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ABSTRACT

Given a marked renewal point process (assuming that the marks are i.i.d.) we say that an unbounded
region is stable if it contains finitely many points of the point process with probability one. In this paper
we provide algorithms that allow to sample these finitely many points efficiently. We explain how exact
simulation of the steady-state measure valued state descriptor of the infinite server queue follows as a
simple corollary of our algorithms. We provide numerical evidence supporting that our algorithms are not
only theoretically sound but also practical. Finally, having simulation optimization in mind, we also apply
our results to gradient estimation of steady-state performance measures.

1 INTRODUCTION

Let N = {N (t) : t ∈ (−∞,∞)} be a two sided time stationary renewal point process. We write {An : n ∈ Z0}
for the times at which the process N jumps, where Z0 = Z\{0} denotes the set of integers removing
zero, and with A1 > 0 > A−1. For simplicity we assume that An < An+1 for every n. Further, we define
Xn = An+1−An.

Now let {Vn : n∈Z0} be a sequence of independent and identically distributed (i.i.d.) random variables
(r.v.’s) which are independent of the process N. Define Zn = (An,Vn) and consider the marked point process
M = {Zn : n ∈ Z0} which forms a subset of R2. We say that a (Borel measurable) set B is stable if
|M ∩B|< ∞ almost surely (where |C | is used to denote the cardinality of the set C ).

Under natural assumptions on the inter-arrival times underlying N and on the distribution of the Vn’s
(stated in Section 2) we propose and study a class of algorithms that allow to sample exactly (i.e. without
any bias) a realization of the set M ∩B for a large class of unbounded, stable sets B.

Our approach builds on algorithms that are fully developed and studied in Blanchet and Dong (2012).
As an application of the class of algorithms that we study here, we provide a procedure that allows to
sample from the steady-state measure valued descriptor of an infinite server queue without any bias (i.e.exact
simulation). Such a procedure, for instance, is obtained by considering the particular case in which B takes
the form B = {(t,v) : v > |t| , t ≤ 0}. Given that point processes constitute a natural way of constructing
queueing models in great generality, we believe that the class of algorithms that we propose here have the
potential to be applicable to the design of exact sampling algorithms of more general queueing models.
This is a research avenue that we plan to investigate in the future.

We argue empirically that it is cheaper to run our exact sampling procedure to fully delete the initial
bias than it is to do a burn-in period that reduces the bias to a reasonable size, say 5%, when talking about,
for instance, the steady-state queue length.

Finally, we apply our exact sampling algorithms for infinite server queues to perform steady-state
sensitivity analysis. For instance, we consider quantities such as the derivative of the steady-state average
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remaining service time with respect to the arrival rate or service rate. These quantities are of great interests
in stochastic optimization via simulation.

So, in summary, our contributions are as follows:
i) We provide the first exact sampling algorithm for stationary marked renewal processes on unbounded

and stable sets, see Section 2.
ii) As a corollary of i) we explain how to obtain an exact sampling algorithm for the steady-state

measure valued descriptor of the infinite server queue. We also show empirically that this algorithm is
practical in the sense of being both easy to code and fast to run, see Section 3.

iii) Finally, we provide new procedures for the sensitivity analysis of steady-state performance measures
of the infinite server queue, see Section 4.

Relevant literature

Following the seminal work by Propp and Wilson (1996), several exact sampling algorithms have been
developed, particularly for spatial point processes. Kendall (1998) and Kendall and Møller (2000) developed
algorithms and analytical tools based on so-called Dominated Coupling From the Past (DCFP). DCFP
is based on the idea of introducing a stationary dominating process that is simulatable. Compared to
our method, firstly they use spatial birth and death processes (generally of poisson type) as the coupled
dominating processes. This would limit the target distribution to be absolutely continuous with respect to
the Poisson measure. Secondly the number of steps simulated in the naive DCFP grows exponentially with
the system scale (i.e. arrival rate in the infinite server queue setting); see Proposition 1 in Berthelsen and
Møller (2002) for a detailed proof. Although several modifications have been proposed, still the number of
steps involved in these backward construction appears to be significantly large, especially when sampling
in infinite volume regions (Fernandez, Ferrari, and Garcia 2002); see Section 7 in Berthelsen and Møller
(2002) for empirical comparisons.

Our method is based on a construction that is being used in Blanchet and Sigman (2011) and Blanchet
and Dong (2012); see also Ensor and Glynn (2000) for related ideas. The method involves the technique
of simulating the maximum of a negative drift random walk and the last passage time of independent and
identically distributed random variables to an increasing boundary. As shown in Blanchet and Dong (2012)
the complexity of our algorithm scales graciously as the system scale grows.

