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ABSTRACT

Sequential screening is the problem of allocating simulation effort to identify those input factors that have
an important effect on a simulation’s output. In this problem, sophisticated algorithms can be substantially
more efficient than simulating one factor at a time. We consider this problem in a Bayesian framework, in
which each factor is important independently and with a known probability. We use dynamic programming
to compute the Bayes-optimal method for splitting factors among groups within a sequential bifurcation
procedure (Bettonvil & Kleijnen 1997). We assume importance can be tested without error. Numerical
experiments suggest that existing group-splitting rules are optimal, or close to optimal, when factors have
homogeneous importance probability, but that substantial gains are possible when factors have heterogeneous
probability of importance.

1 INTRODUCTION

When faced with complex stochastic simulations involving hundreds or thousands of input factors, it is
common that only a small number of these input factors have a important effect on the distribution of the
output, while other input factors have little or no effect. The task of identifying these important factors
is called screening. Screening is important both for the insight it offers into the simulator’s behavior, and
because subsequent analysis is easier if only a small number of input factors need be considered.

One simple method for screening is to perform simulation experiments that vary one input factor at a
time. For problems with many factors, however, this simple method is inefficient, and screening can be
performed with less simulation effort using a sequential method that chooses which simulation experiment
to perform next based on the results of previous experiments. One prominent sequential method, introduced
by Bettonvil and Kleijnen (1997), is sequential bifurcation.

Sequential bifurcation operates by performing simulations on groups of factors, which allows quick
elimination of groups that do not contain important factors, without simulating each unimportant factor
individually. Groups of factors identified as containing at least one important factor are divided into two
sub-groups for subsequent testing. Groups that do not contain an important factor, but that do contain
several factors with small but non-zero effects that together mimic an important factor, may also be divided
and subsequently tested.

One important decision in the design of any sequential bifurcation algorithm is exactly how each group
should be divided. One choice is to split sub-groups in half (Wan, Ankenman, and Nelson 2006; Cheng
1997), while another is to choose the first subgroup to contain a number of factors that is a power of 2
(Bettonvil and Kleijnen 1997; Kleijnen 2009). Kleijnen (2009) and Bettonvil (1990) further recommend
group-splitting rules that encourage clustering factors with similar probabilities of importance.

The relative quality of these group-splitting rules, and how they compare with the best possible group-
splitting rule, has not been studied in a formal way. In this paper, we study the question of how groups
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should be split into subgroups to obtain optimal performance, in terms of a measure of the total simulation
effort required. We work within a Bayesian framework, and the notion of optimality we use is average-case
optimality with respect to a prior distribution.

For tractability, we make two assumptions. First, we assume that the total expected simulation effort is
proportional to the number of input points at which simulations are performed. Second, we assume that the
hypothesis tests determining importance make no errors. This second assumption holds when simulation
is deterministic, and for stochastic simulation is an approximation that is most reasonable when hypothesis
tests are performed with a large amount of simulation effort and a high degree of accuracy. This assumption
parallels the assumption of negligible error made in Bettonvil and Kleijnen (1997). While this second
assumption may misrepresent the final number of incorrect determinations under stochastic simulation, our
focus is on how group splitting affects the number of input points at which simulation is performed. The
number of incorrect determinations may be controlled separately through the choice of hypothesis testing
procedure, and the simulation effort used at each input point.

Sequential bifurcation was introduced by Bettonvil and Kleijnen (1997) and subsequently extended
and modified by a number of authors. Much of the work on sequential bifurcation is surveyed in Kleijnen
(2009) and an introduction to the sequential bifurcation algorithm may be found in the textbook Kleijnen
(2007). We provide a brief overview here.

When sequential bifurcation was introduced in Bettonvil and Kleijnen (1997), it assumed negligible
random errors in the simulation response. It was extended to allow for more substantial random errors in Cheng
(1997), although no formal statistical guarantee on solution quality was provided. Later, Wan, Ankenman,
and Nelson (2006) provided a modified version of sequential bifurcation with statistical guarantees on the
number of incorrect determinations. Although much of the work on sequential bifurcation assumes a linear
model with no interactions for the responses, the original work Bettonvil and Kleijnen (1997) considered
interactions between pairs of factors, and Bettonvil, Kleijnen, and Persson (2006), Yaesoubi, Roberts, and
Klein (2010) and Wan, Ankenman, and Nelson (2010) discuss interactions and other more general statistical
models. Shi, Kleijnen, and Liu (2012) extends sequential bifurcation to multiple responses and utilizes an
improved hypothesis testing procedure.

