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ABSTRACT

For optimizing a semiconductor fab we are aiming to match the production capabilities and capacities with
the demand in the most profitable way. In this paper we address a linear programming model of the product
mix problem considering product dependent demand limits (obligations and demand forecast) and profits
while respecting the capacity bounds of the production facility. Since the capacity consumption is highly
depended on choosing from different production alternatives we are implicitly solving a static capacity
planning problem for each product mix. This kind of planning approach is supported by the fluid flow
concept of complete resource pooling in high traffic. We propose a general model that considers a wide
range of objectives and we introduce a decomposition heuristic. The computational study of the approaches
is based on real world data and on randomly generated instances.

1 INTRODUCTION

In this paper we are considering a fab with certain capabilities and capacities (technology and scale of
the machinery) and we have to decide on the product mix to maximize the profit. Certainly, we are not
free to produce any product at any amount, instead for some products we have certain obligations that are
constraining our decisions. Consequently we consider lower and upper demand limits for each product and
the capacity limits of the production facility. We assume that the profit arising from each product is linear
in the number of produced units, and given the stationary case we formulate a linear program to model
the optimal product mix problem. In this fist step we do not consider uncertain demand but we indicate
that stochastic programming and sensitivity analyses are apparent ways to deal with random demand. For
robust planning approaches we refer to (Hood, Bermon, and Barahona 2003; Barahona, Bermon, Gunluk,
and Hood 2005). Here, the objective is demand satisfaction and minimization of the number of used tools.
In (Habla and Mönch 2008) you can find a minimum cost formulation that considers noisy demand.

The paper is organized as follows. In Section 2 we discuss the related literature. Also, we introduce
the basic concepts of load balancing, connected components and resource pools. In Section 3 we define
a (global) linear program for the optimal product mix problem. In addition, we discuss an extension of
this model. In Section 4 we propose a decomposition approach for the (global) product mix problem by
iteratively solving small-sized linear sub problems. We evaluate both methods considering a set of randomly
generated instances. For this, we describe a benchmark scheme in Section 5. Finally, we present the results
of our computational experiments in Section 6.
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2 LOAD BALANCING, CONNECTED COMPONENTS AND RESSOURCE POOLS

In this section we will briefly introduce the notions of the static capacity problem and the concept of load
balancing and resource pooling. For more details on capacity planning in semiconductor industry we refer
to (Bermon and Hood 1999; Geng and Jiang 2009). For the theoretic concept of resource pooling in high
traffic we refer to (Gold 2004; Harrison and Lopez 1999; Harrison and Williams 2007). We begin with an
explanation of Figure 1 which displays a simple linear capacity planning problem. The static planning pro-
cess starts with the demand of three products which are identified by the routes routeI , routeII and routeIII .
The primary demand or the arrival rate is a input of the problem, in this example the rate is given in lot starts
per week. Each route consists of a sequence of processing steps or simply jobs. Some of these jobs are very
similar because they have the same pattern of capacity consumption regarding the resources (e.g. tools).
For instance it is not always necessary to reflect all different products and jobs, because some routes will
have the same (or very similar) specifications for some of the processes. So, by combining these jobs into so
called job classes we are downsizing the capacity planning problem. Each job class j has a demand λ j which
needs to be satisfied by allocating the demand to the resources or service stations (i ∈ I). In the example we
can see, that the going rate λ j has the same dimension like the primary demand. To satisfy the demand we
need to distribute the demand λ j to the resources in a feasible way. I.e. the variable x ji holds the number of
units of job class j that are allocated to resource i. Each ‘activity’ x ji has a corresponding service rate of µ ji
units per time unit (e.g. lots per hour). The depicted solution x is feasible but it doesn’t seem to be a very
good choice. For example, if the objective is to minimize the maximum load we can observe that we can get
a more balanced solution (compared to the depicted one) if we shift some lots from resource a to resource b.
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Figure 1: Capacity planning – given a certain demand of lots we have to assign the resulting job classes
to the resources which thereby results in a corresponding utilization profile.
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If we want to avoid bottlenecks we may minimize the maximum load as an intuitive objective. We
will now formalize this problem in this way:

minρ (1)

s.t. ∑
i∈I

x ji = λ j (∀ j ∈ J), (2)