2 SAMPLING FROM STABLE UNBOUNDED REGIONS

We start by discussing the assumptions behind our development.

Assumptions:
A1) Assume that E |Vn|1/α < ∞ for some α > 0, we also write F (·) = P(Vn ≤ ·) for the cumulative

distribution function (CDF) of Vn and put F (·) = 1−F (·) for the tail CDF.
A2) We assume that F (·) is known and easily accessible either in closed form or via efficient numerical

procedures. Moreover, we can simulate Vn conditional on Vn ∈ [a,b] with P(Vn ∈ [a,b]) > 0. Finally we
can find u(k) such that u(k)≥

∫
∞

k P(|V1|1/α > ν)dν and u(k)→ 0 as k→ ∞.
A3) Recall that Xn = An+1−An > 0. Define ψ (θ) = logE exp(θXn) and assume that there exists δ > 0

such that ψ (δ )< ∞. Finally, let us write µ = EXn.
A4) Define G(·) = P(Xn ≤ ·) and G(·) = 1−G(·). Suppose that G(·) is known and that it is possible

to simulate from Geq (·) := µ−1 ∫ ∞

· G(t)dt. Moreover, let Gθ (·) = E exp(θXn−ψ (θ)) I (Xn ≤ ·) be the
associated exponentially tilted distribution with parameter θ for ψ (θ)<∞. We assume that we can simulate
from Gθ (·).

Consider the class of sets B ⊂ R2 that are Borel measurable and such that

B ⊂ Cα = {(t,v) : |v| ≥ |t|α}.
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Our goal in this section is to develop an algorithm that allows to sample without bias the random set
M ∩Cα , and therefore M ∩B. We will discuss extensions that follow immediately from our formulation
at the end of this section. Figure 1 illustrates the different shapes that the set Cα can take depending on
the values of α > 0.

α = 1 α > 1 0 <α < 1

Figure 1: The area of Cα . The horizontal axis corresponds to the t coordinate while the vertical axis
represents the v coordinate

We now proceed to explain our construction. As the stationary renewal point process is time reversible,
starting at 0 the distribution of the forward process {Zn : n > 0} and the backward process {Zn : n < 0}
are the same. In what follows we limit our discussion to the construction of the forward process and the
simulation of the backward process is completely analogous.

We follow the idea in Blanchet and Dong (2012). Let ε ∈ (0,µ). Consider any random time κ , finite
with probability one but large enough such that

An+1 ≥ n(µ− ε) and |Vn+1| ≤ (n(µ− ε))α

for all n≥ κ .
If such random time κ is well defined, we only need to simulate the stationary process up to κ to get

a sample from the unbounded region.

Proposition 1 The random time κ defined above exists and it is finite with probability one.

Proof. By Chebyshev’s inequality,

P(An+1 < n(µ− ε))≤ E[exp(θ(n(µ− ε)−An+1)))≤ exp(−n(−θ(µ− ε)−ψ(−θ)))

for any θ ≥ 0.
Let

I(−ε) = max
θ≥0
{−θ(µ− ε)−ψ(−θ)}

As ψ(0) = 0, ψ ′(0) = µ and ψ ′′(0) =Var(X)> 0, I(−ε)> 0. Then

P(An+1 < n(µ− ε))≤ exp(−nI(−ε))

and
∞

∑
n=1

P(An+1 < n(µ− ε))≤ exp(−I(−ε))

1− exp(−I(−ε))
< ∞

By Borel-Cantelli lemma, {An+1 ≥ n(µ− ε)} eventually almost surely.
Similarly and independently we have

∞

∑
n=1

P(|Vn+1|> (n(µ− ε))α) =
∞

∑
n=1

P(|V1|1/α > n(µ− ε))≤ 1
µ− ε

∫
∞

0
P(|V1|1/α > ν)dν < ∞

Thus, again by Borel-Cantelli lemma, {|Vn+1| ≤ (n(µ− ε))α} eventually almost surely. Therefore, P(κ <
∞) = 1
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As {An : n≥ 1} and {Vn : n≥ 1} are independent of each other, we consider the following construction.
Let κ(A) be a random time satisfying that An+1 ≥ n(µ − ε) for n ≥ κ(A), and κ(V ) be a random time
satisfying that Vn+1 ≤ n(µ − ε) for n ≥ κ(V ). Clearly κ (A) and κ (V ) are not stopping times and this
makes the simulation of these times challenging. However, we will explain how to sample these times
and then we can set κ = max{κ(A),κ(V )}. Our construction will allow us to simulate {An : n ≥ 1} and
{Vn : n≥ 1} separately.

