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ABSTRACT 

Ramping up a semiconductor wafer fabrication facility is a challenging endeavor. One of the key compo-
nents of this process is to contract and schedule multiple types of resources in installing and qualifying 
the capital intensive and sophisticated manufacturing equipment. Due to the stochastic nature of the busi-
ness environment, equipment shipment delays and activity duration increases are common. We first mod-
el the process as a deterministic multi-mode resource-constrained project scheduling problem (MRCPSP) 
which is NP-hard in the strong sense. Then we extend the classical MRCPSP to handle special aspects of 
the semiconductor environment such as time-varying resource constraints and resource vacations, alterna-
tive resource modes, non-preemptive activity splitting, etc. In this research, a modified Simulated Anneal-
ing (SA) algorithm combined with Monte Carlo simulation is proposed to evaluate and improve the exe-
cution of the Install/qual schedule with stochastic ready times and activity durations. A case study is 
provided to demonstrate the approach.  

 

1 INTRODUCTION 

1.1 Capital Equipment Supply Chain Overview 

As a highly capital intensive industry, the investment in a semiconductor fabrication (fab) facility is ex-
tremely expensive. Nowadays, a state-of-the-art semiconductor fab costs approximately $3-5 billion and 
the majority of the cost goes to the capital equipment inside the fab. It is not uncommon that a single 
piece of semiconductor equipment costs over ten million dollars. The capital equipment supply chain in-
cludes four major processes: equipment purchase, equipment shipment, equipment installation and quali-
fication (Install/qual), and wafer manufacturing. When a piece of equipment completes all qualification 
processes, it is ready for wafer manufacturing. For a modern fab, there are generally about 2000 pieces of 
capital equipment that need to go through this supply chain to be ready for wafer manufacturing.  
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1.2 The Install/Qual Process 

The Install/Qual scheduling is the process of ramping up a fabrication facility which includes three serial 
activities: Physical Installation, Supplier Qualification and Company Qualification. Physical installation 
is the process of installing the infrastructure needed by the equipment (e.g. pipes for water and gases) and 
then physically installing the equipment. Physical installation is conducted by trades (e.g. architects, elec-
tricians, mechanics, and plumbers) who are contracted from outside the company.  Supplier qualification 
is the qualifying process carried out by equipment suppliers (supplier resource). Since equipment may be 
supplied by different suppliers, there are multiple supplier resources. Finally, the company has its own 
qualifying engineers (company resource) responsible for the company qualification process.  

The Install/Qual process takes almost half of the supply chain lead time (time to first good wafer pro-
duced) and plays an important role in the efficiency of the entire supply chain. The velocity of ramping up 
a wafer fab can impact a semiconductor company's bottom line by determining how fast the next genera-
tion product can be made available to customers. Overestimation of future demand leads to idle capital 
equipment which could be millions of dollars wasted, while underestimation of future demand could end 
up with lost sales and even larger profit loss. Thus, a better coordinated Install/Qual schedule can shorten 
the capital equipment supply chain lead time and delay decision-making which can diminish the variance 
in planned factory capacity based on predicted future customer demand. 

Practical aspects in the Install/Qual process make the scheduling problem a challenging endeavor. 
Multiple resources (human resources, project budget, factory floor space, etc) are involved in processing 
activities and an activity might have multiple processing options. For example, a piece of equipment can 
be installed by 3 senior and 1 junior technicians with a total cost of $20K in 6 working days or 1 senior 
and 3 junior technicians with a total cost of $16K in 8 working days.  

Due to the stochastic nature of the business environment, there is a significant amount of uncertainty 
associated with the activity ready times and durations in the Install/Qual process. During the preliminary 
planning stage of the Install/Qual process, the uncertainty is particularly large for new technologies since 
the scope and obstacles to the project are still undefined.  

The Install/Qual scheduling phase of the practical example studied in this research mostly relies on 
information from previous Install/Qual processes (this often referred to as  tribal knowledge) and the re-
schedule phase is generally based on manual inspection. It is an inefficient and time-consuming process 
which has a high probability of producing a poor schedule. In this research, the Install/Qual scheduling 
problem is mathematically formulated as a MRCPSP model. A modified Simulated Annealing (SA) algo-
rithm combined with Monte Carlo simulation provides an approach to evaluate and improve the In-
stall/Qual scheduling in an uncertain business environment. 