∑
j∈J∧µ ji>0

x ji

µ ji
≤ ρ (∀i ∈ I), (3)

x≥ 0. (4)

If x ji is the number of units of job class j assigned to resource i, then the set of constraints (2) guarantees
the flow balance. Since µ ji is the given service rate we also know that 1

µ ji
is the time needed to service one

unit from job class j on resource i. If µ ji = 0 then this activity is not part of the model. The constraints
(3) are therefore limiting the capacity with ρ as an upper bound. The variable ρ is minimized and in total,
the maximum load is minimized. By transforming the variables x̃ ji←

x ji
µ ji

(which can be interpreted as the
time invested in the activity x ji) we get the following equivalent linear program, that highlights the queuing
aspect:

minρ (5)

s.t. ∑
i∈I

x̃ jiµ ji = λ j (∀ j ∈ J), (6)

∑
j∈J

x̃ ji ≤ ρ (∀i ∈ I), (7)

x̃≥ 0. (8)

Solving the example in Figure 1 with a simplex-based method we get the following solution x = (20,0,10,20,
10,80,60,0,40) with respect to the following activities {(1,a), (2,a), (1,b), (3,b), (5,b), (2,c), (4,d),
(5,d), (6,d)}. We observe that the utilization profile is u = (100,150,160,160). We have to emphasize
that this kind of objective does not cover all practical needs and therefore we can find several kinds and
combinations of objectives in the literature. One of these considerations is that we may also be interested
in minimizing the number of resources with maximum load. One approach to tackle this problem is based
on convex quadratic programming (Gold, H. 2008). The concept also divides the resources into disjoint
‘resource pools’ with a homogeneous load distribution that minimizes the maximum load on each level in
a hierarchical cascaded way. Using this method, we find the following solution x and the corresponding
utilization profile u: x = (23,7.5,7,20,10,72.5,60,0,40), u = (145,138,145,160). We can see that for
this solution there is only one resource (d) with maximum load, while the resources {a,c} are balanced and
the resource {b} is on the lowest level. Therefore we get three resource pools. To introduce the concept
of connected components we define that two resources are connected if there exists a common job class,
which they are both able to service. Therefore a connected component contains resources that are directly
or indirectly linked by job classes. We will synonymously use the the term ‘closed machine set’ (or cms)
for connected components. In practice it is very unlikely that all resources are connected therefore it is
possible to decompose the problem in disjoint problems. In case that the objective is also separable we
can considerably reduce the complexity of the problem.
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3 PROBLEM STATEMENT AND MODEL

In Section 2 we considered the problem of distributing the load optimally while the primary demand
(product mix) was a input parameter. In this section the quantity of the products and the load distributions
are part of the decision variables and we will formulate the corresponding product mix problem, and finally
we will propose some possible extension of the model. First we introduce some indices, variables and
parameters:

• indices
– product index p,
– job class index j,
– resource index i,
– activity index k (a feasible combination of job class j and resource i),

• variables
– product mix y = (yp),
– number of steps for an activity x = (xk),

• input parameters
– technology matrix D = (d jp),
– capability matrix A = (a jk),
– service time matrix R = (rik), for µk > 0 we set rik =

1
µk

.
– profit c = (cp),
– demand limits ∆− and ∆+

– maximum capacity ρmax = (ρmaxi).

In analogy to the formulation in (Hager and Spannraft 2009) we present a simple version of the optimal
product mix problem:

maxcT y (9)

Ax = Dy, (10)

Rx≤ ρmax, (11)

x≥ 0, (12)

∆
− ≤ y≤ ∆

+. (13)

For modeling additional capacity (e.g. investment or silicon foundries) and the aspect of soft bottlenecks
we propose to add the following variables and parameters to the problem (9)-(13):

• additional variables
– ρ1

+ the consumed amount of the bottleneck capacity on equipment i (makes i a soft bottleneck),
– ρ2

+ the amount of additional capacity of equipment i (invest and out-sourcing),
• additional input parameters

– g = (gi) cost for one additional capacity unit,
– h = (hi) bottleneck budget consumption for one additional unit of resource i,
– I1 available bottleneck budget,
– I2 available budget for additional capacity,
– R1

+ = (R1
+
i ) maximum available bottleneck capacity of type i (soft bottleneck capacity),

– R2
+ = (R2

+
i ) maximum available additional capacity of type i.

