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ABSTRACT 

As more and more functionalities are packed into a single product, one-response-at–a-time correlation 
analysis is no longer sufficient to discover critical factors that result in poor qualities or a low yield. 
Though methodologies of many-to-many correlation analysis have been proposed in the literature, diffi-
culties arise, especially when there exist multi-collinearity effects among variables, to measure the rela-
tive importance of a variable’s contribution in the association between a set of responses and a set of fac-
tors. Johnson’s dominance analysis (Johnson 2000) offers a general framework for determination of 
relative importance of independent variables in linear multiple regression models. In this article, we ex-
tend Johnson’s dominance index to many-to-many correlation analysis as a measurement to summarize 
the association relationship between two sets of variables. Actual semiconductor yield-analysis cases are 
used to illustrate the method and its effectiveness in analysis of two sets of variables. 

1 INTRODUCTION 

Semiconductor manufacturing consists of complex fabrication steps  and has a long cycle time. The semi-
conductor yield loss is costly and its causes are difficult to find. Since having a good control of the elec-
trical testing (ET) parameters is an important measure for ensuring a good yield of the final integrated cir-
cuit (IC) dies, it is critical to find the potential factors causing the out-of-control ET parameters. Such a 
problem is a typical many-to-many correlation problem where we try to associate many in-line process 
factors with multiple ET parameters to identify the yield-loss causes. It is known that discovering associa-
tions between ET parameters and in-line process metrology items, such as critical dimension, thickness 
and concentration, etc., can help identify root causes of yield loss and, potentially, provide insight into the 
underlying critical process steps. The  conventional one-response-at–a-time analysis approach, e.g. a sim-
ple correlation coefficient or a multiple regression analysis for a single ET parameter on multiple in-line 
items, often leads to a large number of ineffective comparisons. Analyzing multiple ET parameters simul-
taneously has the advantage of providing a much simpler and clearer picture. Many-to-many association 
analysis to figure out the relationship between a set of yield/quality parameters and a set of in-line engi-
neering variables is thus needed for a more effective search of root causes. Though methodologies of 
many-to-many correlation analysis have been proposed in the literature, it is still difficult to measure the 
relative importance of a variable’s contribution in the association between the responses and the factors, 
especially when there exist multi-collinearity effects among variables. 
 This paper aims to develop a measurement of variable importance to summarize the association rela-
tionship between two sets of variables. We first review the canonical correlation analysis method. Next, 
we extend the relative importance measure to the many-to-many correlation model. We’ll demonstrate 
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and validate the proposed index for the many-to-many correlation analysis through hypothetical cases and 
a real semiconductor yield analysis case.  

2 RELATIVE IMPORTANCE (RI) FOR CANONICAL CORRELATION ANALYSIS (CCA) 

2.1 Canonical Correlation Analysis (CCA) 

Although many-to-many association is not popular to semiconductor yield analyst, many methods have 
been developed in the areas of multivariate statistics analysis and process control. Two common methods 
to study the relationship between two set of variables are partial least square (PLS) (Wold 1975) and ca-
nonical correlation analysis (CCA) (Hotelling 1936). Since there are several advantages of CCA over PLS, 
we’ll focus on CCA for the development of many-to-many relative importance indices. We first briefly 
introduce the CCA method and the notation required throughout this paper. Denote by x a p-dimensional 
vector in the space of variables representing the first set and similarly by y a q-dimensional vector repre-
senting the second set of variables. After collecting n observations from each set of variables, the (n-by-p) 
matrix of zero-mean unit-norm variables X and the (n-by-q) matrix of zero-mean unit-norm variables Y 
are expressed into the form: 

  pjniXX ij ,...,1,...,1  , and    (1) 

  qkniYY ik ,...,1,...,1  .    (2) 
 
 Assume that X and Y are full-rank matrices (n>p+q). The assumption of zero-mean unit-norm variable 
allows simplifying the expositions although it may cause some technical problem implicitly. All such 
technical problems can be resolved, usually by working with the raw data.  

 The matrices of sample covariance among the X variables, among the Y variables, and between the 
two sets are 

,)( 1
1 XXΣ t

nx       (3) 
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CCA attempts to derive a linear combination of the variables, canonical variates, of each data set for 

maximizing their correlation while PLS is to maximize the covariance.  Canonical score vectors, denoted 
by u and v, are n observations of canonical variates of each data set. Under the consideration of scaling, u 
and v are expressed as follows: 

Xu  , and     (6) 
Yv  .     (7) 

 
where  and  are canonical coefficients, the weights of the linear combination, which are sought to max-
imize the square sample correlation coefficient of the two canonical score vectors, u and v: 
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where denotes correlation function. 