2 PROBLEM STATEMENT 

MRCPSPs (multi-mode resource-constrained project scheduling problems) are widely used in many real-
world project management applications. A project network  using the AoN (activity on node) 
convention contains a set of nodes  representing the activity set  ( ) and a set of directed arcs  
representing the precedence relations among activities. An activity can only start when its predecessors 
are finished. For the purpose of network completeness, a dummy start node  and a dummy finish node 

 are added into the network. Within the discussion in this paper, if not otherwise stated, we treat 
“activities”, “tasks” and “jobs” interchangeably. Mathematical notation is provided in Table 1.  

Both renewable resources and non-renewable resources  are considered in this work. The 
availability of a renewable resource  is restricted in each time period   Examples of renewa-
ble resources are the number of skilled technicians available per day and the number of testing equipment 
available per shift. The availability of a non-renewable resource  is restricted throughout the 
whole planning horizon . Examples of non-renewable resources include the  total budget for the en-
tire project, the total available factory floor space, and the total available amount of raw materials. For re-
newable resources, the “resource profile” function specifies the availability of a particular resource over 
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time. Each activity  has multiple processing modes  to choose from and each mode 
 has a corresponding activity duration  and consumes  amount of resource .  

In practice, the ready time  of machine j indicates when the equipment arrives at the factory site. 
This time has variability due to the uncertainty in the capital equipment supply chain, e.g. shipment de-
lays. Activity duration  is also uncertain since the execution of an activity depends on the estimation of 
work content which cannot be guaranteed to be completely accurate. The uncertainty of an activity dura-
tion is particularly large on new technologies where no historical data on the workload exists. Thus, both 
activity ready time  and duration  are considered as random variables where their distributions are 
known or estimable.   

Table 1: Mathematical Notation 

Symbol Description 
 An activity/task/job  
 Time  
 Resource type  
 Activity processing mode  

 Set of available processing modes for activity  
 Processing duration of activity  under mode  
 Ready time of activity  
 Due date of activity  

 Required amount of resource type  on activity  under mode  
 Upper bound on availability for resource type  
 Lower bound on availability for resource type  
 Upper bound on availability for resource type  at time  
 Lower bound on availability for resource type  at time  

 Activities in the project  
 Set of renewable resources  
 Set of non-renewable resources  

 Maximum project planning horizon 
 Network  -  represents nodes and  represents arcs  
 Directed arc connecting node  to node  
 The set of predecessor activities of activity .  
 The set of successor activities of activity .  

 
In the Install/Qual scheduling problem, only non-preemptive activity splitting is allowed (Cheng et 

al., 2012) which indicates that activities can only split when renewable resources are not available (week-
ends, holidays) or there is less than the required amount. Intuitively, MRCPSP with non-preemptive activ-
ity splitting can be considered as the intermediate case between MRCPSP and preemptive MRCPSP 
(Buddhakulsomsiri and Kim 2006).  

Decision variables are:  if activity  is being processed in mode  and 0 other-
wise;  if activity  is being processed in mode  at time  and  other-
wise; resulting variables  and  represent the start time and completion time of activity , respectively. 

 is the start time for the dummy finish activity which is also the makespan of the project.  
An indicator function is introduced to specify whether an activity  in mode  is feasible to process 

at a certain time period:  
                                                                    (1) 

which is equivalent to:  
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                                                       (2) 

Additional decision variables  and  are defined to indicate whether a time period  is between 
the start time  and the completion time  of activity .  

                                                         (3) 

                                                        (4) 

Data inputs are resource profiles  for renewable resources and  for non-renewable 
resources. The mixed-integer programming formulation is provided as follows. 

                                                                               (5) 
Subject to:  

                                                              (6) 
                                               (7) 

                                                              (8) 
                            (9) 

                                       (10) 
                                                            (11) 
                                                            (12) 

                         (13) 
                                 (14) 

                                         (15) 
                                       (16) 

                                         (17) 
                                      (18) 

                                             (19) 
             (20) 

              (21) 
                                                              (22) 
                                                              (23) 

                                                (24) 
                                 (25) 

                                            (26) 
                                            (27) 

The objective function (5) minimizes the project makespan. Constraint set (6) ensures only one mode 
can be selected for each activity. Constraint set (7) ensures that if mode  is selected for activity , the to-
tal processing time must equal the corresponding duration. Constraint sets (8) – (10) are precedence con-
straints. Constraint sets (11) – (12) ensure ready times and due dates (in fact, deadlines) are not violated. 
Constraint sets (13) – (14) ensure resource availability for both renewable resources and non-renewable 
resources. Constraint sets (15) – (18) are included to support the new decision variables  and . Con-
straint set (19) ensures the activity completion time is no earlier than the start time for activity . Con-
straint sets (20) – (21) ensure an activity  cannot be preempted at time  if it is eligible. Constraint sets 
(22) – (27) are the non-negativity and binary constraints. A big number  in the MIP formulation is set to 
be the maximum project planning horizon .  
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3 METHODOLOGY 