To find the average-case optimal group-splitting strategy, we use methods from dynamic programming
and Markov decision processes (see, e.g., Dynkin and Yushkevich (1979), Powell (2007)). This use of
dynamic programming to design algorithms with optimal or near-optimal average-case performance has
been considered for other problems in simulation, especially Bayesian ranking and selection (Chick and
Gans 2009; Chick, Branke, and Schmidt 2010; Frazier, Powell, and Dayanik 2008; Frazier and Powell
2008; Chick and Frazier 2012), but also optimization via simulation as studied within Bayesian global
optimization (Brochu, Cora, and de Freitas 2009). In such problems, finding an average-case optimal
algorithm generally requires solving a partially observable Markov decision process (POMDP). In most
cases, the state space of this POMDP is very large, making it computationally infeasible to obtain exact
solutions (Lovejoy 1991; Powell and Ryzhov 2012).

Although the state space of the dynamic program that we consider is high-dimensional in its original
form, and thus apparently difficult to solve because of the curse of dimensionality (Powell 2007), we
are able to exploit structure (in the form of conditional independence) to transform to a low-dimensional
state space, resulting in an efficient computational scheme for solving the dynamic program. Thus, group
splitting for sequential bifurcation joins a small number of other problems in simulation for which the
Bayes-optimal fully sequential algorithm can be computed explicitly. Other examples include ranking and
selection with one known and one unknown alternative (Chick and Frazier 2012), multiple comparisons
with a known standard (Xie and Frazier 2011), entropy-based search (Jedynak, Frazier, and Sznitman 2012),
and stochastic root-finding (Waeber, Frazier, and Henderson 2011).

In Section 2 we define the screening problem, and the sequential bifurcation algorithm. In Section 3
we define the group splitting problem as a Markov decision process. In Section 4 we present our optimality
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results: Section 4.1 considers factors with homogeneous probability of importance; and Section 4.2 considers
factors with two different probabilities of importance. Section 5 concludes.

2 SCREENING AND SEQUENTIAL BIFURCATION

In this section, we provide an overview of the problem of sequential screening for stochastic simulation,
and the class of sequential bifurcation (SB) methods.

We have a stochastic simulator that takes an input vector~x ∈RK , where K > 1, and produces stochastic
output y(~x). As is common in the literature on screening, we assume a linear model with main effects and
no interactions. In this model, close to some central point that we take to be 0 without loss of generality,
the distribution of y(~x) is modeled as

y(~x) = β0 +
K

∑
k=1

βkxk + ε(~x),

where β0,β1, . . . ,βK are unknown factor coefficients, and the distribution of ε(~x) is normal with mean
0 and an unknown variance σ2(~x). We assume that the ε(~x) are independent, which can be assured by
driving the simulation with independent pseudo random number streams, and which precludes the use of
common random numbers considered by some work on screening. We also assume, as in other literature
on screening (Bettonvil and Kleijnen 1997; Wan, Ankenman, and Nelson 2006), that the sign of each βk is
known. With this assumption, we have without loss of generality that βk ≥ 0 for each k > 0. If this is not
met, and βk is instead non-positive, we may transform the input vector by replacing xk by −xk to obtain
an equivalent problem in which βk ≥ 0.

The component directions k = 1, . . . ,K are called factors, and our goal in screening is to determine
which of these factors have a non-zero value for βk. Those factors are called important, and the remaining
factors with βk = 0 are called unimportant. Although for simplicity we take all factors with strictly positive
βk to be important, some other work on screening (e.g., Cheng (1997)) assumes another formulation in
which there are parameters δ ≥ 0 and a> 0, and factors with βk < δ are unimportant; factors with βk > δ +a
are important, and factors with βk ∈ [δ ,δ +a] are of ambiguous importance, and may be correctly declared
to either be important or unimportant.

In screening, the experimenter first chooses low and high levels for each factor. The low level is
set to 0, while the high level is set to a strictly positive number wk. Often, wk is equal to 1, but other
values are possible (Wan, Ankenman, and Nelson 2006). The experimenter then performs a sequence of
experiments where each component of ~x is either low or high. SB assumes further that the input vector
~x for each simulation experiment is equal to ~x(k) = [w1, . . . ,wk,0, . . . ,0] for some k ∈ {0, . . . ,K}, where
~x(0) = [0, . . . ,0].

Simulation output from experiments run at ~x(k) have a mean value of E[y(~x(k))] = s(k) = β0 +
∑

k
k′=1 wk′βk′ , and averaging this simulation output provides an estimate of this quantity. Furthermore, given

two factors 1 ≤ k1 < k2, one can estimate s(k2)− s(k1− 1) = ∑
k2
k′=k1

wk′βk′ with the difference between
simulation output at ~x(k1−1) and ~x(k2). SB algorithms use these estimates to find the important factors.

