ (i, j) is 1 if Location j can be reached
within the time threshold by an ambulance originating at Location i, and the decision variables xi equal 1
if an ambulance is placed at location i and 0 otherwise, and w j equals 1 if Location j can be reached on
time by some ambulance, and equals 0 otherwise.

The process for obtaining the stochastic lower bounds G̃k(·) also involves solving certain integer
programs. To obtain G̃k(r) for any fixed k and r we solve an integer program. This integer program selects
k ambulance locations that maximize the probability that the service time will be completed within a time
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of length r. The important decision variables specify the locations of the ambulances and the location i
from which calls at j should be responded from, for each i and j. These integer programs are known
as p-median problems, and can be difficult to solve. Fortunately, in cases where the integer program is
difficult to solve, the objective function of the linear-programming relaxation yields a bound that can be
used in computing our overall lower bound, and appears to be tight enough for our purposes.

We solve these integer programs for each k = 1,2, . . . ,a, and for each r on a lattice of time values.
The resulting objective values specify G̃k(·) on that same lattice of time values, and it remains to define
G̃k(·) at non-lattice values. The details, including the integer-programming formulations, are somewhat
involved, so we refer the reader to Maxwell et al. (2012).

4 COMPUTATIONAL STUDY

In the previous sections, we discussed the design of ambulance redeployment policies and the computation
of a lower bound. Maxwell et al. (2012) observed a large difference in the size of the “optimality gap”
between the performance of a particular policy and the lower bound in two realistic examples. In this
section, we study the causes of such gaps by running a 32×2 full-factorial experiment.

Our experiment is carried out on fictional cities that are 15 miles by 15 miles large, with 7 ambulances
each traveling at 24 miles per hour. Distances from point to point are computed using the Manhattan metric.
Each city has 25 ambulance bases and 2 hospitals. The word “base” here simply means a location where
ambulances might be asked to wait for their next call, and is often referred to as a “post” in the industry.
The arrival of emergency calls is Poisson with a rate of 3 calls per hour, and call locations are chosen
independently from a probability distribution in two dimensions. The density of the location distribution
is piecewise constant on a 5×5 grid on the city.

The factors we consider in our 32×2 full-factorial design include nine different demand distributions
(three levels each of two demand distribution factors), and two levels of locations for the ambulances bases.
We model two key factors in the call location distribution. First, our fictional cities are designed to have 1,
2 or 5 peaks in the demand density. One peak represents a city with one city center, two peaks represents
a city with two city centers as in a “twin city,” and five peaks represents a city with a main city center
and four suburban areas, as in a “hub and spoke” design. Second, the concentration of each peak varies
across different cities. We chose three different levels of demand concentrations to represent cities with
varying degrees of sprawl. Once the demand distribution is determined, we use two different strategies to
locate ambulance bases. In the first strategy, bases are located uniformly across the city, with one base at
the center of each 3 mile-by-3 mile square in the grid. In the second strategy, we choose base locations
close to the peaks in the demand. Figure 1 shows the maps of the nine cities, with each panel depicting the
demand density (color coded so that regions with high demand intensities are red), the hospital locations,
and the base locations in the second strategy. The base locations for the first (uniform) strategy are found
at the centers of the 3 mile-by-3 mile squares of the grid. As indicated in Figure 1, each fictional city
has two hospitals, where the hospital locations do not vary by city. The name of a fictional city is given
by XY Z, where X is the number of peaks, 1, 2, or 5; Y is the peakedness, H for high, M for medium, L
for low; and Z is the configuration of the ambulance bases, C for close to demand and U for uniformly
distributed.

In the simulation model, we assume zero turnout time for ambulances responding to a new call. When
an ambulance reaches the emergency scene, the time it spends there is exponentially distributed with a
mean of 12 minutes. Subsequently, with probability 0.75 the patient will be transported to a hospital, and
the choice between the two hospitals is random with probabilities 0.4 and 0.6 respectively. Upon reaching
the hospital, the time required to transfer the patient into the care of the hospital is Weibull distributed with
shape parameter (alpha) 2.5 and mean 30.4 minutes. After this, the ambulance is free to be redeployed to
one of the bases, unless calls have queued up, in which case the ambulance is deployed to the first call
received.



