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ABSTRACT 

Simulation output clearly depends on the form of the input distributions used to drive the model. Often 
these input distributions are fitted using finite samples of real-world data. The finiteness of the samples 
introduces errors in the input distributions, affecting the output. Yet this propagation of input model un-
certainty to output uncertainty is rarely considered in simulation output analysis. This tutorial presents a 
discussion of input uncertainty issues and recently developed methodological approaches, set in the con-
text of input uncertainty methods proposed over the past twenty years. 
 

1 INTRODUCTION 

Discrete event simulation is a powerful tool for gaining insight on the operational behavior of real sys-
tems, from call centers to manufacturing lines, from hospitals to ports. The great advantage of simulation 
is the ability to analyze complex systems using models constructed to capture critical aspects of system 
behavior with high fidelity. 

How is fidelity characterized? Validation of the simulation against actual system behavior is often too 
costly or practically impossible. Given sufficient resources to conduct a validation, the usual approach 
would result in failure, as will be seen in an example in a later section. 

Generally, when we characterize departures in the behavior of a simulation model from the real sys-
tem, they fall in two classes: fidelity loss coming from the use of incorrect ‘input models’ to drive the 
simulation, and fidelity loss coming from failure of the execution logic of the simulation to match the log-
ic (or lack thereof) of the real-world system.  Input models are the probability distributions, univariate or 
multivariate, used to drive the simulation. These models provide a way to generate random instances of 
key model elements: entity interarrival times; service times for different resources; breakdown times for 
resources; routing probabilities for entities; and other entity characteristics such as weight, value, or quan-
tity. Real-world data is important to achieve fidelity in both classes. Sargent (2011) notes: “To build a 
conceptual model we must have sufficient data on the problem entity to develop theories that can be used 
to build the model, to develop mathematical and logical relationships for use in the model that will allow 
the model to adequately represent the problem entity for its intended purpose, and to test the model’s un-
derlying assumptions.”  This advanced tutorial explains ways to characterize the impact on simulation 
output arising from input model errors. Sargent further describes the need for “data that are appropriate, 
accurate, and sufficient.” But sufficiency connotes a yes/no value relative to the intended purpose of the 
simulation. It is possible to provide more quantitative characterizations of this source of fidelity loss, 
which is the value of this tutorial. 

Unfortunately, as is often the case with academic pursuits, the research results summarized in this tu-
torial address a narrower problem. Only errors arising from the finiteness of samples of real-world data 
are considered. That means we will assume that either we know the correct probability distribution family 
(or small set of families) for the input probability model, or we use empirical distributions to drive the 
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simulation. For example, we will be able to say something about the error in output introduced from using 

a finite set of data to fit the arrival rate λ for an interarrival time distribution that is known to be exponen-
tial.  

While this may seem a narrow pursuit, we will see that in very reasonable scenarios simulation output 
analysis can give characterizations quite different from the true system when this error is not considered. 
This makes the understanding of input model errors due to finite samples a worthwhile study, in spite of 
Schruben’s “five dastardly Ds” of data (Barton et al. 2002). In the sections below this tutorial will explain 
the nature and seriousness of the problem, then summarize early approaches, now twenty years old, to 
characterize this source of error. The tutorial then will present recent work in this area, relate some recent 
research in discrete-event simulation to efforts for deterministic models, and in the final section identify 
the difficulties that remain with current approaches. 

2 UNDERSTANDING INPUT MODEL UNCERTAINTY 

2.1 Input Models 

Discrete event simulations model stochastic behavior by specifying probabilities or probability distribu-
tions for random variables used in the model. These random variables affect the dynamic behavior of the 
model. They might include interarrival times, service times, times between machine maintenance or fail-
ures, travel times, route choice, defect probability, and so forth. Often these probabilities or distributions 
are estimated from samples of real-world data. The methods that are reviewed in this tutorial can be used 
for any such estimated probabilities, but for simplicity the focus will be on the probability models used to 
describe queues. 