This leads us to the following (extended) model:
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maxcT y+gT
ρ2

+ (14)

Ax = Dy, (15)

Rx≤ ρmax +ρ1
++ρ2

+, (16)

hT
ρ1

+ ≤ I1, (17)

gT
ρ2

+ ≤ I2, (18)

ρ
+
1 ≤ R1

+, (19)

ρ
+
2 ≤ R2

+, (20)

x,y,ρ+
1 ,ρ+

2 ≥ 0, (21)

∆
− ≤ y≤ ∆

+. (22)

Remark 1 In practice we may choose the vector ρmax in such a way that if the corresponding limit is
reached we still won’t expect to see cycle time deviations on the corresponding tools. For allowing ‘soft’
bottlenecks we have to choose h, R1

+ accordingly. E.g. by setting R1
+ = 0.05ρmax, hT = 1

ρT
max

and I+ = N
we allow to add 5% to the maximum capacity using the bottleneck capacity and in total not more than the
equivalent of N resource units. In this example we suppose that a 5% increase will not result in a cycle
time deviation if appropriate bottleneck management measures are taken into account. We also remark
that in this formulation we have a limit on the total bottleneck excess of all resources, but the number
of resources that show an excess are not limited by a constraint (continuous formulation). Obviously, the
parameters g, R2

+ can be used to model the effect of additional capacity.
Remark 2 In analogy to (14)-(22) several other extensions of model (9)-(13) are possible, too. E.g. number
and location of allowed bottlenecks, ‘cold steel’ (machine shutdowns) and sensitivity analyses. Most of
this extension lead to Integer Programming formulations which we will not discus in this paper.

To estimate the size of the linear program (9)-(13) we notice that the cardinality of the set of activities
K is equal to the number of nonzero entries in the service time matrix and let L be the average number of
job classes for each product. We summarize that the number of rows, columns and nonzeros of (9)-(13)
can be estimated according to the following formulas:

• number of rows: |J|+ |I|,
• number of columns: |P|+ |K|+1,
• number of nonzeros: |P|×L+2|K|.

We notice that for this formulation it is not possible to directly take advantage of a decomposition
into connected components, because it is very likely that the products are connecting all resources and
therefore the size of this problem will be quite large. For example if we consider 1000 equipments, 1000
products and 5000 job classes with average of 5 released equipments we will get |K|= 25000 and if each
product has 100 job classes (L = 100) in average we get in total: 6000 rows, 26001 columns and 152000
nonzeros. In Section 4 we propose an algorithm that separates the problem into a product mix step and a
resource allocation step that are iteratively solved. The product mix step does not involve job classes and
the resource allocation step is a decomposable capacity planning problem. Due to the complexity reduction
and the opportunity to employ parallel computations we expect to gain a considerable speed up for larger
instances.
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4 A DECOMPOSTION HEURISTIC

To solve the program defined in (9)-(13) we are proposing a decomposition heuristic that is based on
connected components and resource pooling. We introduce the master problem:

max cT y (23)

Ty≤ ρmax, (24)

0≤ ∆
− ≤ y≤ ∆

+. (25)

The resource consumption matrix T contains factors that explain the resulting utilization profile for a given
product mix. I.e. Tip is the resource consumption of one unit of product p on equipment i. We can think of
these factors as an estimation that is recursively improved by solving static capacity problems that tend to the
best product mix. To formulate the algorithm we abbreviate the master problem as (y,z)←MP(c,T,∆−,∆+)
and for the static capacity problem we use the following notation (x,ρ)← LB(R,A,λ ). The function LB
is minimizing the maximum load using the resource pooling concept on all levels. In case that we have
more than one connected component we are also able to decompose and parallelize the calculation. For
the sub problem we take the output of the master problem and we apply LB(R,A,Dy). Part of the output
of the algorithm is given by the solution x which is used to update the load factors. We assume that ∆− is
feasible, i.e. the incurring load resulting from the arrival rate λ = D∆− does not exceed the load limit ρmax.
This procedure is explained in Algorithm 1. The input parameter ε is the tolerance limit for recognizing
improvements in the objective.

