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ABSTRACT

There are a number of situations where, when computing prices of financial derivatives using quasi-Monte
Carlo (QMC), it turns out to be beneficial to apply an orthogonal transform to the standard normal input
variables. Sometimes those transforms can be computed in time O(n log(n)) for problems depending on
n input variables. Among those are classical methods like the Brownian bridge construction and principal
component analysis (PCA) construction for Brownian paths.

Building on preliminary work by Imai and Tan (2007) as well as Wang and Sloan (2011), where the
authors try to find optimal orthogonal transform for given problems, we present how those transforms can
be approximated by others that are fast to compute. We further present a new regression-based method for
finding a Householder reflection which turns out to be very efficient for a wide range of problems. We
apply these methods to several very high-dimensional examples from finance.

1 INTRODUCTION

Many simulation problems in finance and other applied fields can be written in the form E( f (X)), where
f is a measurable function on R

n and X is a standard normal vector, that is, X = (X1, . . . ,Xn) is jointly
normal with E(X j) = 0 and E(X jXk) = d jk. It is a trivial observation of surprisingly big consequences that

E( f (X)) = E( f (UX)) (1)

for every orthogonal transform U : Rn −→ R
n. While this reformulation does not change the simulation

problem from the probabilistic point of view, it does sometimes make a big difference when quasi-Monte
Carlo simulation is applied to generate the realizations of X .

Examples are supplied by the well-known Brownian bridge and PCA constructions of Brownian paths
which will be detailed in the following paragraphs. Assume that one wants to know E(g(B)) where B is
a Brownian motion with index set [0,T ]. In most applications this can be reasonably approximated by
E(g̃(B T

n
, . . . ,B Tn

n
)), where g̃ is a function on the set of discrete Brownian paths.

There are three classical methods for sampling from (B T
n
, . . . ,B nT

n
) given a standard normal vector

X , namely the forward method, the Brownian bridge construction and the principal component analysis
construction (PCA). All of these constructions may be written in the form (B T

n
, . . . ,B nT

n
) = AX , where A

is an n×n real matrix with

AA> = S :=
(T

n
min( j,k)

)n

j,k=1
=

T
n




1 1 1 . . . 1
1 2 2 . . . 2
1 2 3 . . . 3
...

...
...

. . .
...

1 2 3 . . . n




.
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For example, the matrix A corresponding to the forward method is

A = S :=

√
T
n




1 0 . . . 0
1 1 . . . 0
...

...
. . .

...
1 1 . . . 1


 , (2)

while PCA corresponds to A=VD, where S=VD2V> is the singular value decomposition of S. A decompo-
sition for the Brownian bridge algorithm is given, for example, by Larcher, Leobacher, and Scheicher (2003).

It has been observed by Papageorgiou (2002) that AA> = S if and only if A = SU for some orthogonal
matrix U , so that every linear construction of (B T

n
, . . . ,B nT

n
) corresponds to an orthogonal transform of Rn.

In that sense the forward method corresponds to the identity, PCA corresponds to S−1VD and Brownian
bridge corresponds to the inverse Haar transform, see Leobacher (2012).

Thus our original simulation problem can be written, as

E(g̃(B T
n
, . . . ,B Tn

n
)) = E(g̃(SX)) = E( f (X))

with f = g̃◦S, and we interpret this as using the forward method. Consequently, the same problem using
the Brownian bridge takes on the form E( f (H−1X)), where H is the matrix of the inverse Haar transform,
and has the form E( f (S−1V DX)), with S, V , D as above, when PCA is used.

As an application one can generalize the classical constructions of discrete Brownian paths to discrete
Lévy paths. See Leobacher (2006), L’Ecuyer, Parent-Chartier, and Dion (2008), Imai and Tan (2009).

There are some theories as to why an orthogonal transform might have the effect to make the problem more
suitable for QMC. Caflisch, Morokoff, and Owen (1997) introduce the concept of effective dimension of a
function: consider a function g :Rn −→Rwith finite variance w.r.t. normal distribution, that is E(g(X)2)<¥
where X = (X1, . . . ,Xn) is a vector of independent standard normal random variables. Then g may be written
uniquely as the sum of functions gu : Rn → R, u ⊆ {1, . . . ,n}, where gu depends on the i-th coordinate
only if i ∈ u and where E(gu(X)) = 0 for all u 6= /0 and E(gu(X)gv(X)) = 0 for u 6= v, using the so-called
ANOVA decomposition of g. Furthermore it holds

V(g(X)) = å
/0 6=u⊆{1,...,n}

V(gu(X)) .