Literature related to RCPSP dates back to 1950’s with the development of PERT (program evaluation and 
review technique, cf. Malcolm et al. (1959)) and CPM (critical path method, cf. Kelley (1963)). Cheng et 
al. (2012) summarized major research extensions to RCPSP and pointed out that MRCPSP is one of the 
most adopted extensions. Early review papers on RCPSP can be found in Davis (1973), Icmeli et al. 
(1993), Özdamar and Ulusoy (1995), Herroelen et al. (1998), Brucker et al. (1999) and Kolisch and Pad-
man (2001). More recent ones include Hartmann and Briskorn (2010) and Węglarz et al. (2011).  

The MRCPSP problem is strongly NP-hard since it is the generalization of the well-known job shop 
scheduling problem (Blazewicz et al. 1983). For MRCPSP with more than one non-renewable resource, 
the problem of finding a feasible solution is NP-complete (Kolisch and Drexl, 1997). As pointed out in 
Węglarz et al., 2011), it is still computationally intractable to find optimal solutions for MRCPSP instanc-
es with more than 20 activities and 3 modes per activity.  

Thus, heuristic approaches are considered in most research efforts in MRCPSP (Węglarz et al., 
2011) research and the project makespan is generally considered as the problem objective. However, a de-
terministic schedule makespan cannot evaluate the “goodness” of executing a scheduling in the presence 
of stochasticity. Schedules with the same deterministic makespan might perform differently when sto-
chastic elements are introduced.  

The application of simulation in RCPSP is surprisingly rare. Golenko-Ginzburg and Gonik (1997) 
develop a heuristic procedure for RCPSP with stochastic activity durations with the objective of minimiz-
ing the expected project duration. A simulation approach is adopted to approximate the probability of 
each activity being in the critical path of the project. Lee (2005) introduces a Monte Carlo simulation-
based software to measure the probability to complete a project in a certain time when activity durations 
follow given probability density functions. Pappert et al. (2010) proposed a framework for simulation-
based scheduling to solve planning and scheduling  assembly line problems.  

In this research, a SA combined with a Monte Carlo simulation approach is proposed to evaluate dif-
ferent schedules and search for better schedules when there are stochastic activity durations and ready 
times. The main reason for choosing SA over other meta-heuristics is that SA performs well in local 
search and the “temperature” parameter is easy to implement as a threshold to determine when to start 
simulating candidate solutions. Other meta-heuristics can be studied as potential future research.  

Figure 1 illustrates the basic framework of the simulation-based scheduling approach. After creating 
an initial Install/Qual schedule, the simulation module simulates the schedule based on probability distri-
butions of activity durations and ready times and analyzes the average and standard deviation of the simu-
lation results. If the schedule and simulation results cannot satisfy the requirements of senior manage-
ment, they will be sent to the optimization module to improve the schedule. A new schedule will be 
generated and sent back to the simulation module after feasibility checks regarding resource constraints. 
Since the size of the Install/Qual scheduling problem instance exceeds common academic RCPSP prob-
lem instances, only heuristics will be considered when designing the optimization module.  

The pseudo code for our SA is provided in the Appendix. Since the performance of most search pro-
cedure is known to be dependent upon initial solutions, the initial solution in this work is not generated in 
a completely random manner: first, a mode improvement procedure in (Hartmann 2001) is incorporated 
as a local search procedure that modifies the mode assignments for infeasible solutions (infeasible with 
respect to non-renewable resources). It is worth mentioning that since it is NP-complete to find a feasible 
schedule in MRCPSP (Kolisch and Sprecher 1997), there is no guarantee that the Hartmann (2001) search 
can find a “feasible” schedule with respect to non-renewable resources. Second, the SA runs multiple 
times each with different initial solutions and the best run is selected. Details of the mode improvement 
and the SA procedure can be found in the Appendix.  
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Figure 1: Flow chart of the simulation-based scheduling 

Schedules are represented with a random key (RK) representation in which the first random key vec-
tor represents the relative sequence priority and the second random key vector represents the mode as-
signment. SA with RK representation in RCPSP can be found in (Lee and Kim 1996) and (Cho and Kim 
1997). Debels and Vanhoucke (2007) illustrated that the RK representation leads to promising results in 
RCPSP if topological ordering (TO) (Valls et al. 1999) is applied. The TO of activities is an order which 
is compatible with precedence relations of the projects. It implies that for all activities  and  for which 
the starting time of activity  is earlier than the starting time of activity , activity  should have a higher 
priority than activity . Another advantage of the RK representation is that it always maintains precedence 
feasibility. Compared to parallel schedule generation scheme (SGS), serial SGS (Sprecher et al. 1995, 
Kolisch 1996) is used in this work since parallel SGS might not always include the optimal solution.  