Algorithm 1 product mix optimization (simple decomposition)
input: D,A,R,c,ρmax,∆

−,∆+,ε
output: y
y← 1, λ ← Dy
(x,ρ)← LB(R,A,λ )
∀p∀i : Tip← ∑ j:d jp>0 x jiµ ji

d jp
λ j

y← ∆−, λ ← Dy, z0← cT y
(x,ρ)← LB(R,A,λ )
∀p:yp>0∀i : Tip(x)← ∑ j:d jp>0 x jiµ ji

d jp
λ j

i← 1
while (i = 1)∨ (zi− zi−1 > ε) do
(y,zi)←MP(T,c,ρmax,∆

−,∆+)
λ ← Dy
(x,ρ)← LB(R,A,λ )
∀p:yp>0∀i : Tip(x)← ∑ j:d jp>0 x jiµ ji

d jp
λ j

i← i+1
end while

Theorem 1 Algorithm 1 terminates with a feasible solution.

Proof. Each generated solution y is feasible (including the first one), because the load factors in T
represent a feasible marginal load distribution. The solution of the load balancing problem aims to improve
the capacity consumption on the resources with a high load without generating infeasibilities and therefore
y is still feasible for the master problem with the updated load factors, hence the objective function is
non-decreasing. We assume that there are no products that have no capacity consumption, so we expect
that the profit is bounded and we get a convergent sequence of the objective value. Therefore Algorithm
1 will terminate with a feasible solution.
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5 DESIGN OF EXPERIMENT

We are investigating the effect of different factors of the instances on the potential improvement of the
profit and the quality of the heuristic. For this reason we implemented a program to produce benchmark
instances with different size and structure by varying the control parameters (you can find the octave code
and the instances at the following URL: http://homepage.univie.ac.at/martin.romauch/goldenmix/). Some
of the control parameters of the generator are directly effecting the factors (like the number of products), but
others (e.g. the density of the service time matrix) are dependent on several control parameters. We generate
an initial product mix y0 and we define the limits for y to be 5% below and 5% above y0, i.e. ∆− = 0.95y0,
∆+ = 1.05y0 and ρmax is the minimum ρ for y0. The solution y0 is constructed in such a way that there is
at least on resource in each component that is loaded close to ρmax. To produce a structural broad set of in-
stances of different size we consider a factorial design based the settings of the control parameters in Table 1.

Table 1: The parameters in this table are used to make the factorial design of the experiment

control parameter settings number of settings
cms size small, medium, large 3

number of cms small, medium, large 3
variance parameter for R small, medium, high 3
density parameter for A sparse, medium, dense 3

number of products small, medium, large 3

For each parameter setting we use five different seeds. Therefore the total number of instances is
35 ·5 = 1215. To formulate the factors and variates we refer to the initial profit z0, the profit of the global
optimum zopt and the profit of the decomposition method zdecomp (according to Algorithm 1). Table 2
summarize the factors and variates used in the analysis. To standardize the variation we sometimes use a
statistic for the coefficient of variation CV (X) =

√
Var(X)/E(X).

Table 2: The factors and variates in this table are used for the analysis. Since the problem is decomposed
into sub components the letter τ indicates the corresponding cms. E.g. Aτ refers to the capability matrix
of component τ .

factor or variate formula or symbol values or range

number of cms Q {20,40,60}
number of resources neq = |I| [57;2349]

number of job classes n jc = |J| [74;1500]
number of products nprod = |c| [5;1132]

average density of Aτ = (a(τ)jk ) density = avgQ
τ=1

 |{k : a(τ)jk > 0}|
|Iτ ||Jτ |

 0-50%

relative variance of service time rttvar = avg j(CV (R j|>0)) 0-35%
coefficient of variation of profit CV (c) 11-36%