In order to simplify the optimization problem, coefficient transformation is introduced by setting 
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Then the objective function becomes  
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It is straight forward to show the CCA solution is converted to solve a and b in the following formu-

lation: 
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The solution for Equation (12) is much simpler and demands lower computing power than PLS. With the 

half inverse of covariance matrix 2
1

yΣ and 2
1

xΣ , it implies CCA deals with two transformed datasets 

( 2
1

yYΣ and 2
1

xXΣ ) with the covariance matrix equal to an identity matrix, i.e. mutual independent datasets. 

Instead of iterative process of repeated computation by PLS, the whole CCA solution is thus simply given 
by the singular vectors of the singular value decomposition (SVD) of K: 

 

t
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Let r (positive real value) be the rth singular value in SK and br and ar be the corresponding rth singular 
vectors of UK and VK, respectively. The maximum number of canonical variable pairs is equal to d. The 
rth canonical coefficients (r, r) are then given by 
 

rxr aΣ 2
1 , and             (14) 

ryr bΣ 2
1               (15) 

 
and the rth canonical score pair ur and vr are obtained by 
 

rxr aXΣu 2
1 , and            (16) 

ryr bYΣv 2
1               (17) 

 
with the rth canonical correlation equal to r: 
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2.2 Many-to-many Relative Importance (RI) Index 

Many relative importance indices have been proposed to assess the proportion of variance in a dependent 
variable explained by the independent variables in a linear regression model. General dominance index 
(Budescu 1993) is regarded in the literature as the most plausible assessment index due to both statistical 
and theoretical rationales (Johnson 2000; Lebreton, Ployhart, and Ladd 2004; Chao et al. 2008). General 
dominance index is defined as the average increment in R-square associated with an independent variable 
across all possible subset models. That is, general dominance index represents the average usefulness of 
an independent variable when it is included with each possible combination of other variables. Since the 
sum of general dominance indexes over all covariates is equal to model R-square. it can be expressed as 
the proportion of predictable variance accounted for by an independent variable. 
An extension of general dominance index to multivariate regression model is proposed by (Azen and 
Budescu 2006). A recent work (Huo and Budescu 2009) has also extends the dominance approach to 
CCA. However, dominance index has a serious shortcoming, that is, difficult and time-consuming com-
putation (Johnson 2000; Lebreton, Ployhart, and Ladd 2004; Chao et al. 2008). This method requires the 
computation of R-squares for all possible sub-models. Given p covariates in the linear regression model, 
there are (2

p
-1) sub-models. In many-to-many correlation model with p and q variables respectively, there 

are (2
q
 -1)  (2

p
 -1) sub-models. The computation demand increases in an exponential rate. For example, 

there will be 1023 sub-models for linear regression models with only 10 independent variables. The num-
ber of sub-models and required computing power is even staggering for many-to-many correlation models. 
Because the computation requirement of the general dominance index has limited its applicability, a heu-
ristic method for estimating the general dominance index is then proposed (Johnson 2000). The heuristic 
dominance analysis not only requires much lower computation loading but also be shown to be highly 
consistent with general dominance index through real case validation (Johnson 2000), Monte Carlo exper-
iments (Lebreton, Ployhart, and Ladd 2004) and bootstrap estimate of indices (Chao et al. 2008). We refer 
to this heuristic dominance index as Johnson’s dominance index in this article. Johnson’s dominance in-
dex considers a variable’s relative importance under collinearity by using a set of uncorrelated independ-
ent variables transformed from the original variables. The process is divided into three steps. First is to 
transform the original variables into a new set of orthogonal variables with maximum similarity to the 
original variables. Second is to calculate the relative importance of the new orthogonal independent vari-
ables. Without the collinearity issue among the orthogonal variables, the final step is to distribute the rela-
tive importance of the orthogonal variables into the original ones based on their association. 
 The relative importance expressed by Johnson’s dominance index in one-to-many correlation has 
been given in (Johnson 2000). Extension to many-to-many correlation starts from standardized X and Y 
into unit-norm and zero-mean data matrix. It is to ensure the similarity between Johnson’s dominance in-
dex and general dominance index since the comparison  (Johnson 2000; Lebreton, Ployhart, and Ladd 
2004; Chao et al. 2008) of the two indices have been concluded with their convergence under the stand-
ardized data distribution. The first step of the extension is to transform X and Y into maximally correlated 
orthogonal Zx and Zy, respectively, by finding the SVD of X and SVD of Y, respectively, as: 
 

t
xxx VSUX  , and            (19) 

t
yyy VSUY  .             (20) 