2.1 Simulation of : 1≤ K ≤max{n,κ (A)}+1}

In this subsection we will introduce a method to simulate κ(A) together with {Ak : k ≥ 1}.
First, define A1 according to the distribution Geq (·). Sampling A1 can be done according to A4).
Now, observe that An+1 = A1 +X1 + ...+Xn and define

S̃n = n(µ− ε)− (An+1−A1) =
n

∑
i=1

Yi,

where Yi = (µ− ε)−Xi. Note that the Yi’s are i.i.d. with EYi =−ε . If we set S̃0 = 0, then {S̃n : n≥ 0} is
a random walk with negative drift. We are interested in sampling up to the last time n at which S̃n > 0.

We define the following sequence of random times:

∆1 = 0, Γ1 = inf{n≥ ∆1 : S̃n− S̃∆1 > 0},

and for j ≥ 2

∆ j = inf{n≥ Γ j−11{Γ j−1 < ∞}∨∆ j−1 : S̃n ≤ 0},
Γ j = inf{n≥ ∆ j : S̃n− S̃∆ j > 0}.

Now, let γ = inf{ j≥ 1 : Γ j = ∞} and note that ∆γ+1 = ∆γ and that S̃n ≤ 0 for n≥ ∆γ , which in particular
implies that An+1 ≥ n(µ− ε) for n≥ ∆γ . Therefore, we have that ∆γ = κ (A).

In what follows we will explain how to simulate the ∆ j’s and Γ j’s sequentially and jointly with the
underlying random walk until time ∆γ . One important observation is that for every j ≥ 1, ∆ j < ∞ almost
surely by the strong law of large numbers.

Let us write Fn = σ{Y1,Y2, ...,Yn} for the σ -field generated by the Yj’s up to time n. Let ξ ≥ 0 and
define

Tξ := inf{n≥ 0 : S̃n > ξ},

then by the strong Markov property we have that for j ≤ γ ,

P(Γ j = ∞|F∆ j) = P(Γ j = ∞|S̃∆ j) = P(T0 = ∞)> 0,

where we use P(·) to denote the nominal probability measure under which S̃0 = 0.
It is important then to note that

P(γ = k) = P(T0 < ∞)k−1 P(T0 = ∞)

for k≥ 1. In other words, γ is geometrically distributed. The procedure that we have in mind is to simulate
∆γ in time intervals, and the number of time intervals is precisely γ .

Let ψY (θ) = logE exp(θYi). As the moment generating function of Xi is finite in a neighborhood of
the zero, ψY (·) is also finite in a neighborhood of zero and EYi = ψ ′Y (0) =−ε , Var(Yi) = ψ ′′Y (0)> 0. Then
by the convexity of ψY (·), one can always select ε > 0 sufficiently small so that there exists η > 0 with
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ψY (η) = 0 and ψ ′Y (η)> 0. The root η allows us to define a new measure Pη based on exponential tilting
so that

dPη

dP
(Yi) = exp(ηYi).

Moreover, under Pη , S̃n is random walk with positive drift equal to ψ ′Y (η) (Asmussen 2003 P. 365).
Therefore Pη(T0 < ∞) = 1 and P(T0 < ∞) = Eη(exp(−η S̃T0)). More generally, Pη(Tξ < ∞) = 1 and

q(ξ ) := P(Tξ < ∞) = Eη(exp(−η S̃Tξ
))

for each ξ ≥ 0. Based on the above analysis we now introduce a convenient representation to simulate a
Bernoulli random variable J (ξ ) with parameter q(ξ ) namely,

J (ξ ) = I(U ≤ exp(−η S̃Tξ
)). (1)

where U is a uniform random variable independent of everything else under Pη .
Identity (1) provides the basis for an implementable algorithm to simulate a Bernoulli with success

probability q(ξ ). Sampling {S̃1, ..., S̃T0} conditional on T0 < ∞, as we shall explain now, corresponds to
basically the same procedure. First, let us write P∗(·) = P(·|T0 < ∞). The following result provides an
expression for the likelihood ratio between P∗ and Pη .
Lemma 2 We have that

dP∗

dPη

(S̃1, ..., S̃T0) =
exp(−η S̃T0)

P(T0 < ∞)
≤ 1

P(T0 < ∞)
.

Proof.

P(S̃1 ∈ H1, ..., S̃T0 ∈ HT0 |T0 < ∞) =
P(S̃1 ∈ H1, ..., S̃T0 ∈ HT0 ,T0 < ∞)

P(T0 < ∞)

=
Eη [exp(−η S̃T0)I(S̃0 ∈ H0, ..., S̃T0 ∈ HT0)]

P(T0 < ∞)
.