The original SB method (Bettonvil and Kleijnen 1997), as well as a number of extensions and
modifications (Cheng 1997; Wan, Ankenman, and Nelson 2006), follow the algorithmic structure given
below in Figure 1. This algorithmic structure stores and evaluates groups of numerically contiguous
factors, {k1, . . . ,k2}. Each group can be tested to see whether it contains important factors by performing
a hypothesis test for whether s(k2)− s(k1−1) is strictly positive. If s(k2)− s(k1−1)> 0, then the group
contains an important factor. Conversely, if s(k2)− s(k1− 1) = 0, then it does not. Figure 1 does not
specify a hypothesis testing procedure for performing these individual hypothesis tests, as versions of
SB appearing in Bettonvil and Kleijnen (1997), Cheng (1997), Wan, Ankenman, and Nelson (2006) use
different hypothesis testing procedures, all within the same basic structure.



Frazier, Jedynak, and Chen

1. Determine whether there are important factors in {1, . . . ,K}
Test the hypothesis H0 : s(K) = s(0) versus the hypothesis H1 : s(K) > s(0) . This requires obtaining
simulation replications of y(~x) at ~x =~x(0) and ~x =~x(K).
(a) If we accept H0 (there are no important factors in 1, . . . ,K) then stop the screening procedure, and

output that there are no important factors.
(b) If we accept H1 (there is at least one important factor in 1, . . . ,K) then create an empty stack, and push

the group {1, . . . ,K} onto the stack.

2. Until the stack is empty, do the following:
(a) Pop a group off the stack

Pop a group off the top of the stack. This group is of the form {k1, . . . ,k2} for some k1,k2 with
1≤ k1 ≤ k2 ≤K. This group has been determined to contain an important factor by a previous hypothesis
test, and simulation samples have already been obtained at y(~x(k1−1)) and y(~x(k2)).

(b) Split the group
Using the group-splitting rule, choose a value k satisfying k1≤ k < k2. We will split the group {k1, . . . ,k2}
into two groups of factors, {k1, . . . ,k} and {k+1, . . . ,k2}, and test each of them individually to determine
whether they contain important factors. This pair of tests, performed below in Steps 2c and 2d requires
obtaining simulation replications of y(~x) at ~x =~x(k). It also reuses simulation replications previously
obtained at ~x =~x(k1) and ~x =~x(k2), and may run additional replications at these two values of ~x.

(c) Determine whether there are important factors in the first sub-group
Test the hypothesis H0 : s(k1−1) = s(k) versus the hypothesis H1 : s(k1−1)> s(k) .
If we accept H0 (none of the factors k1, . . . ,k are important) then continue.
If we accept H1 and k1 = k then output that factor k1 is important and continue.
If we accept H1 and k1 < k (there is at least one important factor in {k1, . . . ,k}) then push the group
{k1, . . . ,k} onto the stack and continue.

(d) Determine whether there are important factors in the second sub-group
Test the hypothesis H0 : s(k) = s(k2) versus the hypothesis H1 : s(k)> s(k2).
If we accept H0 (none of the factors k+1, . . . ,k2 are important) then continue.
If we accept H1 and k+1 = k2 then output that factor k2 is important and continue.
If we accept H1 and k+1 < k2 (at least one of the factors in {k+1, . . . ,k2} is important) then push
the group {k+1, . . . ,k2} onto the stack and continue.

Figure 1: The algorithmic structure of sequential bifurcation algorithms. In this paper, we consider the
optimal choice of the group-splitting rule used in Step 2b.

Figure 1 leaves unspecified the group-splitting rule, used in Step 2b to split the original group into
sub-groups. Some existing SB algorithms (Cheng 1997; Wan, Ankenman, and Nelson 2006) split in half if
the number of elements n in the original group is even, or into one sub-group with (n+1)/2 elements and
another with (n−1)/2 if n is odd. Other algorithms, including the one originally proposed in (Bettonvil
and Kleijnen 1997), suggest choosing one sub-group to contain a number of elements that is a power of 2.

In this paper, we analyze which group-splitting rule minimizes the number of input points at which
simulation must be performed. Although simulation effort varies in practice across the values of ~x tested,
we use the number of input points at which simulations are performed as a proxy for the overall amount of
simulation effort. If the total simulation effort were proportional to the number of input points simulated,
then a group-splitting policy that minimized the expected value of one measure would also minimize the
expected value of the other measure.

In the specific context of Figure 1 the number of distinct input points (values of~x) at which SB performs
simulations is exactly the two points tested in Step 1 plus one additional point for each iteration through
Step 2b.
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3 FORMULATION OF THE OPTIMAL GROUP SPLITTING PROBLEM

To support our analysis of the optimal group-splitting rule, we abstract the operations performed by SB in
terms of a collection of random variables. Let θ = (β0,β1, . . . ,βK ,σ

2(·)). θ specifies the distribution of
y(~x) for each ~x. We work within a Bayesian framework, in which we place a prior distribution P on θ .
We consider prior distributions in which the random variables (β1, . . . ,βK) are independent of each other,
and of both β0 and σ2(·). The random variables 1{βk > 0}, k = 1, . . . ,K that indicate whether each factor
k is important are independent.