 
 The orthogonal Zx maximally correlated to X and the orthogonal Zy maximally correlated to Y are ob-
tained, respectively, as: 
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 The matrices of sample covariance among the Zx variables, among the Zy variables, and between the 
two sets are 
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The process is then to seek new canonical coefficient  and to compose the new canonical scores vec-
tor u* and v*: 
 

** xZu  ,  and             (26) 
** yZv  ,               (27) 

 
and to maximize the objective (v*,u*)2: 
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Similarly, the optimal sets of coefficients (*’s, *’s), are given by SVD of the matrix Zy

tZx: 
 

t
x

t
y USVZZ  .             (29) 

 
 Let r (positive real value) be the rth singular value in S and br and ar be the corresponding rth singu-
lar vectors of U and V, respectively. It implies the new rth canonical coefficient pair (r

*, r
*) is given by 

the rth singular vector pair of K: 
 

rr a*  , and             (30) 

rr b* .              (31) 
 
Therefore, the rth canonical correlation coefficient is still the singular value of K (r) and not changed by 
the matrix transformation: 
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The rth pair of original standardized canonical coefficient can be obtained as follow: 
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The rth corresponding linear regression model pair with R-square equal to r
2 is re-expressed as 

 
*** )( ryrxryr AZZv   , and         (35) 
*** )( rxryrxr BZZu   ,           (36) 

 
where yr and xr are n-by-1 vector of errors with zero column mean, Ar, p-by-1 regression coefficient, 
and Br, q-by-1 regression coefficient. Ar and Br are easily calculated from the equations as follows: 
 

rrrA  * , and             (37) 

rrrB  * .              (38) 
 

To determine the relative importance of X’s is then to determine how the proportion of the relationship 
(r

2) explained by Zxl is associated with Xj. Since the relative importance of X contributed to the relation-
ship should depend on the variance structure of X, it is easier to address the contribution through the or-
thogonal variables Zx, the Johnson transformation of X. (39) shows how the variance in X is explained by 
Zx: 
 

xxΛZX  .              (39) 

 
Since Zx is a linear transformation of X, the above equation is seen as a perfect multivariate regression 
model with zero residuals. The regression coefficient matrix x is also the correlation matrix between Zx 
and X (Zx

tX): 
 

XZVSVTΛΛ t
x

t
xxxxljxx  


1}{ ,       (40) 

 
where l=1, …, p, j=1, …, p , and xlj is the element of the lth row and the jth column in x, representing 
the correlation between Zxl and Xj. 
 Similarly, the proportionate contribution of a particular Xj to r

2, denoted as Dxrj, can be estimated by 
multiplying the proportion of variable in each Xj accounted for by Zxl (xlj

2) by the proportion of r
2 ac-

counted for by Zxl (rl
2) and sum the products: 
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 Furthermore, the correlation matrix between Zy and Y can be expressed as follows: 
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t
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where o=1, …, q, k=1, …, q , and yok is the element of the oth row and kth column in y, representing 
the correlation between Zyo and Yk. Thus, the proportionate contribution of a particular Yk to r

2, denoted 
as Dyrk, can be as: 
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Proposition 1: In the rth relationship of many-to-many correlation model, the relative importance of X set 
(Dxrj) and the relative importance of Y set (Dyrj) are both summed up to be the squared rth canonical cor-
relation coefficient: 
 

2
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 , and            (44) 
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 .             (45) 

 
In summary, there are at most d sets of canonical correlations. The rth square canonical correlation r

2 de-
scribes the residual relationship left over from the 1st, 2nd…, and (r-1)th canonical correlation pairs. The 
relative importance Dxrj for Xj and Dyrk for Yk can be then obtained to explain how the relationship is es-
tablished. Furthermore, selection of significant relationships is well studied in the literature (Marriott 
1952, ; Lawley 1959) and can be easily conducted. 
 

3 APPLICATION TO SEMICONDUCTOR YIELD LEARNING 

The section gives two real semiconductor yield cases of a local manufacturing foundry fab to demonstrate 
the extension of Johnson’s dominance index to many-to-many correlation analysis. In the first variable set, 
there are totally eight ET parameters of interest related to a certain MOSFET structure denoted by et1~et8. 
Two parameters, et1 and et2, are measurements of the drain current in saturation Id under specific condi-
tions. Three parameters, et3, et4 and et5, are to monitor the threshold voltage Eth. The other parameters, et6, 
et7 and et8, are to monitor the charge-carrier effective mobility N.  
 In the second variable set, there are nine inline measurement items of interest denoted by l1~l9. Their 
geometric relationship is represented in the sketch map of Figure 1. As can be seen, there are two corre-
lated set. Items l3, l4, l5 and l6 are correlated. So are items l7, l8 and l9. 
There are different ET parameters of interest in each case while the nine inline items are all used to ana-
lyze. Besides, the false alarm rate  is set to be 0.01. 