maximum improvement potential =
zopt − z0

z0
0-4.75%

gap gap =
zdecomp− z0

zopt − z0
0-100%
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6 RESULTS

Based on the experiments on the 1215 instances from section 5 we are presenting our main results about the
influence of the structure of the problem (parameters that describe the instance) on the profit increase and
on the solution quality of the heuristic method. I.e. we are measuring the effect of changing the product
mix in a 5 % corridor on the relative profit improvement – and for reporting the quality of the heuristic
we investigate how much of the maximum profit increase is covered by the decomposition method. We
will start with explaining the Figures 2 to 5 to summarize the main results of the experiment. Finally we
will also showcase a short study with real word data about these effects and sensitivity issues.
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For computing the optimal solution of the product mix problem (global approach) the commercial
solver IBM ILOG CPLEX is used on a quad core (2.6GHz) computer with 4 GB RAM. For solving the LP
(sub) problems of the decomposition approach we use the non-commercial solvers GLPK (Makhorin, A.
2012) and LinProg on the same PC; in some cases (especially for large problem instances) they were not
able to find the optimal solution of the global problem. Now we are interested in the performance of
the decomposition approach. Therefore, we display the correlation between the relative potential and the
relative gap (cf. Table 2) in Figure 2. Here we can see that – with an increasing optimization potential
– the decomposition heuristic gradually approaches to the global optimum. Now we are interested in the
dependence of optimization potential to the parameters varied in the benchmark scheme. For this, its
correlation to the density of the dedication matrix as well as the correlation to the fraction nprod/neq is
visualized in Figure 3 and 4. As we can see, especially in cases with a high number of products and complex
dedication constraints (low density in dedication matrix) a high optimization potential exists. Referring to
the generation of benchmark instances, the entries of the profit vector c are modeled as independent and
uniformly distributed random variables. According to the central limit theorem, the sum of squares tends
to a normal distribution, and therefore we observe (cf. Figure 5) that the profit’s marginal distribution of
the coefficient of variance is approximately bell shaped. According to the scatter plot of the Figure 5 we
can also see that the optimization potential is following this tendency, which is not obvious and at the
moment we cannot provide a satisfactory explanation.

Overall we have seen that a profit improvement of approximately 3% is possible even if each component
in the initial solution is loaded close to ρmax. If the product mix portfolio is adaptable in the range of +/- 5%
this also matches with our practical experiences in real world application. Here, next to the maximization of
profit, this model – as well as some extensons of them (cf. remark 2) – helps us to identify products which
are drivers for bottlenecks and to estimate how the tools will react on product changes (sensitivity analysis).
Because we have a direct interaction between a given product mix and the resulting equipment utilization
we can fast and target oriented decide how to react on changing demands. Thereby, the decomposition on
several stages (job class concept, connected components, optimization) allows a calculation on the highest
granularity level, that means on the basis of all routes, all products, all operations, all equipments and all
dedications in the MES system with an overall calculation time of only a couple of minutes.
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Figure 6: Sensitivity analysis – effects of product mix fluctuations (current mix).

Figure 6 and 7 show the solution of a product mix optimization on the basis of an altered fab-data set.
On the x-axis the connected components (work centers) are displayed. The length of the bars represent
the maximum tool utilization within the work center resulting from the current product mix. The average
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utilization is marked blue, different sensitivity intervals are displayed yellow (cf. Figure 6) and red bars
show bottleneck work centers.

Now, the effect of an product mix adaption is shown in Figure 7. It leads to a significant load reduction
(black bars) on the bottleneck work centers. Thereby the overall fab load (layer starts per week) is not
changed – but the product mix.
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Figure 7: Optimized product mix – product mix change relaxes the bottleneck situation .

7 CONCLUSIONS AND FURTHER RESEARCH

The contribution of this paper can be seen as twofold. On the one hand the theoretical part: We have
investigated which structural parameters affect the maximum profit improvement of the product mix problem.
Here we could show, that the number of products and the variation of the profit are affecting the relative
potential in a significant way. Furthermore, we have introduced a decomposition heuristic to the product
mix problem and we have inspected them on the basis of randomly generated test instances. Here, we
were able to proof that this method converges to good quality solutions within reasonable time. Due to
its reduction of complexity it is also interesting that we could show that within this concept already free
solvers like GLPK are sufficient to solve large instances. For some instances with a small optimization
potential we experienced that the heuristic method got stuck in local optima and we are currently working
on a promising improvement of the method.

On the other hand the practical part: We drafted, that the approach covers numerous problems within
semiconductor industry. The method helps us in evaluating risks, in the improvement of lot release strategies,
for bottleneck management issues and for sensitivity analysis’s. Furthermore, we are able to make capacity
investment decisions more precise and faster.

In future we will focus our work on optimizing product mix and profit for the whole supply chain
within a semiconductor company. In combination with dynamic techniques this method will support an
optimized product flow and reduce logistics costs within the supply chain.
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