The previous lemma provides the basis for a simple acceptance / rejection procedure to simulate
{S̃1, ..., S̃T0} conditional on T0 < ∞. More precisely, we propose (S̃1, ..., S̃T0) from Pη (·). Then one
generates a uniform random variable U independent of everything else and accept the proposal if

U ≤ 1
1/P(T0 < ∞)

× dP∗

dPη

(S̃1, ..., S̃T0) = exp(−η S̃T0).

This criterion coincides with J (0) according to (1). So, the procedure above simultaneously obtains both
a Bernoulli r.v. J (0) with parameter q(0), and the corresponding path {S̃1, ..., S̃T0} conditional on T0 < ∞.

Algorithm 1 (Outputs (S̃0, ..., S̃∆γ
))

Step 0. Set K = 0, and S0 = 0
Step 1. Simulate (S̃1, ..., S̃T0) from Pη and compute J := J (0) according to (1).
Step 2. If J = 1, then let SK+ j = S̃ j for j = 1, ...,T0 and update K←− K +T0. Then, go back to Step 1.

Otherwise, J = 0 (i.e. ∆γ = K), stop and output (S0, ...,SK)
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Remark: It has been proved in Blanchet and Dong (2012) that the expected number of times we need to
repeat Step 1 does not change with the system scale (i.e. the arrival rate).

We noted earlier that ∆γ = κ (A) and Algorithm 1 together with the initial procedure to sample A1
allows us to simulate (A j+1 : 0≤ j ≤ κ (A)), and we know that An+1 ≥ n(µ− ε) for n≥ κ (A). We need
to simulate An+1 for n ≤ κ = max{κ (A) ,κ (V )}, and κ (V ) is independent of κ (A). So, there might be
cases for which we will have to sample An+1 for n > κ (A). Since An+1 = A1− S̃n +n(µ− ε) it suffices
to explain how to simulate S̃n for n > ∆γ . In turn, it suffices to explain how to simulate (S̃n : n≥ 0) with
S̃0 = 0 conditional on T0 = ∞. We will once again apply an acceptance / rejection procedure but this time
we will use the original (nominal) distribution as the proposal distribution. Define

P′ (·) = P(·|T0 = ∞).

The following result provides an expression for the likelihood ratio between P′ and P.
Lemma 3 We have that

dP′

dP
(S̃1, ..., S̃l) =

I(T0 > l)(1−q(−S̃l))

P(T0 = ∞)
≤ 1

P(T0 = ∞)
.

Proof.

P(S̃1 ∈ H1, ...., S̃l ∈ Hl|T0 = ∞) =
P(S̃1 ∈ H1, ...S̃l ∈ Hl,T0 = ∞)

P(T0 = ∞)

=
E[I(S̃1 ∈ H1, ..., S̃l ∈ Hl)I(T0 > l)P(T0 = ∞|S̃0, ..., S̃l)]

P(T0 = ∞)
.

The result then follows from the strong Markov property and homogeneity of the random walk.

We are in good shape now to apply acceptance / rejection to sample from P′. The previous lemma
indicates that to sample {S̃0, ..., S̃l} given T0 = ∞ we can propose from the original (nominal) distribution
and accept with probability q(−S̃l) as long as S̃ j ≤ 0 for all 0≤ j≤ l. So, in order to perform the acceptance
test we need to sample a Bernoulli with parameter q(−S̃l), but this is easily done using identity (1). Thus
we obtain the following procedure.

Algorithm 2 (Given n≥ 0 outputs {A1,A2, ...,Amax{n,κ(A)}+1})

Step 1. Run Algorithm 1 and obtain {S0,S1, ...,SK}.
Step 2. If K = κ (A)≥ n, jump to Step 6. Otherwise, K < n, let l = n−K ≥ 1.
Step 3. Simulate {S̃0, S̃1, ..., S̃l} from the original (nominal) distribution with S̃0 = 0.
Step 4. If S̃ j ≤ 0 for all 0 ≤ j ≤ l then sample a Bernoulli J(−S̃l) with parameter q(−S̃l) using (1) and

continue to Step 5. Otherwise (i.e. S̃ j > 0 for some 1≤ j ≤ l) go back to Step 3.
Step 5. If J(−S̃l) = 1, go back to Step 3. Otherwise, J(−S̃l) = 0, let SK+i = SK + S̃i for i = 1,2, ..., l
Step 6. Let m = max{n,κ(A)}. Simulate A1 with CDF Geq(·) = µ−1 ∫ ∞

· Ḡ(t)dt. Set An+1 = A1− Sn +
n(µ− ε) for n = 1, ...,m. Output {A1, ...,Am+1}.