 

 
Figure 2: Flow chart of the Monte Carlo simulation module 

As described above, a solution in the SA algorithm is encoded as two strings of number representing 
priorities of activities and mode assignment. The neighborhood of a solution can be obtained from the 
current solution through an interchange method (Lee and Kim 1996): two activities are selected and the 
priorities (RKs) and mode assignments are exchanged. In this method, the first activity  is selected ran-
domly and the other activity is selected randomly among activities whose indexes are between 

 where  is the maximum number of predecessors or successors of an activity in the project 
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network, and  is a parameter determined by preliminary experiments. This can limit the neighborhood 
search on activities that are highly likely to compete for resources and prevent searching for unnecessary 
alternatives. Basic SA parameters such as initial temperature, cooling ratio, epoch length, etc. are set by a 
series of preliminary experiments. The Monte Carlo simulation module generates activity ready times and 
durations following specified distributions. The simulation procedure is illustrated in Figure 2.  

4 CASE STUDY 

A project scheduling case study with 15 activities is provided to demonstrate the simulation-based sched-
uling approach. The real Install/Qual dataset is not tested in this work for confidentiality reasons and the 
extreme size of the real-world dataset. The problem instance is from the “c1537_1” instance in the set 
“C15” of MRCPSP instance sets from PSPLIB (http://129.187.106.231/psplib/). In order to represent a 
mini Install/Qual scheduling problem, the problem instance is modified by considering time-varying re-
source profiles, random resource vacations, multiple alternative processing modes and non-preemptive 
activity splitting. The detailed problem instance modification procedures can be found in Cheng et al. 
(2012). More benchmark problem instances and ultimately the real-world dataset will be studied in future 
research. The project network is shown in Figure 3 with the activity-on-node (AON) representation. Ac-
tivities 1 and 18 are dummy activities with 0 activity durations and no resource requirements. There are 
two types of renewable resources and two types of non-renewable resources. Each activity has three alter-
native processing modes and activity splitting is not allowed.  
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Figure 3: Project network 

Resource profiles for renewable resource R1 and renewable resource R2 are provided in Figure 4. 
The resource profiles are modified from the deterministic resource limits in the original problem instance 
by introducing time-varying resource limits and random resource vacations. The resource limits drop to 
zero indicating resource vacations. Detailed procedures can be found in Cheng et al. (2012).  

 

 
Figure 4: Resource Profile 
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In the current model, activity ready times are normally distributed while activity durations are uni-

formly distributed. Other potential distributions can be easily incorporated into the model as input data. 
1000 runs for each simulation are selected through preliminary experiments and the runtime for 1000 runs 
is less than 1 sec. The output for the simulation is the average makespan. Other statistical information 
such as the variance and confidence intervals are also analyzed. The simulation model is programmed in 
Visual Studio C++ 2005 Edition on a desktop with an Intel® 2 Quad Core™ CPU Q9400 @ 2.66GHz, 
4.00 GB installed memory, and the Windows 7 Enterprise 64-bit Operating System.  

The results are presented in the following two figures. D_Current represents the current deterministic 
makespan while D_Best represents the current best deterministic makespan. Since SA accepts many 
“bad” solutions in the early stage of the cooling process, infeasible solutions regarding non-renewable re-
sources might also be accepted to maintain solution diversity and avoid local optima.  

 

 

Figure 5: Deterministic Makespan found by SA 

In Figure 5, the results indicate the stage of SA where simulation is used has not yet been triggered. 
The best deterministic makespan found is 54 when the temperature is 200.  

 

 

Figure 6: Stochastic Makespan found by SA 

The best deterministic schedule found in the first stage is considered as the starting point for the sim-
ulation process. D_Best represents the best deterministic makespan, S_Best represents the best average 
makespan and S_Current represents the average makespan for the current schedule. Average values are 
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rounded up to the nearest integer. Until the freezing temperature, the best average makespan is 49 with 
the corresponding deterministic makespan 47 (Figure 6).  