2.2 An Example of Input Model Uncertainty 

Consider a simulation model of a capacitated queue where (surprisingly) we know that both the interarri-
val times and the service times follow exponential distributions. This M/M/1/k setting allows an easy il-
lustration of the impact of input model error caused by fitting models to finite sets of real-world data. 
Suppose that the true system has capacity k = 20, with interarrival times that are exponentially distributed 
with mean 1/λ = 1.25 minutes, and that service times are exponentially distributed with mean τ = 1 mi-
nute. In this case the true steady-state mean number of customers in the system can be computed using 
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and substituting τ = 1 and λ = .8 to give L ≈ 3.805. In this illustrative example, assume that (1) is not 
known, and that the objective of the simulation model is to estimate L and give an associated confidence 
interval. Here we let Yj be the sample average of L that is output by the simulation for the jth replication, 
and assume that we have m such output replications. Then we can write 
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where j indexes the simulation replication. The simulation uses estimates λ' and τ ', which can be thought 
of as observations of the random variables Λ and Τ, estimators of λ and τ. 

Any simulation run will be of finite length, and the average number of customers in the system over 
that finite run (or set of runs) will vary randomly from the quantity prescribed by (1) because of the fi-

niteness of the simulation effort. Call this intrinsic error, which is represented by ε in (2). Since the simu-
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lation is run using λ' and τ ', the resulting estimate for L will not be 3.805, generally, even if intrinsic error 

is near zero. Call this second source of error extrinsic error.  It is L(λ', τ ') – L(λ, τ).  
How large might extrinsic error be for this example? Assume for the moment that the simulation is 

run long enough so that the intrinsic error is near zero; that is, the average number of customers in the 
system over the duration of the simulation (or set of simulation replications) is well-approximated by (1). 
Further assume (to simplify notation) that we have the same sample size for each real-world data set used 

to estimate each input parameter. Specifically in this case, suppose that we estimate 1/λ using n = 500 
samples of real-world interarrival times, and τ using n = 500 samples of service times. Because these 
sample sizes are not infinite, the estimates 1/λ' and τ ' will have some random error. Consider r = 1000 
repeated experiments consisting of collecting 500 interarrival and service times, estimating values iλ′  and

iτ ′ , i = 1, 2, …, 1000, and running the simulation long enough to yield a value given by (1) for each set of 

arguments iλ′ and iτ ′ . Figure 1 gives the histogram of iY , each an estimate of L, over 1000 such experi-

ments. The range of L estimates is quite large. No matter how much simulation effort is put into the runs 
to improve the fidelity of the estimate to (1), this error about the true value 3.805 will remain. 
 

 

Figure 1: Variation in simulation output for L for an M/M/1/20 queue over a set of 1000 experiments, us-
ing different samples of size n = 500 (to estimate mean interarrival time and mean service time) for each 
experiment.  

Shifting the L axis so that 3.805 becomes zero would yield a histogram approximately centered about 
zero, and would give a good approximation to the probability distribution of extrinsic error for the case of 
finite samples of size 500 for this model (where the input distribution families are assumed known). Of 
course, in practice only one of these experiments would be conducted, so one would not know the distri-
bution of extrinsic error. It seems clear that this error should be included in the characterization of simula-
tion output uncertainty, at least for this case. There is a greater than 25% chance that the one experiment 
of these 1000 that would be conducted would produce an estimate for average number in the system with 
error greater than 25%, – either less than 2.8 or greater than 4.8. The problem is that the usual confidence 
intervals for simulation only capture the error in the simulation output’s approximation of (1) conditioned 

on the fitted values of λ' and τ ', but do not capture the uncertainty in output from the errors in the input 
distributions, in this case arising from λ' ≠ λ and τ ' ≠ τ . 

2.3 A Problem of General Concern but Little Commercial Action 

The example above illustrates the significant risk associated with ignoring input model uncertainty, even 
when relatively large input sample sizes are used to fit parameters for known distribution families. The 
situation is not unique to this example, and has been illustrated in different settings by many researchers 
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over the past twenty years. Yet simulation software vendors have yet to implement analysis routines that 
take this error into account. As you will see in the sections below, methods that take this error into ac-
count can be complicated, computationally intensive, and overly conservative. So, at least until very re-
cently, vendors had reason to be reluctant to address this issue. 