Ni, Hunter, Henderson, and Topaloglu

City 1 H C

0 3 6 9 12 15
0

3

6

9

12

15
City 1 M C

0 3 6 9 12 15
0

3

6

9

12

15
City 1 L C

 

 

0 3 6 9 12 15
0

3

6

9

12

15

0

2

4

6

8
Hospital
Ambulance
Base

City 2 H C

0 3 6 9 12 15
0

3

6

9

12

15
City 2 M C

0 3 6 9 12 15
0

3

6

9

12

15
City 2 L C

 

 

0 3 6 9 12 15
0

3

6

9

12

15

0

2

4

6

8

City 5 H C

0 3 6 9 12 15
0

3

6

9

12

15
City 5 M C

0 3 6 9 12 15
0

3

6

9

12

15
City 5 L C

 

 

0 3 6 9 12 15
0

3

6

9

12

15

0

2

4

6

8

City Labels:

No. of Peaks
       1, 2, 5
Peakedness
       High (H),
       Med (M),
       Low (L)
Base Locations
       Close (C)
       Uniform (U)

Figure 1: Distribution of demand, bases (strategically located), and hospitals in experimental cities

With three different numbers of peaks, three different level of peakedness and the two base allocation
strategies, we have in total eighteen configurations of an experimental city. Given information on travel
network, base locations, various time components of an emergency service cycle together with the incoming
call distributions for each of these configurations, a cover bound as described in Section 3 can be computed.
We compare this bound with the performance of an implementable policy that is described in Section 2.
For each of the 18 configurations, we use common random numbers to simulate the bounding system in
parallel with the implementable policy. The computation is carried out on an Ubuntu 11.10 platform with
an Intel Core 2 CPU running at 2.67GHz with 2.00 GB RAM. It takes approximately 10 hours to solve
the integer programs required for the cover bound using the Gurobi solver for C++, and 45 minutes to run
both the bounding system and the stylized simulation for 2000 iterations.

The results of the simulation runs are summarized in Figures 2, 3, and 4. Figure 2 shows box plots of
the estimated percent of late calls as output from the simulation for each fictional city. A box plot for the
lower bound of the estimated percent of late calls is also shown for each city. We are particularly interested
in the gap between the simulation performance and the lower bound, and box plots of this gap are plotted
for each city in Figure 3. Finally, to better assess trends in the data across the main effects, we show main
effects boxplots for the gap between the simulation performance and the lower bound in Figure 4.
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Figure 2: Box plots of the simulation and lower bound results for each fictional city.
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Figure 3: Box plots of the gap between the simulation and lower bound results for each fictional city

5 DISCUSSION

We now make a number of observations from the results of the previous section, and provide our proposed
explanation for each of them.

1. As the number of modes increases, the lower bound and the results from the simulated policy both
increase. We believe this happens because multi-modal distributions lead to the breaking down
of cooperation between ambulances, because each peak needs to be covered somewhat separately
from the others. Thus the economies of scale associated with larger queueing systems are lost.

2. As the number of modes increases the gap increases. We do not have an explanation of this
observation.
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Figure 4: Box plots of the main effects for the gap between the simulation and lower bound results for
each fictional city.

3. The lower bound is only modestly affected by the clustering of the bases. We believe this occurs
because the lower bound is based on covering demand, so that as long as base locations are positioned
so that large fractions of the demand can be covered with available ambulances, the fine details of
the location of the ambulance are not important.

4. As the location distribution becomes less concentrated, the gap widens, except in the 5-modes case.
Figure 1 shows that the least concentrated 5-mode case has a location distribution that is somewhat
unimodal. Our results suggest that unimodal cases are easier than multimodal cases, so this may
help to explain why the gap does not change monotonically with peakedness in the 5-node case.
One might ask why this does not seem to happen with the 2-node cases. We suspect that this issue
does not arise because even our least-peaked 2-mode case is still somewhat bimodal.

5. Clustering of bases to match demand improved (or at least did not harm) performance of the simulation
policy, except in the 5-mode case, where it had a negative effect particularly for the “medium-
peakedness” case. The simulation policy is heavily affected by clustering in this particular case,
but the lower bound is not. We therefore hypothesize that the simulation policy needs improvement
in this case, and view this as a key observation from this study that will spur future research.

As an aside, in all of our cases the demand can be covered with a full complement of ambulances. This
is not typically the case in practice, because the borders of cities tend to contain lower-density populations.
If we were to include such areas in our “cities” then we believe that both the lower bound and the simulation
policy results would be shifted upwards, thus making the gap proportionately smaller, but disguising the
effects we wish to uncover.

The effects we have seen above do not appear to be due to different utilizations of the ambulances in
the different cases. Indeed, we estimated the utilizations in all cases to an accuracy of approximately one
decimal place, and all estimated utilizations fell between 34% and 39.8%, and furthermore, all estimated
utilizations in the 5-mode cases fell between 37.8% and 39.9%.

These observations have led to several conjectures that we hope will lead to improvements in our
deployment policies. For example, in the redeployment policies of Maxwell, Henderson, and Topaloglu
(2011) the value function approximation relies on partitioning demand between ambulance bases, and
cooperation between bases is ignored. However, as the system becomes busy, the partition is not an
accurate model of operations. We now conjecture that the partition should not be relative to the bases, but
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rather to the locations of the available ambulances. It is not yet clear how to implement this change in an
ADP setting, but that is a topic of current research.
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