The effective dimension in the truncation sense at level a ∈ (0,1) is then the smallest integer k such that

V(g(X))(1−a)< å
/0 6=u⊆{1,...,k}

V(gu(X)) ,

see Caflisch, Morokoff, and Owen (1997). Typically a is chosen as 0.01. Therefore, a function with
effective dimension k is one that, in this sense, almost exclusively depends on the first k variables and which
therefore is more suitable for QMC. This is confirmed by empirical evidence. Building on the concept
of effective dimension of a function, Owen (2012) gives definitions of effective dimensions of function
spaces, thus connecting the concepts of effective dimension with that of tractability.

Now one can turn this around and try to put as much variance as possible to the first few coordinates, by
concatenating g with a suitable orthogonal transform. This is what has been done by Imai and Tan (2007)
and what we will do here, using a different approach. We shall see in Section 4 that empirical evidence
also supports the conjectured efficiency of our method.

However, there is also a disadvantage of that approach: the computation of the orthogonal transform
has a cost, which is in general of the order O(n2). For large n this cost is likely to swallow the potential
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gains from the transform. We therefore concentrate on orthogonal transforms which have cost of the order
O(n log(n)).

Examples include discrete sine and cosine transform, Walsh and Haar transform as well as the orthogonal
matrix corresponding to the PCA, see Scheicher (2007), Leobacher (2012).

Imai and Tan (2007) propose an algorithm to find a good orthogonal transform in the sense that it
puts as much variance as possible to the first few dimensions. They propose to take the first order Taylor
expansion at some point X̃ , i.e.

g(X)≈ g(X̃)+
n

å
i=1

¶g(X)

¶Xi
|X=X̃(Xi − X̃i).

Then the contribution of the i-th component of X to V(g(X)) is given by ( ¶g(X)
¶Xi

|X=X̃)
2. The columns of

the orthogonal transform are chosen by solving optimization problems of the form

A∗
·i = max

A·i∈Rn

(¶g(AX)

¶Xi
|X=X̃i

)2

with ||A·i||= 1 and A>
· jA·i = 0, j = 1, . . . , i−1

with X̃i = (X̃1
i , . . . , X̃

i
i ,0, . . . ,0). They suggest to perform this optimization only for the first few columns

of the matrix A. In this paper we improve on their algorithm in various directions. In particular we find a
good orthogonal transform that is fast in that it can be computed even in linear time.

The remainder of the paper is organized as follows. Section 2 reviews basic properties of Householder
reflections and shows how they can be used to find fast versions of orthogonal transforms which put most
variance on the first k variables. The main part of our article, Section 3, describes algorithms for finding fast
orthogonal transforms using again Householder reflections. In contrast to the method of Imai and Tan (2007)
we do not rely on differentiability. This makes the algorithm useful for barrier-type options. We further
provide some theoretical results which indicate why the method serves to reduce the effective dimension.

Section 4 gives some numerical examples where the methods described earlier are applied to examples
from finance. We will see that the new methods described in Section 3 are among the best, both with
regard to speed and accuracy.

We provide an appendix where we compute certain expectations depending on the maximum of a
Brownian path. This is useful for some of the numerical examples.

2 HOUSEHOLDER REFLECTIONS

We recall the definition and basic properties of Householder reflections from Golub and Van Loan (1996).

Definition 1 A matrix of the form

U = I −2
vv>

v>v
,

where v ∈ R
n, is called a Householder reflection. The vector v is called the defining Householder vector.

In the following proposition, e1 denotes the first canonical basis vector in R
n, e1 = (1,0, . . . ,0).

Proposition 1 A Householder reflection have the following properties:

1. If x ∈ R
n is a vector then Ux is the reflection of x in the hyperplane span{v}⊥. In particular, U is

orthogonal and symmetric, i.e. U−1 =U .
2. Given any vector a∈R

n we can find v∈R
n such that for the corresponding Householder reflection U

we have Ua = ‖a‖e1. The computation of the Householder vector uses 3n floating point operations.
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3. The computation of the matrix-vector multiplication Ux uses at most 4n floating point operations.

Proof. See Chapter 5.1 of Golub and Van Loan (1996).

Our main application of Householder reflections is the following: suppose we know that for a given
integration problem E( f (X)) some orthogonal transform Û reduces the effective dimension in the truncation
sense to k, that is, almost all of the variance of f (ÛX) is captured by X1, . . . ,Xk, k � n.

Let Û = (û1, . . . , ûn), that is, û j is the j-th column of Û . We can find Householder reflections U1, . . . ,Uk
such that U1 . . .Uke` = û`, `= 1, . . . ,k as follows:

• Let U1 be a Householder reflection that maps e1 to û1. U1 also maps û1 to e1. Since the vectors û j

are orthogonal we have e>1 (U1û2) = (U1û1)
>(U1û2) = û>1 û2 = 0.