We specify Z(k1,k2) to be 1 if βk > 0 for any k ∈ {k1, . . . ,k2}, and 0 otherwise. That is, Z(k1,k2)
indicates whether {k1, . . . ,k2} contains an important factor. Z(k1,k2) depends implicitly on θ , and is entirely
determined by it. The prior probability that factor k is important can be written as P(Z(k,k) = 1) =P(βk > 0).

We assume that the hypothesis tests performed in Step 1, 2c and 2d in Figure 1 are free from errors.
That is, the decision of the hypothesis test H0 : s(k1− 1) = s(k2) vs. H1 : s(k1− 1) > s(k2) is equal to
Z(k1,k2). When simulation is deterministic, this assumption holds, while for stochastic simulation it does
not, and is an approximation made for tractability as noted in Section 1. With this assumption, the number
of distinct points ~x that an SB algorithm simulates is completely determined by the collection of random
variables {Z(k1,k2) : 1≤ k1 ≤ k2 ≤ K}.

In Figure 2, we write the general algorithmic framework from Figure 1 as a controlled Markov process
using the additional notation defined above. Rather than pushing sets of the form {k1, . . . ,k2} onto the
stack, it pushes pairs (k1,k2). The group splitting rule is specified through a function π , which maps the
current set of pairs on the stack, and the pair of factors just popped off the stack, to a choice of factor at
which to split the current group.

1. Let t = 0, M0 = 2, and Z(0) = Z(1,K).
If Z(0) = 0 then stop and output that there are no important factors.
If Z(0) = 1 create an empty stack, and push the group (1,K) onto the stack.

2. Let St be the current vector of pairs of entries on the stack. Until the stack is empty, do the following:
(a) Increment t and let Mt = Mt−1 +1. Pop a group off the top of the stack, call it (k(t)1 ,k(t)2 ).
(b) Choose a value k(t) = π(t)(k(t)1 ,k(t)2 ,k(s)1 ,k(s)2 ,z(s)1 ,z(s)2 : s < t) satisfying k(t)t ≤ k(t) < k(t)2 .

Observe Z(t)
1 = Z(k(t)1 ,k(t)) and Z(t)

2 = Z(k(t)+1,k(t)2 ).
(c) If Z(t)

1 = 1 and k(t)1 = k(t) then output that factor k(t) is important.
If Z(t)

1 = 1 and k(t)1 < k(t) then push the group (k(t)1 ,k(t)) onto the stack.
If Z(t)

1 = 0 then do not change the stack.
(d) If Z(t)

2 = 1 and k(t)+1 = k(t)2 then output that factor k(t)+1 is important.
If Z(t)

2 = 1 and k(t)+1 < k(t)2 then push the group (k(t)+1,k(t)2 ) onto the stack.
If Z(t)

2 = 0 then do not change the stack.
3. Let T be the current value of t and MT be the current value of Mt .

Figure 2: The algorithmic structure of sequential bifurcation algorithms from Figure 1, where Z(k1,k2)
indicates whether {k1, . . . ,k2} contains an important factor, and π is the group splitting rule.

This algorithm tracks the number of distinct ~x(k) at which simulation replications are obtained, our
surrogate for the overall simulation effort, in the random variable MT . This random variable is initialized to
2, for the pair of points at which simulations are performed in Step 1, and then incremented each time we
pass through the loop in Step 2. Because we assume hypothesis tests make no errors, MT is fully determined
by θ and π . The measure of performance that we consider is the expected value of MT , integrating over
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our prior distribution on θ . The dependence of this expectation on π is indicated by the notation Eπ .

Eπ [MT ] =
∫

Eπ [MT |θ ]P(dθ). (1)

Note that the Bayesian framework does not resample θ after every test is performed. Instead, θ is modeled
as fixed, and as having been drawn from the prior distribution P before the screening procedure begins.

The objective (1) does not consider the accuracy of the SB method, in terms of the number of factors
correctly selected as important or unimportant. Instead, we assume that accuracy has been satisfactorily
controlled through design of the hypothesis tests, and our goal is instead to minimize the sampling effort
required through selection of the group-splitting method. Although our assumption of error-free hypothesis
testing does not allow us to quantitatively model the dependence of accuracy on the group-splitting rule,
intuition suggests that reducing the number of hypothesis tests performed also reduces the number of
opportunities at which errors can be made, which should tend to improve overall accuracy.

4 OPTIMAL GROUP SPLITTING

Our goal in our analysis is to choose a group-splitting rule to use in Step 2b so as to minimize (1). In
Section 4.1 we first pursue this goal under an assumption that the probability of a factor’s importance is
the same for all factors. In Section 4.2 we relax the homogeneity hypothesis and allow factors with two
different probabilities of importance. In each section, we provide an explicit computational method for
finding the optimal group splitting rule and present a numerical investigation comparing splitting in half
to the optimal rule.