3 THE FIRST TEN YEARS 

3.1 Basic Approaches 

In discussions during the 1992 Winter Simulation Conference, Lee Schruben introduced the concept of 
input model uncertainty, and proposed a method for capturing it. The idea was closely related to bootstrap 
resampling, and was further developed in Barton and Schruben (1993). There was a great deal of work on 
this topic by many researchers over the next ten years.  A panel on input modeling at the 2002 Winter 
Simulation Conference provides a nice summary of many of basic approaches (Barton et al 2002). The 
strategies fall into four general categories: direct resampling, bootstrap resampling, methods based on 
Bayesian Model Average concepts, and approximations based on Taylor’s theorem. 
  

3.2 Direct Resampling 

One might imagine conducting a process like the one used to construct Figure 1. Barton and Schruben 
(1993) called this true resampling but they used the interarrival and service times that were sampled 
(from exponential distributions) directly to form empirical distributions. The experiment would consist of 
r outer replications of m inner simulation replications each, with each outer replication using different fit-
ted values from different real-world samples, each of size n. This paper did not compute confidence inter-
vals for output parameters, but did suggest using a mixed effects Analysis of Variance to determine 
whether extrinsic variance was important (this implies m > 1 for the inner replications). This check was 
further developed in Freimer and Schruben (2002). 

The usual t-based confidence intervals are not appropriate in this setting. First, the extrinsic variabil-
ity will not generally follow a normal distribution, as can be seen from the skewness in Figure 1 (where 
there is no intrinsic variance). This skewness is more apparent in Figure 2 of Barton and Schruben (2001) 
for a capacitated queue with k = 10 and n = 10. Further, since we are trying to characterize the level of 
uncertainty in output coming from finite real-world samples of size n, t-based confidence intervals 
(though robust to some non-normality) are inappropriate, since the uncertainty will decrease to zero as r 
increases, even for fixed n. If intrinsic error is near zero, confidence intervals for L could be based on per-

centiles of the iY  output values (i = 1, 2, …, r).  

Confidence intervals based on direct resampling are problematic for three reasons.  First, the impact 

of intrinsic error on the estimate of L reduces as 1/ rm (not just 1/ m ), so confidence intervals based on 

percentiles of the r output values can significantly over-cover if there is significant intrinsic error. Second, 
the analysis requires rm simulation runs, compared with m in an analysis that ignores input model uncer-
tainty. Third, it is very expensive and wasteful of real-world data to characterize uncertainty about L due 
to the finiteness (at level n) of real-world data. It is wasteful because we use rn units of data to character-
ize an estimate based on n units of data. Each outer replication uses only 1/r of the real-world data availa-
ble to the simulationist. More precise results could be obtained by using all rn values to fit the input mod-
els (with reduced error because the finiteness of real-world data would be at level rn). 

Methods for finding the distribution of a conditional expectation (Glynn 1986) fall in this direct 
resampling category. The connection was recognized by Steckley and Henderson (2003), who proposed a 
kernel method to estimate the conditional density. They built on the work by Lee and Glynn (1999, 2003) 
who proposed a method to estimate the distribution function (using the usual percentile estimator – even 
though Lee and Glynn later decompose extrinsic and intrinsic error to find optimal allocation of data col-
lection vs. simulation effort). Examples typically assume that new samples can be generated via computa-



Barton 
 

tion, and that resampling vs. simulation costs are known. A common objective is to find values r and m 
that minimize the MSE of the conditional expectation, subject to a fixed computational budget c1r + c2rm 
= C. The work on distribution of conditional expectations has focused on the asymptotic behavior of the 
estimates under conditions that have both r and m grow to infinity. The first problem associated with di-
rect resampling does not apply in the limit, but would apply in practice. In particular, if the simulation ef-
fort were small, resulting in significant intrinsic error, the resulting empirical cumulative distribution 
functions or kernel-smoothed densities would have inflated variance (and generate overly conservative 
confidence intervals). The latter two problems remain. 