• Therefore there exists a Householder reflection U2 operating on the last n− 1 coordinates which
maps e2 to U1û2. Thus U1U2e1 =U1e1 = û1, U1U2e2 =U1U1û2 = û2.

• Suppose Householder reflections U1, . . . ,U j have been constructed such that U1 . . .U je` = û`, ` =
1, . . . , j.

• Then there exists a Householder reflection U j+1 operating on the last n− j coordinates which maps
e j+1 to U j . . .U1û j+1. Then U1 . . .U j+1e` = û`, `= 1, . . . , j+1.

Write U = U1 . . .Uk. By construction the first k columns of U coincide with those of Û . Since, by
assumption, X1, . . . ,Xk capture almost all of the variance of f (ÛX), the same is true for f (UX). But for
small k the computational cost for computing UX is of the order nk, as compared to general matrix-vector
multiplication which occurs a cost of order O(n2).

Imai and Tan (2007) and Wang and Sloan (2011) give examples for which they find good orthogonal
transforms Û that reduce the effective dimension. However they do not specify how those transforms are
applied. We propose to approximate them using the above method.

However, the main topic of this paper is to present transforms that use only one Householder reflection.
This will by detailed in the next section.

3 REGRESSION ALGORITHM

Let f : Rn −→ R be a measurable function with E( f (X)2)< ¥ for a standard normal vector X .
We want to approximate f by a linear function:

f (x) ≈ a>x+b

where a ∈ R
n and b ∈ R. This can be done in different ways. For example, Imai and Tan (2007) take the

first order Taylor expansion of f .
In contrast, we take a “linear regression” approach, i.e. we minimize

E
(
( f (X)−a>X −b)2

)
→ min . (3)

First order conditions give

a j = E( f (X)X j), j = 1, . . . ,n and b = E( f (X)) .

Therefore, (3) minimizes the variance of the difference between f and the linear approximation. So

V( f (X)) = E
(
( f (X)−b)2)

= E
(
(a>X)2 +( f (X)−b−a>X)2

)

= ‖a‖2 +V
(

f (X)−a>X
)
.
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That is, ‖a‖2/V( f (X)) measures the proportion of variance captured by the linear approximation. Now
there exists a unique Householder reflection U that maps e1 to a/‖a‖. With this transform we have
a>UX = ‖a‖e>1 X = ‖a‖X1 and therefore

E( f (X)) = E( f (UX)) = E
(

a>UX +
(

f (UX)−a>UX
))

= E(‖a‖X1 +( f (UX)−‖a‖X1)) .

Therefore the linear part of the integration problem depends on the parameter X1 alone. Now, if the linear
part constitutes a large part of the integration problem then we have succeeded in putting a large fraction
of the variance into the first coordinate by composing f with U .

Algorithm 2 Let X1, . . . ,Xn be independent standard normal variables. Let f be a function f : Rn −→R.

1. a j := E(X j f (X)) for j = 1, . . . ,n;
2. if ‖a‖= 0 define U = I and go to 4.;
3. else let U be a Householder reflection that maps e1 to a/‖a‖;
4. Compute E( f (UX)) using QMC.

A drawback of the algorithm is that in general the computation of the expectations in step 1 is no easier
than the original problem. In some cases the expectation can be computed explicitly, though usually in
that case also the original problem has an explicit solution.

Example 3 f (X) =åm
k=1 wk exp

(
ån

j=1(ck, jX j +dk, j)
)
. It is easily verified that, with f denoting the standard

normal density, f(x) = exp(− x2

2 )/
√

2p ,
∫

R

exp(cx+d)f(x)dx = exp
(
c2/2+d

)
,
∫

R

x exp(cx+d)f(x)dx = cexp
(
c2/2+d

)
.

Therefore it holds that

ai = E( f (X)Xi) =
∫ ¥

−¥
f (x)xif(x1) . . .f(xn)dx1 . . .dxn =

m

å
k=1

ck,iwk exp

(
n

å
j=1

(
c2

k, j/2+dk, j
)
)

.

Let us find out how much of the variance of f (UX) is captured by ‖a‖X1:
We write w̄k := wk exp(ån

j=1(c
2
k, j/2+dk, j)). Then

‖a‖2 =
n

å
i=1

(
m

å
k=1

w̄kck,i

)2

=
m

å
k1=1

m

å
k2=1

w̄k1w̄k2

n

å
i=1

ck1,ick2,i =
m

å
k1=1

m

å
k2=1

w̄k1w̄k2 c̄k1,k2 , (4)

where c̄k1,k2 := ån
i=1 ck1,ick2,i.