4.1 Homogeneous Factors

We first perform our analysis for the case that the probability P(Z(k,k) = 1) that factor k is important is
constant across k. Let p = P(Z(k,k) = 1) and let q = 1− p. This case is the simplest Bayesian prior. (This
case also applies in the frequentist setting if we permute the factors uniformly at random before beginning
the screening process, although performing such a permutation would violate the advice of (Bettonvil and
Kleijnen 1997) to sort the factors in increasing order of importance, and would likely degrade performance.)
We use dynamic programming to calculate the optimal number of factors to include into the first and second
sub-groups when performing group splitting in Step 2b.

To support our analysis, we define a function r(u,n), which is the probability that a sub-group of u
factors contains an important factor, given that it is a subset of a parent group of n factors that contains
an important factor. For u≤ n, r(u,n) is defined formally and then computed as

r(u,n) := P(Z(1,u) = 1|Z(1,n) = 1)

=
P(Z(1,u) = 1,Z(1,n) = 1)

P(Z(1,n) = 1)
=

P(Z(1,u) = 1)
P(Z(1,n) = 1)

=
1−qu

1−qn . (2)

In this computation of r(u,n), we have used that

P(Z(1,u) = 1) = 1−P(Z(1,u) = 0) = 1−
u

∏
k=1

P(Z(k,k) = 0) = 1−qu (3)

by the independence of the importance of the factors.
We now proceed with our dynamic programming analysis. Let W ∗(K) be the value of Eπ∗ [MT ] under

the optimal group splitting rule π∗, as a function of the overall number of factors K. To compute W ∗(K),
we first define another function V ∗. Let V ∗(n) be the expected number of additional points ~x(k) at which
simulations must be run, under the optimal group splitting rule, to completely process all of the factors
within a group of n factors previously classified as containing an important factor. That is,

V ∗(n) = Eπ∗ [MT −Mt |St = {(k,k+n)}] . (4)
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V ∗(n) does not depend on the value of t or k in (4), as long as k satisfies 1≤ k ≤ K−n, and as long as
there is some strictly positive probability of reaching St = (k,k+n) for some k under policy π∗. Note that
reaching St = (k,k+n) implies that Z(k,k+n) = 1.

W ∗(K) can be computed from V ∗(K) because setting t = 0 shows V ∗(K) = E[MT − 2|Z(1,K) = 1].
From this we have,

W ∗(K) = 2+P(Z(1,K) = 1)V ∗(K) = 2+(1−qK)V ∗(K)

Here, we have used the expression (3). Both W ∗ and V ∗ implicitly depend on q.
We now give a recursive algorithm for computing V ∗. First,

V ∗(1) = 0,

because a single factor previously classified as important requires no further simulation.
Now, consider some n > 1. When first splitting this group of n factors, if we split it into one group

of u ∈ {1, . . . ,n− 1} factors and another of n− u, then the expected number of additional points to be
simulated will be the sum of 1 (from this first split), and the expected number of additional points required
to process each of the first and second subgroups.

If the first subgroup is found to contain no important factors, it will require no additional simulation.
If it is found to be important (which occurs with probability r(u,n)), it will require V ∗(u) additional points
in expectation. Thus, the first subgroup requires r(u,n)V ∗(u) additional points in expectation. Similarly,
the second subgroup requires r(n− u,n)V ∗(n− u). Optimizing over u provides the following recursive
expression,

V ∗(n) = min
u∈1,...,n−1

1+ r(u,n)V ∗(u)+ r(n−u,n)V ∗(n−u).

The set of optimal values for u (which is not necessarily unique) is the set of values attaining this minimum.

u∗(n) ∈ argmin
u∈1,...,n−1

1+ r(u,n)V ∗(u)+ r(n−u,n)V ∗(n−u). (5)

The expected number of factors at which we must run simulations under the group splitting rule of
dividing each group in half can be computed with a similar recursive algorithm, where we replace the
maximization over u with the decision uSB(n) = bn/2c, where bxc is the largest integer less than or equal
to x.

W SB(K) = 2+(1−qK)V SB(K),

V SB(1) = 0,

V SB(n) = 1+ r(u,n)V SB(uSB(n))+ r(n−uSB(n),n)V ∗(n−uSB(n)).

Although we choose to round down in the expression bn/2c, the value of W SB(K) remains unchanged if
we instead use dn/2e.