3.3 (Direct) Bootstrap Resampling 

Direct resampling (and related conditional expectation) methods enable characterization of error due to 
input models fitted with finite real-world data, subject to the three problems mentioned above.  Boot-
strapping is a statistical method that was developed specifically for data reuse to estimate the distribution 
of a statistic of interest (Efron and Tibshirani 1986). The direct bootstrap resampling method is the same 
as for direct resampling, except that the r resamples of size n are obtained from the (single) real-world 
sample by resampling from it with replacement (r is often called B in the bootstrap setting). This means 
that in a bootstrap resample some real-world values will be sampled twice, three times, etc., while others 
will not be included. The bootstrap resampled input data can be used directly if the simulation is driven 
by empirical distributions as in Barton and Schruben (1993, 2001) or it can be used to estimate input 

model parameters such as λ and τ for our example (e.g., Cheng 1995). Note that the implementations in 
Barton and Schruben (1993, 2001) used m = 1. 
 Instead of bootstrap resampling the original data, the empirical weights (normally 1/n) on each origi-
nal data sample can be changed randomly, as Lee Schruben suggested in 1992, using the result that FX(X) 
~ U(0,1). The ordinates of the empirical cumulative distribution function at each of the original samples 
can be resampled using n (sorted) values from the U(0,1) distribution. This method was called uniform 
resampling in Barton and Schruben (1993), and is an implementation of the Bayesian bootstrap method of 
Rubin (1981). Uniform resampling is particularly appropriate if the resampled empirical distribution will 
be used directly in the simulation, but the uniform resampled empirical distribution can also be used to 
compute distribution parameter estimates.  

While bootstrapping uses data economically, both of the other problems associated with direct 
resampling remain: the inflation of the intervals by intrinsic variance, and the need to conduct rm simula-
tion runs. The inflation of intervals by intrinsic variance did not have a noticeable impact on coverage 
probability in Barton and Schruben (2001). Barton et al. (2002) showed that small simulation effort pro-
ducing large intrinsic variability could result in overcoverage for the bootstrap confidence interval. Barton 
(2007) showed that with m > 1 one could compare the standard deviation of within-resample replications 
to the width of the percentile-based confidence interval to determine whether intrinsic variance would be 
likely to cause significant overcoverage. 

There is an additional theoretical shortcoming in the application of the bootstrap when the computed 
statistic is the output of simulation. The asymptotic correctness of coverage for the bootstrap requires that 
the computed statistic be a smooth function of the (resampled input) data. Since the simulation output can 
be thought of as stochastic, this condition is violated. Again, if intrinsic variance is small, the impact on 
coverage is not significant. Interestingly, this condition is violated whenever the bootstrap method is car-
ried out using a digital computer, but this has not seemed to bother statisticians. 

3.4 Bayesian Model Average (BMA) Approaches 

Chick (1997, 1999, 2000, 2001) employed a Bayesian Model Average strategy to characterize uncer-
tainty in simulation output based on uncertainty about both distribution family as well as distribution pa-
rameter values. For an overview of Bayesian Model Averaging, see Hoeting et al. (1999) and the BMA 
references therein, dating back to 1978.  See also Cheng (1998). The BMA approach assumes that the real 
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world data is generated by one of a known set of parametric distribution families: which family may not 
be known, and the precise values of the parameters identifying a specific member of the family are as-
sumed unknown. In BMA extrinsic error is referred to as structural uncertainty (consisting of model un-
certainty and parameter uncertainty) and intrinsic error is stochastic uncertainty.  

The BMA approach randomly samples input distributions and parameters before each simulation rep-
lication (much like parametric bootstrapping), using a Bayesian posterior distribution for input distribu-
tions and parameters, given historical data and priors on distribution families and on parameter values. 
The slow adoption of this approach (since 1978) is because the Bayesian posterior can be complex to cal-
culate, depending on the form of the prior distributions. When both input model uncertainty and model 
parameter uncertainty are considered, the process is complicated. Suppose that there are Q input models, 
q = 1, 2, …, Q and Cq choices for input model form for the qth input. If the Bayesian posterior distribution 
on input model forms exhibits independence across input models, the BMA process is straightforward to 
implement: sample from the posterior distribution of model forms independently for each input model, 
then sample from the chosen form’s model parameter values according to the parameter posterior distri-
bution. Even if the input distributions are themselves independent, there may be dependence in the Bayes-
ian probabilities of correct model form (e.g. all inputs are either lognormal or exponential). In such a case 
one may have to consider all possible combinations of models, each combination with its own posterior 
probability. That could require estimation of  Π Cq posterior probabilities. An input ‘instance’ for simula-
tion must be randomly drawn from all such possible combinations of model forms for each input model, 
using the computed posteriors. 