2.2 Simulation of : 1≤ N

In this section we will introduce a method to simulate κ(V ) together with the {Vn : n≥ 1}.
Let p(n) = P(|V1| > (n(µ − ε))α). We define ϒ0 = 0 and ϒi = inf{n > ϒi−1 : |Vn+1| > (n(µ − ε))α}

for i = 1,2, .... We also define two independent sequences of random variables, {V̂n+1 : n ≥ 1}, and
{V̄n+1 : n≥ 1} as follows. The elements in each sequence are i.i.d., V̂n+1 is distributed as Vn+1 conditional
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on |Vn+1| > (n(µ − ε))α , and V̄n+1 follows the distribution of Vn+1 conditional on |Vn+1| ≤ (n(µ − ε))α .
We simulate V1 following its nominal distribution independent of everything else.

Let σ = inf{i≥ 0 : ϒi = ∞}. Then Vn+1 ≤ (n(µ− ε))α for n≥ ϒσ−1 +1. We next introduce a method
to sample ϒ1,ϒ2, ... sequentially and jointly with the Vn’s up until ϒσ−1.

The following lemma provides the basis to guarantee the termination of our procedure.
Lemma 4 If E|V1|1/α < ∞, then

P(ϒ1 = ∞) =
∞

∏
i=1

(1− p(i))≥ exp(−2E|V1|1/α/(µ− ε))> 0,

consequently Eσ ≤ exp(2E|V |1/α/(µ− ε))< ∞.
Remark: The bound on Eσ can be improved. This improvement is important for the theoretical asymptotic
analysis of GI/GI/∞ application, see Blanchet and Dong (2012).

Proof.

P(ϒ1 = ∞) =
∞

∏
n=1

(1− p(n)) ≥
∞

∏
n=1

exp(−2p(n))

≥ exp(− 2
µ− ε

∫
∞

0
P(|V1|1/α > ν)dν) = exp(−2E|V1|1/α

µ− ε
)

For i = 2,3, ... conditional on ϒ(i−1) = k:

P(ϒi = ∞|ϒi−1 = k) =
∞

∏
n=k+1

(1− p(n))≥ exp(−
2
∫

∞

k P(|V1|1/α > ν)dν

µ− ε
≥ exp(−2E|V1|1/α

µ− ε
)

Thus σ is stochastically dominated by a geometric random variable with parameter p= exp(−2E|V1|1/α/(µ−
ε)), the result then follows.

Notice that
l

∏
i=k+1

(1− p(i))≥ P(ϒi = ∞|ϒi−1 = k)≥
l

∏
i=k+1

(1− p(i))× exp(−
2
∫

∞

l P(|V1|1/α > ν)dν

µ− ε
) (2)

for l ≥ k+1.
Thus if we are simulating I ∼ Bernoulli(ri) with ri := P(ϒi = ∞|ϒi−1), then with probability one we can
check whether U ≤ P(ϒi = ∞|ϒi−1) for U ∼ Unif[0,1] by making l sufficiently large without calculating
the infinite product in the definition of P(ϒi = ∞|ϒi−1).

On the other hand, if we define ∏
0
j=1(1− p( j)) := 1, then

P(ϒ1 = n|ϒ1 < ∞) = p(n)
∏

n−1
j=1(1− p( j))

P(ϒ1 < ∞)
≤ p(n)

1
P(ϒ1 < ∞)

.

Consider a random variable N with the following probability density function

P(N = n) = cp(n)

for n = 1,2, ..., where c = (∑∞
n=1 p(n))−1. Then P(ϒ1 = n|ϒ1 < ∞)/P(N = n)≤ 1/(cP(ϒ1 < ∞)).

So we can simulate ϒ1 given ϒ1 < ∞ using acceptance / rejection with N as the proposal random
variable. Generalizing the idea to ϒi, we can obtain the following algorithm

Algorithm 3 (Given ϒi−1 = k, outputs ϒi conditional on ϒi < ∞)
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Step 1. Let c = (∑∞
n=k+1 p(n))−1. Simulate N with probability density function P(N = n) = cp(n) for

n = k+1,k+2, ...
Step 2. Simulate U ∼ Unif[0,1] independently. If U ≤∏

N−1
j=k+1(1− p( j)) , set ϒi = N and stop. Otherwise

go back to Step 1

We conclude this section with our procedure to simulate {V1,V2, ...Vκ(V )+1}.