 

 

 

Figure 1: Geometric representation of inline metrology 
it l l
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3.1 Case 1 

In the case, ET Parameters of interest are et1, et2, et3, et4 and et7. Notice that there are five ET parameters 
and nine inline items with sample size equal to 160. Both PLSC2A and CCA find five different relation-
ship pairs. The strength of the relationship pairs are compared in Table 1. 

 

Table 1: Case 1 comparison on correlation coefficient of relationship pair by PLSC2A and CCA 
 

 
 The significant relationship pairs are shown in bold font. The purpose is to find significant associated 
relationships explaining the yield issues and to give information to solve the issue further. The first two 
CCA relationship pair interest analyst and domain engineers. The result is validated by further inspection. 
Figure 2 shows the contribution charts, Johnson’s dominance index, for the first ET-to-inline CCA pair. 
As shown in Figure 2(b), the critical inline items are l2 and l8. Other inline items are trivial with relative 
importance almost equal to zero. ET parameters et2, et3, et4 and et7 suffer from the impact of l2 and l8 
while et7 is impacted mostly and then et3 is secondary. Figure 3 shows the contribution charts for second 
ET-to-inline CCA pair which explains the residual relationship left by first CCA pair. As shown in Figure 
3(b), the critical inline items are l3, l5 and l6; as in Figure 3(a), et2 and et1 suffer major impact. Two inde-
pendent associations between ET and inline are discovered by the proposed method. 

 

 

 

(a) 

 

(b) 

Figure 2: Case1 contribution chart for first ET-to-inline CCA pair 

correlation p-value correlation p-value

1st 0.5006 0.0001 0.4163 0.0121

2nd 0.4047 0.0204 0.2669 0.6800

3rd 0.2731 0.6367 0.2582 0.7364

4th 0.2072 0.9497 0.2080 0.9480

5th 0.1392 0.9992 0.1302 0.9996

pair
CCA PLSC2A
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3.2 Case 2 

In the case, ET Parameters of interest are et1, et3, et5, et6 and et8. There are five ET parameters and nine 
inline items with sample size equal to 207. Both PLSC2A and CCA find five different relationship pairs. 
Their correlation coefficients are compared in Table 2. 

Table 2: Case2 comparison on correlation coefficient of relationship pair by PLSC2A and CCA 
 

 
 
 First three CCA relationship pairs are significant and provide information to solve the yield issues. 
Figure 4 shows the contribution charts for the dominate ET-to-inline CCA pair. As can be seen, parame-
ters et6 and et8 are mostly affected by root causes l6, l7 and l8. Figure 5 shows the contribution charts for 
second ET-to-inline CCA pair. As can be seen, et3 is mostly affected and et6 is secondarily affected by the 
unique root cause l3. In summary, the independent relationships found by the proposed method are (et6, et8 
vs. l7, l8, l9), (et3, et6 vs. l3) and (et1, et5 vs. l4). 

correlation p-value correlation p-value

1st 0.4793   < 0.0001 0.3248 0.0795

2nd 0.4051 0.0013 0.4047 0.0014

3rd 0.3399 0.0437 0.2854 0.2710

4th 0.2883 0.2518 0.2503 0.5470

5th 0.1532 0.9898 0.1875 0.9329

pair
CCA PLSC2A

 

 

 

(a) 

 

(b) 

Figure 3: Case1 contribution chart for second ET-to-inline CCA 
i
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(a) 

 

(b) 

Figure 4: Case2 contribution chart for first ET-to-inline CCA pair 
  

 

 

(a) 

 

(b) 

Figure 5: Case2 contribution chart for second ET-to-inline CCA pair 
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CONCLUSIONS 

In this research work, we have extended the relative importance to many-to-many correlation analysis and 
proposed to use the dominance indices to facilitate the interpretation of the correlation results by the rela-
tive importance of each variable. Studies on two real cases have also demonstrated how the methodology 
is useful to pinpoint critical causes in semiconductor yield learning. As compared to conventional 
PLSC2A, the proposed method has a more straightforward computation and makes the explanation sim-
pler and more interpretable. 
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