Zouaoui and Wilson (2004) presented an alternative BMA approach requiring simulation of all Π Cq 
model combinations, each a sufficient number of times to characterize parameter uncertainty. In their ex-
ample they resampled parameter values 100 times for each model. Simulating all model combinations can 
be a distinct disadvantage if there are many input variables, each with many possible distribution families, 
but there is a silver lining to this cloud: their approach does not require model resampling. Instead, the re-
sults of simulation runs (averaged over parameter resamples and simulation replications within these) for 
each model combination are combined in a weighted average, where the weights are the Bayesian poste-
rior values. This approach has an important advantage: an analysis can be augmented to consider addi-
tional candidate input model forms while making full use of the existing simulation runs. Only runs for 
model combinations that include additional model forms must be computed. The sums will use existing 
and new run results, weighted using the new model form posterior distribution. 

Like Chick’s method and all other methods that use percentiles of simulation output to establish con-
fidence intervals, Zouaoui and Wilson (2004) used percentile intervals in their computational example, 
which showed good results. With simulation runs lengths corresponding to 200,000 customers, intrinsic 
error was negligible compared with extrinsic error, so this result is not surprising. One can observe per-
haps minor overcoverage (93% vs. 90%) in Table 2 of Zouaoui and Wilson (2003), for the input sample 
size = 50,000 case, where extrinsic uncertainty was small relative to intrinsic uncertainty.  Since only 200 
macroreplications were performed, the 93% must be interpreted as 93% +/- 4% for 95% confidence.  
Zouaoui and Wilson (2004) also proposed a confidence interval procedure based on the t distribution and 
a variance approximation based on Satterthwaite’s (1941) formula. Their approach appropriately decom-
poses the extrinsic and intrinsic error components. Unfortunately, as described earlier, with fixed real-
world data size it is quite possible to have a highly skewed distribution for extrinsic error - and there is no 
Central Limit Theorem effect that will make a t-based interval appropriate in that case. While this interval 
was not used for the 2004 paper, it was used in an example in Zouaoui and Wilson (2001), with estimated 
coverage for a 90% interval ranging from 75% - 82%. The example was the same as that in the 2003 pa-
per, but with much smaller real-world data set: a sample size of 1,000 instead of 50,000, with consequent 
larger extrinsic uncertainty. 

Assuming that real-world processes generate interarrival or service times that follow some known 
parametric distribution is often unrealistic, but it is important to remember that the usual performance 
measures for many queueing systems depend at least approximately on only the first two moments of the 
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input distributions. In many cases, getting the distribution wrong does not have a significant effect on 
mean system characteristics. For example see Smith (2003) and Whitt (2004), which give two-moment 
approximate results for some M/G/c/K and G/G/1/K systems. Further, the BMA approach can capture 
mixture distributions through the posterior on different model types. Lindsay, Pilla and Basak (2000) 
show that mixtures can provide higher moment-matching ability in fitting distributions. In an example 
cited in Zouaoui and Wilson (2004), of the 98% of variance due to extrinsic error, 80% was parameter er-
ror and only 18% was attributed to error from using the wrong probability model.  

3.5 Approximations Based on Taylor’s Theorem 

In the final section of his WSC State of the Art Review of input modeling in 1994, Russell Cheng identi-
fied a means to separate intrinsic and extrinsic error (Cheng 1994). He characterized extrinsic error 
through a Taylor approximation, which for our example gives: 
 

 mVggYVar /')),(( 2στλ +≈
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where g = (∂L/∂λ, ∂L/∂τ)' and V is the variance-covariance matrix of the random variable vector (Λ, Τ)'. 
The elements of g were estimated by finite differences from simulation runs using common random num-

bers. This approximation separates the extrinsic error (which decreases as a function of n/1 ) from the 