Algorithm 4 (Outputs {V1,V2, ...Vκ(V )+1})

Step 0. Set ϒ0 = 0, i = 1. Simulate V1 from its nominal distribution.
Step 1. Simulate I ∼ Bernoulli(ri) with ri := P(ϒi = ∞|ϒi−1) (see (2)).
Step 2. If I = 1, set κ(V ) = ϒi−1+1. Simulate Vκ(V )+1 by sampling from V̄κ(V )+1 and stop. Otherwise I = 0,

sample ϒi conditional on ϒi < ∞ and the value of ϒi−1 using Algorithm 3. Simulate the process
between ϒi−1 +2 and ϒi +1 by sampling from V̄n for ϒi−1 +2≤ n≤ ϒi and V̂n for n = ϒi +1. Set
i = i+1 and then go back to Step 1.

3 APPLICATION TO THE INFINITE SERVER QUEUE

As a direct application of the ideas discussed in the previous section we study steady-state simulation for
the infinite server queue. The following diagram indicates how to construct the steady-state measure valued
descriptor assuming that we can sample all the points inside the set

C = {(t,v) : v≥ |t| , t ≤ 0}.

Let Q(t,y) denote the number of people in the system at time t with residual service time strictly greater
than y and E(t) denote the time elapsed since the previous arrival at time t (i.e. E (·) is the age process
associated with N (·)). Figure 2 below depicts the region C . Every point in |M ∩C | is projected to the
vertical line at time zero by drawing a−450 line. The final position in the vertical line if positive, represents
the corresponding remaining service time. Since the underlying point process is time stationary, the whole
configuration of points obtained by this procedure at time zero is a snap shot of the steady-state distribution
of the infinite server queue.

y

t

Q(t, y)

0

Figure 2: The points lies in the shaded area correspond to people who are still in the system at time 0 with
remaining service time greater than y.

3.1 Algorithm for the Infinite Server Queue

As depicted in Figure 2 after projecting into the vertical line at t = 0, we obtain the stationary remaining
service requirements of the customers at time zero. We shall use R1,R2, ...,RQ(0,0) to denote the remaining
service times. The labeling is arbitrary although we will assign smaller indexes to customers that have
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spent less time in the system. Our algorithm proceeds as follows.

Algorithm 5 (Outputs {R1,R2, ...,RQ(0,0)} and E(0))

Step 1. Use Algorithm 4 to simulate the {Vn,1≤ n≤ κ(V )+1}.
Step 2. Use Algorithm 2 to simulate the {A1,A2, ...,Amax{κ(V ),κ(A)}+1}.
Step 3. Set κ = max(κ(V ),κ(A)). If κ > κ(V ), simulate Vn by sampling from V̄n for n = κ(V )+2, ...,κ +1.
Step 4. Set q = 0, i = 0 and repeat the following procedure until i = κ:

set i = i+1; if Vi > Ai, set q = q+1 and Rq =Vi−Ai.
Output {R1,R2, ...Rq} and A1.

3.2 Empirical Performance

Let Y = {Y (t) : t ≥ 0} be a continuous time Markov process on the state space Ω and f is a real-valued
function defined on Ω. The ergodic theorem guarantees in great generality (assuming a unique stationary
distribution π (·)) that

1
t

∫ t

0
f (Y (s))ds→

∫
Ω

f (y)π(dy)

as t → ∞ almost surely for every positive, measurable function f (·). In the setting of the infinite server
queue such a stationary distribution exists if EVn < ∞ and EXn < ∞. The most natural estimator for
Eπ f (Y ) :=

∫
Ω

f (y)π(dy) is therefore

Φ(t,Y (0)) :=
1
t

∫ t

0
f (Y (s))ds,

where Y (0) is the initial state. The estimator Φ(t,Y (0)) is generally biased unless Y (0) is sampled from the
stationary distribution π (·) (Asmussen and Glynn 2007 P. 97). Our algorithm has the obvious advantage
of removing the initial transient.

In what follows we conduct some simulation experiment to evaluate the practical performance of our
algorithm. The idea is to fix a reasonable tolerance error, say 10%, for a given performance measure. Then
we want to empirically find how large a burn-in period one would need in practice to reduce the initial
transient bias to about 10%. In order to effectively quantify the error we select a class of systems for which
π (·) can be explicitly evaluated.

We consider an infinite server queue with Poisson arrivals and Lognormal service times. As we are
interested in the efficiency of our algorithm for relatively large systems, we set the arrival rate λ = 100 and
the service time Vn ∼ Lognormal(−0.25,0.5) (i.e. Vn has the same distribution as exp(−.25+ .5×N(0,1)),
where N (0,1) denotes a standard Gaussian random variable).