Figure 3 compares splitting in half (labeled SB) to the optimal policy, assuming that each factor is
important with a constant probability of p = 0.1. The left panel shows W ∗(K) and W SB(K) as a function
of K. The center panel shows u∗(n) and uSB(n) as a function of n, where we take u∗(n) to be the minimal
value in the argmax set (5). The right panel shows the ratio W ∗(K)/W SB(K) of the number of factors
tested as a function of K. When this ratio is 1, SB is optimal, and when it is strictly less than 1, SB is
strictly suboptimal. For other numbers of factors, SB falls within 98% of optimal, at least for this range
of the number of factors, and this value of p.

The central panel of Figure 3 shows an interesting behavior. In the plot, the pair (u∗(n),n− u∗(n))
always contains the largest integer power of 2 less than or equal to n/2. We found this behavior also held
for other values of p and larger This is consistent with the proposed group-splitting rule of (Bettonvil and
Kleijnen 1997). values of n. This leads us to make the following conjecture.



Frazier, Jedynak, and Chen

0 100 200 3000

20

40

60

80

100

# Factors

# 
D

es
ig

n 
Po

in
ts

 

 

OPT
SB

0 100 200 3000

50

100

150

# Factors

# 
in

 F
irs

t S
ub

gr
ou

p

 

 

OPT
SB

50 100 150 200 2500.98

0.985

0.99

0.995

1

# 
O

PT
/ #

 S
B

# Factors

Figure 3: Comparison of the optimal policy (OPT) with the rule of splitting groups in half (SB), where
factors have a homogeneous probability of importance of p = 0.1. Left: Expected number of input points
simulated under the two policies, W ∗(K) and W SB(K). Center: Number of factors to include into the first
sub-group under the two policies, u∗(n) and uSB(n), as a function of the number of factors n in the parent
group. Right: Ratio W ∗(K)/W SB(K) of the expected number of input points simulated between OPT and
SB. SB is between 98% and 100% of optimal.

Conjecture 1 When factors have a homogeneous probability of importance P(Z(k,k) = 1) = p, the optimal
group-splitting policy splits groups of size n into one sub-group of size 2blog2(n/2)c and another of size
n−2blog2(n/2)c, consistent with the rule proposed by (Bettonvil and Kleijnen 1997).

This conjectured optimal group-splitting rule does not depend on the probability of importance. This
is practically beneficial because, if the conjecture is true, implementations of SB using the optimal group-
splitting rule would not need to elicit prior information from the user. If the above conjecture is true, then
it also implies that dividing in half gives the optimal decision when n is a power of 2. If K is an integer
power of 2, then dividing it in half will cause every sub-group to have a size that is a power of 2, and
the “in half” rule will make every group splitting decision optimally. This is supported by the behavior
observed in the right panel of Figure 3, which shows that OPT/SB is 1 when K is a power of 2.

4.2 Non-homogeneous Factors

We consider in this section a non-homogeneous prior that we believe is common in applications. It is often
the case that some factors are a priori more likely to be important than others. We assume that there are
two distinct types of factors. Factors of type I are more likely to be important while the other factors, of
type II, are less likely to be important. Keeping the same Bayesian model, P(Z(k,k) = 1) = p(1) when k is
a factor of type I, and P(Z(k,k) = 1) = p(2) when k is a factor of type II. p(1) ≥ p(2) and the equality case
is the case treated in the previous section. We notate q(1) = 1− p(1) and q(2) = 1− p(2). We also notate
K1, 0≤ K1 ≤ K, to be the number of factors of type I and K2 = K−K1 to be the number of factors of type
II. In SB, it is standard to order the factors by believed importance (Kleijnen 2009). The symmetry of the
problem allows this order to be either increasing or decreasing. Most authors, e.g., Bettonvil and Kleijnen
(1997) and Bettonvil (1990) have adopted an increasing order, but we adopt a decreasing order. Thus we
assume that factors of type I appear before (i.e., have a lower factor index k) those of type II. Thus, we
may assume that k1 ≤ k2 implies P(Z(k1,k1) = 1)≥ P(Z(k2,k2) = 1).

The analysis below generalizes the analysis performed in the previous section. When splitting a group,
one can choose the relative size (i.e., number of factors) of each subgroup but also the number of factors
of type I within each subgroup. To support our analysis, we define the function r(v,u,m,n) which is the
probability that a sub-group of u factors, v of which are of type I, contains an important factor, given that
it is a subset of a parent group of n factors, m of which are of type I, that contains an important factor. For
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u≤ n and max(0,m−n+u)≤ v≤min(u,m),

r(v,u,m,n) =
1−q(1)

v
q(2)

u−v

1−q(1)mq(2)n−m

which is the ratio of the probability that the subgroup contains an important factor to the probability that
its parent group contains an important factor.