intrinsic error (which decreases as a function of m/1 ). Cheng (1994) briefly suggested basing confi-

dence intervals for L on this relation, presumably assuming Gaussian distributions for Λ, Τ. The details 
were presented in Cheng and Holland (1997). The δ-method strategy is superior for small numbers of in-
put distribution parameters, large sample sizes, and system operating conditions where errors in the first-

order Taylor approximation will be small. Cheng and Holland (1998) recognized that the δ-method ap-
proach could be impractical for many estimated input parameters, and proposed two δ/two-point estima-
tion methods requiring only two simulation runs to compute an approximation to (3). The first finds a fi-

nite difference approximation using directions corresponding to the product ,ˆˆgV scaled to a vector (γ1, γ2)' 

in a way that produces for our example: 
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Cheng and Holland find that spending half the computational budget to estimate ĝ  and half to compute 

the estimate in (4) produces good interval size and coverage in a number of settings. A second approxima-

tion that does not require ĝ  is possible if the signs of the components of g are known. In that case set 

.ˆ
,iii V=γ  Evaluation of the performance of the simplified δ/two-point method indicated that it is less ro-

bust. The performance comparisons were expanded to include a parametric bootstrap approach in Cheng 
and Holland (2004). 

4 STATE OF THE ART 

The study of output analysis methods that capture input model uncertainty has continued over the past ten 
years, though perhaps with less intensity. New results have been published in the streams of direct 
resampling and Bayesian Model Averaging. In addition, a promising new method has been developed, 
based on a recently developed stochastic Kriging metamodeling approach and with common features of 

both the δ-method and bootstrap strategies. 
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4.1 Direct Resampling: Distributions of Conditional Expectations 

Work has continued to find more efficient ways to characterize conditional expectations. For example, 
Sun, Apley, and Staum (2011) have proposed a new ANOVA-like estimator of the variance of the condi-
tional expectation. The optimal number of inner-samples (m) for their approach remains bounded as the 
computation effort grows. This simplifies algorithms used to compute such variances, which are im-
portant in financial modeling and other applications. 

4.2  Bayesian Model Averaging: the Multivariate Case 

While BMA approaches over the first ten years addressed multiple input variables, the simplifying as-
sumption was that these inputs were statistically independent. For many important real-world processes 
this is not the case. 

Biller and Corlu (2011) extended the BMA approach to correlated inputs that could be modeled using 
the normal-to-anything strategy (NORTA, Cario and Nelson 1997).  This strategy allows arbitrary contin-
uous marginal distributions with specified correlations. The uncertainty includes uncertainty for the corre-
lation parameters based on a correlation matrix fitted to a finite set of real-world data. Biller and Corlu 
produced a practical BMA strategy by combining marginal representations using the Johnson (1949) 
translation system, Sklar’s (1959) marginal-copula representation and Cooke’s (1997) copula-vine speci-
fication for sampling the parameters of the NORTA distribution. The process for estimating confidence 
intervals was z-based, and coverages were from 6% to 17% below the nominal 95% level, deteriorating as 
the intrinsic error is reduced (through longer simulation runs). 

4.3 Metamodel-Assisted Bootstrapping 

When the simulation response over the range of parameter uncertainty can be captured by a first order 
Taylor approximation, as in the work by Cheng and co-authors, one might think of this approach as re-
placing the simulation runs with a (linear) metamodel. For this metamodel (given Gaussian distributions 
for input parameter uncertainty), the output distribution characterization can be performed analytically. If 
the response over the range of parameter uncertainty is significantly nonlinear, more complex metamodels 
might be employed. Barton et al. (1999) used a radial basis function metamodel to propagate uncertainty 
in product design parameter values to uncertainty in product acceptance by consumers, (or vice versa). 
This work was focused on deterministic engineering analysis models, and does not have direct applicabil-
ity for stochastic simulation models. 