Let Y (t) = (Q(t, ·),E(t)) ∈D [0,∞)×R+, then Y (t) is a Markovian measure valued descriptor of the
infinite server queue (of course in the Poisson arrival case one does not need to keep track of A(·)).

We first compare the performance of our algorithm to the burn-in period defined as the period needed
to reduce the initial transient as indicated earlier. Let f (Y (t)) = Q(t,0), i.e. the number of people in the
system at time t. We measure the computation effort of the algorithm in terms of the number of arrivals
(we call this the number of steps) simulated. Given ε > 0 we let n(ε) denote the minimum number of
steps required so that |EΦ(An(ε),(φ ,0))−EπQ(0,0)|/EπQ(0,0) ≤ ε , where (φ ,0) denotes a system that
starts empty with E(0) = 0 (recall that E(·) is the age process associated with N(·), i.e. when E(0) = x,
A1 is distributed as Xn conditional on Xn > x). Table 1 shows the relation between ε and n(ε), obtained
empirically based on the average of 104 independent replications

Compared to the results in Table 1, our algorithm is unbiased. The average number of steps involved is
n = 592.6369 based on the average of 104 independent replications and the average computer time needed
for a single replication is 0.0249 s.
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Table 1: Bias of Φ(Sn(ε)).

ε n(ε) computer time (s)
10.26% 6×102 0.0310
5.71% 1×103 0.0382
1.17% 5×103 0.1367

In addition, in Table 2 we compare the performance of the estimators Φ(An,(φ ,0)) and Φ(An′ ,(Q(0, ·),A1)),
where Q(0, ·) and A1 are sampled according to Algorithm 5. n and n′ are calibrated so that the computation
budget is basically the same in both estimators. Under our procedure, Eκ , the average number of arrivals
required to terminate is approximately equal to 600. So for instance, the first row in Table 2 corresponds to
n = 104. This means that n′ ≈ 9.4×103 = 104−600. The true value of EπQ(0,0) is 88.2497. The sample
mean and sample standard deviation are calculated using the method of Batch means. The result in Table 2
shows that our mixed method performs better than the batch means with relatively small computation
budget, while with large budget, the two methods are about the same.

Table 2: Simulation result with different initial states.

(φ ,0) (Q(0, ·),A1)

n Sample Mean Sample Std Sample Mean Sample Std
1×104 86.1274 1.0104 88.1713 0.6018
5×104 89.0893 0.4587 88.2956 0.3770
1×105 88.5151 0.3531 88.1270 0.2976
5×105 88.3022 0.1481 88.3581 0.1402

4 APPLICATION TO SENSITIVITY ANALYSIS OF INFINITE SERVER QUEUE

In this section, we apply our algorithm to sensitivity analysis of the infinite server queue. We consider a
sequence of systems indexed by (λ ,ν), λ > 0, ν > 0. Given (λ ,ν), the interarrival times are multiplied
by 1/λ , obtaining Xn/λ for all n, and the service times are multiplied by 1/ν , thus we have Vn/ν for all
n. We assume that EVn < ∞ and EXn < ∞. We will use the notation Qλ ,ν (·) to denote the infinite server
queue descriptor for the (λ ,ν)-system. Our strategy rests on the application of Infinitesimal Perturbation
Analysis (IPA), see for instance Glasserman (2003) P. 386. We assume here that the interarrival times have
a continuous distribution.

We illustrate the methodology by computing the sensitivity of the steady-state average remaining service
time, which we denote by Eπ R̄(λ ,ν); namely,

Eπ R̄(λ ,ν) = Eπ

1
Qλ ,ν (0,0)

∫
∞

0
yQλ ,ν (0,dy) .

We also consider
EπR∞(λ ,ν) = Eπ(inf{y≥ 0 : Qλ ,ν (0,y) = 0}),

in words, the steady-state maximum remaining service time. In order to apply IPA we need to define a
few quantities.

First, let us define Ξ̄(λ ,ν) to be the average elapsed service time of the customers that are present at
time zero (given the construction of the stationary process {Qλ ,ν (t, ·) : t ∈ (−∞,∞)}, see Figure 2). That
is,

Ξ̄(λ ,ν) =
1

Qλ ,ν (0,0)

−∞

∑
n=−1

|An|
λ

I
(
|An|
λ

<
Vn

ν

)
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Likewise, define V̄ (λ ,ν) as the average of the total service requirement of the customers that are present
at time zero, namely

V̄ (λ ,ν) =
1

Qλ ,ν (0,0)

−∞

∑
n=−1

Vn

v
I
(
|An|
λ

<
Vn

ν

)
.