In Table 1, a partial set of the “good” schedules including the “best” schedule found so far regarding 
stochastic makespan is presented. An interesting observation is that the schedule with the smallest 
S_Current (schedule 6) is not necessarily the schedule with the smallest D_Current (schedule 12). Thus, 
even though schedules with small deterministic makespans tend to have small stochastic makespans, 
simply relying on the deterministic makespan does not guarantee the best performance when there are 
stochastic activity durations and ready times.  

Table 1: Partial results 

Schedule Temp D_Current S_Current Confidence Interval 
1 1.11854 48 52.246 [51.951, 52.541] 
2 1.08532 47 51.957 [51.662, 52.252] 
3 0.91486 46 49.894 [49.602, 50.186] 
4 0.91486 47 51.617 [51.299, 51.934] 
5 0.81911 47 51.883 [51.575, 52.191] 
6 0.69744 47 48.144 [47.875, 48.413] 
7 0.69744 47 51.373 [51.039, 51.707] 
8 0.59384 47 50.802 [50.498, 51.106] 
9 0.52637 46 50.223 [49.936, 50.510] 
10 0.49557 46 50.704 [50.408, 51.000] 
11 0.41355 46 49.708 [49.425, 49.991] 
12 0.40127 45 50.590 [50.292, 50.884] 
13 0.30285 46 49.763 [49.471, 50.055] 
14 0.01076 45 49.891 [49.619, 50.163] 

 

5 CONCLUSIONS 

In this research, the Install/Qual process in semiconductor fab facility is modeled as a multi-mode re-
source constrained project scheduling problem with non-preemptive activity splitting. A SA combined 
with a Monte Carlo simulation approach is proposed to evaluate different schedules where activity ready 
times and durations are stochastic. A case study illustrates the model and demonstrates the problem solv-
ing approach. As expected, the results also demonstrate that by simply solving as a deterministic 
MRCPSP problem, the solution found might not be the best schedule in a stochastic environment. For 
possible future research, other distributions for activity ready times and durations will be considered. 
More problem instances must be tested and analyzed as well.  
 
APPENDIX 
Mode Improvement Procedure  
Step 1: Randomly select an activity  and its current mode assignment is  
Step 2: Pick a new mode assignment  for  
Step 3: If , the new mode assignment  is selected to 

replace the old mode assignment  
Step 4: Return to step 1 for Num_Repeat times or until found a feasible mode assignment  
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SA Algorithm  
Step 1: Initialization 

sch_initial ← random 
sch_current ← sch_initial  
sch_best ← sch_initial  
D_makespan_current ← D_makespan(sch_initial): serial SGS  
D_makespan_best ← D_makespan_current  
Temperature_current ←  Temperature_initial 
Temperature_freeze ← A predefined freezing temperature  
Threshold ← the criteria that determines when to run the simulation  
epoch_length, the number of neighbour search iterations at a temperature level 

Step2: Cooling process (Temperature_current >= Temperature_freeze)  
Step 2-1:  
sch_new = neightbour(sch_current): interchange method 
While (Temperature_current >= Threshold * Temperature_initial)  

D_makespan_new = D_makespan(sch_new) 
If (D_makespan_new <= D_makespan_current) 
 Accept sch_new, move to the neighbour 

update sch_current, update D_makespan 
 If D_makespan_new <= D_makespan_best 

update D_makespan_best  
update sch_best 

If (D_makespan_new > D_makespan_current) 

If rand() <= , accept the neighbor  
: D_makespan_new - D_makespan_current 
: Temperature_current 

update sch_current, update D_makespan 
While (Temperature_current < Threshold * Temperature_initial) 

S_makespan_new = S_makespan(sch_new): simulate Num_sim runs, return the avg. makespan   
If (S_makespan_new <= S_makespan_current) 

Accept sch_new, move to the neighbor 
update sch_current, update S_makespan 

 If (S_makespan_new <= S_makespan_best) 
update S_makespan_best, sch_best 
if (S_makespan_new > S_makespan_current) 

if rand() <= , accept the neighbor 
: S_makespan_new - S_makespan_current 

update sch_current, update S_makespan  
Step 2-2:  
repeat step 2-1 for epoch_length times 

Step3: Update temperature , in which  is the cooling ratio between [0, 1]. Go back to step 2  
 
Simulation Procedure  
Step 1: Generate random activity durations and ready times according to the specified distributions  
Step 2: Generate the schedule using the serial SGS, return the makespan 
Step 3: Repeat step 2 for Num_Sim (number of simulation replications) times, calculate the average 
makespan 
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