The stochastic Kriging framework of Ankenman, Nelson and Staum (2010) provides a flexible and 
well characterized metamodel framework for stochastic simulation. For this metamodel class, computing 
output distribution characteristics from input model uncertainty characterization analytically is challeng-
ing. Instead, one can estimate the distribution of the output by bootstrapping the input data, and using the 
parameter estimates as arguments for the metamodel. Barton, Nelson and Xie (2010) called this approach 
metamodel-assisted bootstrapping, and used it in the context of known parametric distributions with un-
known parameter values. It has three distinct advantages over direct bootstrapping. First, the function that 
is evaluated for each bootstrap resample is the metamodel so (with the caveat in the next paragraph) boot-
strap evaluation does not require computationally expensive simulations. Second, while the stochastic 
Kriging model allows separate characterization of extrinsic and intrinsic variation, the modeling itself re-
duces the effect of intrinsic error as a component of the metamodel response variation, so overcoverage 
risk is greatly reduced. Tables 1 and 2 in Barton, Nelson and Xie (2010) show this advantage compared 
with direct bootstrap and BMA approaches in limited-data settings. Third, the metamodel, unlike the sim-
ulation, is a smooth function of the input resample, thus satisfying the conditions for asymptotic validity 
of the bootstrap. 

This method for input uncertainty characterization has an added stage: before bootstrapping, a set of 
simulation experimental runs are conducted to fit a metamodel of simulation output as a function of simu-
lation input parameter values. While metamodel-assisted bootstrapping eliminates the rm simulation ef-
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fort, it adds an rDOEm simulation effort needed to fit the stochastic Kriging model with high fidelity. When 
the number of input model parameters is not too large, one would expect rDOEm << rm. When the number 
of input parameters is large, not only would the simulation effort become impractically large; the current 
technology would not permit fitting stochastic Kriging models with more than a few tens of parameters. 

This metamodel-assisted approach could be incorporated into a BMA approach with similar ad-
vantages. In fact, this has been done in the deterministic setting by a number of authors; see for example 
Kennedy and O’Hagan (2001) and Oakley (2004). 

5 REMAINING DIFFICULTIES 

Figure 2 shows the overall structure of the major approaches covered in this tutorial: direct bootstrap 

resampling (direct resampling is similar), BMA, δ-method and metamodel-assisted bootstrapping. Each of 
these approaches provide insight for a previously ignored aspect of model fidelity: input model uncertain-
ty. The first two methods require extensive simulation experiments – a factor of r greater than the naive 
analysis, with r ranging from hundreds to thousands. The latter two methods require simulation runs only 

to fit a metamodel, either first order linear models for the δ-method or more extensive space-filling de-
signs for the metamodel-assisted bootstrap method. Large numbers of input parameters can put these lat-
ter two methods at a disadvantage in terms of simulation effort. Only the first method has been applied in 
a in a nonparametric context in which empirical distributions directly drive the simulation. 

 

 

Figure 2. High-level schematic representation of major input uncertainty methods. 

Table 1 summarizes the disadvantages for each of the four major approaches. Overall, the direct and 
BMA approaches avoid issues with metamodel fitting and fidelity, but require extensive computational 
effort, when compared with the δ-method and metamodel-assisted bootstrap with a small number of pa-

rameters. While all but the direct resampling method involve complex computations, the δ -method and 
metamodel-assisted bootstrap can have these calculations performed in a ‘black box’ way, so they may 
still be practical for vendor-provided solutions. 
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based on empirical MM 

output distribution

determine par 
and model 
posteriors
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Table 1. Methods for input model uncertainty characterization and their shortcomings. 

 

Problem   \   Method 
Direct 

Bootstrap 
BMA δ -Method 

MM Boot-
strap 

Requires rm simulations X X   
Requires rDOEm simulations   X (or not) X 

Requires metamodel (or Taylor) fidelity   X x 
Potential overcoverage - intrinsic X X   

Potential undercoverage - t  x X  

Procedurally complex  X x x 
Violates asymptotic requirements x    

 
 
A small ‘x’ indicates a problem that is practically small or only occurs for some variants in the literature. 
From the table, the most promising methods appear to be BMA when intrinsic error is small and percen-
tile intervals are used. When there are relatively few input parameters, the metamodel-assisted bootstrap 
method is efficient and has robust performance with either small or large intrinsic and/or extrinsic error. 
For nonparametric applications, the direct bootstrap method has promise, but potential overcoverage must 
be checked. 
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