Next, we define Ξ(∞) (λ ,ν) as the elapsed service time of the customer with the maximum remaining
service time at time zero and V (∞)(λ ,ν) as his total service time requirement. Specifically, if we let
m = argmax{n : Vn/ν−|An|/λ} then

Ξ
(∞) (λ ,ν) =

|Am|
λ

and V (∞)(λ ,ν) =
Vm

ν

We then obtain the following representation for the derivatives of Eπ R̄(λ ,ν) and EπR∞(λ ,ν) with
respect to λ and ν .
Lemma 5 We have that
i)

∂

∂λ
Eπ R̄(λ ,ν) =

1
λ

Eπ Ξ̄(λ ,ν) and
∂

∂ν
Eπ R̄(λ ,ν) =− 1

ν
EπV̄ (λ ,ν).

ii)
∂

∂λ
EπR∞(λ ,ν) =

1
λ

EπΞ
(∞)(λ ,ν) and

∂

∂ν
EπR∞(λ ,ν) =− 1

ν
EπV (∞)(λ ,ν)]

Proof. We only give a proof of part i) here as the proof of part ii) is entirely analogous.
Let Rn denote the remaining service time of the nth customer at time zero and Vn as his total service time
requirement, then Rn ≤Vn. Thus if EVn < ∞, we have

Eπ R̄(λ ,ν)< ∞

for any λ > 0,ν > 0.
For a fixed sample path ω constructed backward in time, let Rn(λ ,ν ,ω), n < 0, denote the remaining
service time of customer n (counting backward in time) at time 0 in system (λ ,ν). Then Rn(λ ,ν ,ω) =
(Vn(ω)/ν−|An(ω)|/λ )+ and

lim
h→0

Rn(λ +h,ν ,ω)−Rn(λ ,ν ,ω)

h
=
|An(ω)|

λ 2 1{Vn(ω)

ν
≥ |An(ω)|

λ
}

lim
h→0

Rn(λ ,ν +h,ω)−Rn(λ ,ν ,ω)

h
=−Vn(ω)

ν2 1{Vn(ω)

ν
≥ |An(ω)|

λ
}

Thus the derivative ∂

∂λ
R̄(λ ,ν) and ∂

∂ν
R̄(λ ,ν) exists.

Let Ξn denote the elapsed service time of the nth customer at time zeros and define Ξn = Vn if he is no
longer in the system at time zero, then Ξn ≤Vn. Therefore Eπ

∂

∂λ
R̄(λ ,ν)< ∞ and Eπ

∂

∂ν
R̄(λ ,ν)< ∞.

As |(R̄n(λ +h,ν)−R̄n(λ ,ν))/h| ≤maxκλ+h,ν<n<0Vn/λ 2 and |(R̄n(λ ,ν+h)−R̄n(λ ,ν))/h| ≤maxκλ ,ν+h<n<0Vn/ν2,
by Lebesgue Dominated Convergence Theorem, we have

∂

∂λ
Eπ R̄(λ ,ν) = Eπ

∂

∂λ
R̄(λ ,ν) and

∂

∂ν
Eπ R̄(λ ,ν) = Eπ

∂

∂ν
R̄(λ ,ν)

As the interarrival times have a continuous distribution, P(Vn/ν = |An|/λ ) = 0 for n < 0.
Combining the change of limit and the sample path analysis we have

∂

∂λ
Eπ R̄(λ ,ν) =

1
λ

Eπ Ξ̄(λ ,ν) and
∂

∂ν
Eπ R̄(λ ,ν) =− 1

ν
EπV̄ (λ ,ν)



Blanchet and Dong

Table 3 shows the simulated results of an infinite server queue with base (i.e. λ = 1) interarrival times
distributed as Gamma(2,2) and base (i.e. ν = 1) service times distributed as Lognormal(−0.25,0.5).

Table 3: Simulation result from exact sampling.

(λ ,ν) ∂

∂λ
Eπ R̄(λ ,ν) ∂

∂ν
Eπ R̄(λ ,ν) ∂

∂λ
EπR∞(λ ,ν) ∂

∂ν
EπR∞(λ ,ν)

(80,1) 7.0741×10−3 −1.1320 6.1022×10−3 −2.8389
(100,1) 5.6470×10−3 −1.1316 4.9379×10−3 −2.9495
(120,1) 4.7236×10−3 −1.1337 4.2337×10−3 −3.0684
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