Now we compute the optimal number of factors using dynamic programming. We follow the same
logical process as in the previous section. We define W ∗(K1,K) as the value of Eπ∗ [MT ] under the optimal
group splitting rule π∗, as a function of the number K1 of factors of type I and as a function of K, the
total number of factors, K1 ≤ K. We then define V ∗(m,n), the expected number of additional points ~x(k)
at which simulations must be run, under the optimal splitting rule, to completely process all the factors
within a group of n factors, m of which are of type I, previously classified as containing an important
factor, m≤ n. V ∗ and W ∗ satisfy the following relation:

W ∗(K1,K) = 1+(1−q(1)
K1q(2)

K−K1
)V ∗(K1,K)

We now discuss a recursive algorithm for computing V ∗. First,

V ∗(0,1) = 0,

V ∗(1,1) = 0,

since a single factor previously classified as important needs no further simulation. Secondly, optimizing
over the number of factors u to include in the first group provides the following expression. Recall that the
factors are ordered, with factors of type I appearing first and factors of type II appearing second. In the
following expression, the first inner minimization considers those values of u causing only type I factors
to be in the first group. The second inner minimization considers those values of u from including all of
the factors of type I in the first group, leaving only factors of type II for the second group.

V ∗(m,n) = min
{

min
1≤u≤min(m,n−1)

1+ r(u,u,m,n)V ∗(u,u)+ r(m−u,n−u,m,n)V ∗(m−u,n−u),

min
m+1≤u≤n−1

1+ r(m,u,m,n)V ∗(m,u)+ r(0,n−u,m,n)V ∗(0,n−u)
}
,

where a minimum over an empty set is understood to be infinity. When m = 0, the inner minimum
over 1 ≤ u ≤ min(m,n−1) is infinity, and the overall minimum is achieved by the inner minimum over
m+1≤ u≤ n−1. When m = n, the inner minimum over m≤ u≤ n−1 is infinity, and the overall minimum
is achieved by the inner minimum over 1≤ u≤min(m,n−1).

Without loss of generality, we assume that the factors of type I are the first K1 factors with indexes
1 to K1. The “in-half” group splitting rule consists then in choosing uSB = bn/2c and vSB = min(uSB,m)
when the parent group has n factors, m of which are of type I. Replacing the optimization over u and v by
these values we obtain,

W SB(K1,K) = 1+(1−q(1)
K1q(2)

K−K1
)V SB(K1,K),V SB(0,1) = 0,V SB(1,1) = 0

V SB(m,n) = 1+ r(vSB,uSB,m,n)V SB(vSB,uSB)+ r(m− vSB,n−uSB,m,n)V SB(m− vSB,n−uSB)

Figure 4 compares the optimal policy with the rule of splitting in half (labeled SB in the figure).
Paralleling Figure 3, the left panels show W π(K1,K) as a function of K for the two policies; the center
panels show the number of factors included into the first sub-group as a function of the number of factors
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Figure 4: Comparison of the optimal policy (OPT) and the rule of splitting groups in half (SB), where
we have K1 factors with probability of importance p(1), and the remaining factors have probability p(2).
In the Top Row, p(1) = 0.75, p(2) = 0.1, and K1 = 10. In the Bottom Row, p(1) = 0.99, p(2) = 0.0001,
and K1 = 1. Left Panels: Expected number of input points simulated under the two policies, W ∗(K1,K)
and W SB(K1,K). Center Panels: Number of factors to include into the first sub-group under the two
policies, as a function of the number of factors n in a parent group containing K1 factors with probability
of importance p(1). Right Panels: Ratio W ∗(K1,K)/W SB(K1,K) of the expected number of input points
simulated between OPT and SB. Values strictly less than 1 indicate the suboptimality of SB.

n in the parent group, where the number of type I factors in this parent group is held fixed at K1; and the
right panels show the ratio W ∗(K1,K)/W SB(K1,K). The top row shows a collection of problems in which
p(1) = 0.75, p(2) = 0.1, and K1 = 10, while the bottom row shows a more extreme collection of problems
in which the p(1) = 0.99, p(2) = 0.0001, and K1 = 1.

In the top row, which we feel is more typical of situations many encountered in practice, SB is within
94% of optimal. In the bottom row, which is less representative of typical situations, but which serves to
illustrate the spectrum of behaviors that can be observed, SB is much further away from optimal, achieving
between 25% and 50% of optimal.

In the problems considered in the bottom row, the optimal policy places the one type I factor alone in
the first sub-group, and then leaves the type II factors in a second sub-group. Because the type II factors are
unlikely to be important, this large second sub-group is often immediately eliminated, providing W ∗(K1,K)
close to 3, as two points are tested in the initialization phase, and testing one additional point is sufficient
to establish that the first factor is important, and the rest are not. In contrast, the rule of splitting in half
places unimportant type II factors together with the important type I factor, requiring roughly 2+ log2(K)
input points be tested overall before isolating the single type I factor.

5 CONCLUSION

We have considered group-splitting policies for the sequential bifurcation algorithm within a Bayesian
framework. Using a dynamic programming analysis, we have provided recursions for computing the
Bayes-optimal group-splitting policy for a version of the problem with homogeneous factors, and for
another version with two types of factors: one with a relatively high probability of importance, and the
other with a relatively low probability of importance.
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We have shown using numerical experiments that, when factors are homogeneous, splitting groups
in half is close to optimal, and the group splitting rule recommended by (Bettonvil and Kleijnen 1997)
appears to be optimal. When there are two types of factors, the optimal policy offers a larger percentage
improvement over splitting in half, with the largest benefit being present when we have a small number
of factors that are very likely to be important, and a large number of factors that are very unlikely to be
important.

The analysis that we have pursued is stylized in two ways: it assumes that hypothesis tests do not
make errors, and that the simulation effort is constant across hypothesis tests. In future work, we plan to
relax these assumptions, and to use dynamic programming to analyze the optimal policy, or bounds on the
performance of the optimal policy, in the presence of more realistic conditions.

In future work, we also plan to relax the restrictions imposed by restricting to algorithms within the
sequential bifurcation framework. We plan to consider a broader class of policies that do not necessarily
test groups according to the nesting structure imposed by sequential bifurcation, to determine whether
greater efficiency can be obtained with other sequential policies.
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Withers, and B. L. Nelson, 275–280. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Chick, S. E., J. Branke, and C. Schmidt. 2010. “Sequential Sampling to Myopically Maximize the Expected
Value of Information”. INFORMS J. on Computing 22 (1): 71–80. to appear.

Chick, S. E., and P. I. Frazier. 2012. “Sequential Sampling for Selection with Economics of Selection
Procedures”. Management Science 58:550–569.

Chick, S. E., and N. Gans. 2009. “Economic Analysis of Simulation Selection Problems”. Management
Sci. 55 (3): 421–437.

Dynkin, E. B., and A. A. Yushkevich. 1979. Controlled Markov Processes. New York: Springer.
Frazier, P. I., and W. B. Powell. 2008, December. “The Knowledge-Gradient Stopping Rule for Ranking

and Selection”. In Proceedings of the 2008 Winter Simulation Conference, edited by S. J. Mason, R. R.
Hill, L. Moench, O. Rose, T. Jefferson, and J. W. Fowler, 305–312. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

Frazier, P. I., W. B. Powell, and S. Dayanik. 2008. “A Knowledge Gradient Policy for Sequential Information
Collection”. SIAM Journal on Control and Optimization 47 (5): 2410–2439.

Jedynak, B., P. I. Frazier, and R. Sznitman. 2012. “Twenty questions with noise: Bayes optimal policies
for entropy loss”. Journal of Applied Probability 49 (1): 114–136.



Frazier, Jedynak, and Chen

Kleijnen, J. P. C. 2007. Design and analysis of simulation experiments. Springer Verlag.
Kleijnen, J. P. C. 2009. “Factor screening in simulation experiments: review of sequential bifurcation”.

In Advancing the Frontiers of Simulation, edited by C. Alexopoulos, D. Goldsman, J. R. Wilson, and
F. S. Hillier, 153–167. New York: Springer.

Lovejoy, W. S. 1991. “A survey of algorithmic methods for partially observed Markov decision processes”.
Annals of Operations Research 28 (1): 47–65.

Powell, W. B. 2007. Approximate Dynamic Programming: Solving the curses of dimensionality. New York:
John Wiley and Sons.

Powell, W. B., and I. O. Ryzhov. 2012. Optimal Learning. Wiley.
Shi, W., J. P. C. Kleijnen, and Z. Liu. 2012. “Factor Screening for Simulation with Multiple Responses :

Sequential Bifurcation”. Technical Report CentER Discussion Paper No. 2012-032, CentER, Tillburg
University.

Waeber, R., P. I. Frazier, and S. G. Henderson. 2011, December. “A Bayesian Approach to Stochastic Root
Finding”. In Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R. Creasey,
J. Himmelspach, K. P. White, and M. Fu, 4038–4050. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Wan, H., B. E. Ankenman, and B. L. Nelson. 2006. “Controlled Sequential Bifurcation: A New Factor-
Screening Method for Discrete-Event Simulation”. Operations Research 54 (4): 743–755.

Wan, H., B. E. Ankenman, and B. L. Nelson. 2010. “Improving the efficiency and efficacy of controlled
sequential bifurcation for simulation factor screening”. INFORMS Journal on Computing 22 (3):
482–492.

Xie, J., and P. I. Frazier. 2011. “Sequential Bayes-Optimal Policies for Multiple Comparisons with a Known
Standard”. in review.

Yaesoubi, R., S. D. Roberts, and R. W. Klein. 2010, December. “A modification of Cheng’s method: An
alternative Factor Screening method for stochastic simulation models”. In Proceedings of the 2010
Winter Simulation Conference, edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and
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