On the other hand, it is easy to see that E( f (X)) = åm
k=1 w̄k and E( f (X)2) = åm

k1=1 åm
k2=1 w̄k1w̄k2ec̄k1 ,k2 .

Therefore we get for the variance of f (UX)

V( f (UX)) = V( f (X)) = E( f (X)2)−E( f (X))2

=
m

å
k1=1

m

å
k2=1

w̄k1w̄k2(e
c̄k1,k2 −1) . (5)

Let us try some special values that are related to Asian options:

m = n, wk =
1
n
, ck, j = s

√
Dt1 j≤k, dk, j =

(
r− s2

2

)
Dt1 j≤k

with r,s ,T > 0, Dt = T
n . For this choice we get w̄k =

1
n erT k/n, and c̄k1,k2 = s2T min(k1,k2)

n .
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For large n the sums in equations (4) and (5) can be approximated by corresponding integrals such that

‖a‖2 ≈ s2T
∫ 1

0

∫ 1

0
erT xerTy min(x,y)dxdy

= s2 4erT +2e2rT rT − (3e2rT +1)
2r3T 2

V( f (X))2 ≈
∫ 1

0

∫ 1

0
erT xerTy(es2T min(x,y)−1)dxdy

=
4erT rs2 +2eT (2r+s2)r2 +2erT s4 − (2e2rT r2 + rs2 +3e2rT rs2 +s4 + e2rT s4)

r2T 2(r+s2)(2r+s2)

Table 1 shows the fraction V( f (X))−‖a‖2

V( f (X)) for a few values of r, s and T = 1.
It can be concluded that in this example almost all of the variance of f (UX) is captured by X1.

Table 1: V( f (X))−‖a‖2

V( f (X)) for T = 1 and different values for r, s2.

r\s2 0.01 0.02 0.03 0.04
0.1 0.0025 0.0051 0.0076 0.0101
0.2 0.0026 0.0051 0.0077 0.0103
0.3 0.0026 0.0052 0.0078 0.0104

In general we cannot expect that E( f (X)Xi) can be computed explicitly. Of course it is an option to
compute E( f (X)Xi) using (quasi-)Monte Carlo, though it is unlikely that this will lead to small overall
computing times. But quite frequently, especially in financial applications, a problem can be written in
the form, f (X) = g(h(X)), where E(h(X)Xi) can be computed and h is some relatively simple function
h : R−→ R.

Algorithm 4 Let X1, . . . ,Xn be independent standard normal variables. Let f be a function f : Rn −→R,
which is of the form f = g◦h where h : Rn −→ R and g : R−→ R.

1. a j := E(X jh(X)) for j = 1, . . . ,n;
2. if ‖a‖= 0 define U = I and go to 4.;
3. else let U be a Householder reflection that maps e1 to a/‖a‖;
4. Compute E( f (UX)) using QMC.

Without additional assumptions on the functions h and g there is no guarantee that U gives better
convergence. Nevertheless there are practical examples where this algorithm gives excellent results.

Example 5 Consider an arithmetic average value option written on some underlying S,

f (X) = e−rT max

(
1
n

n

å
k=1

S k
n T (X)−K,0

)
,

and

S k
n T (X) = S0 exp

(
k

å
j=1

s
√

T
n

X j +

(
r− s2

2

)
k
n

T

)
.

Here we have f (X) = g(h(X)), where g(s) = e−rT max(s−K,0) and h is like in Example 3 with m = n,

wk =
1
n S0, ck, j =

√
T
n s1 j≤k, dk, j =

T
n (r− s2

2 )1 j≤k .
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Write Y := ‖a‖X1, Z := h(UX)−‖a‖X1. Then Y,Z are uncorrelated,

E(Y Z) =E(h(UX)‖a‖e>1 X)−‖a‖2 = E(h(UX)‖a‖(Ue1)
>UX)−‖a‖2

=E(h(UX)a>UX)−‖a‖2 = a>E(h(UX)UX)−‖a‖2

=a>E(h(X)X)−‖a‖2 = a>a−‖a‖2 = 0 .

Further, E(Y ) = 0, such that E(Y )E(Z) = 0 as well, and therefore Cov(Y,Z) = 0.

Theorem 6 Let f ,g,h,U,X1, . . . ,Xn be like in Algorithm 4. Write again Y := ‖a‖X1, Z := h(UX)−‖a‖X1.
Then V( f (UX)) = V(E(g(Y +Z)|Y ))+V(g(Y +Z)−E(g(Y +Z)|Y )).

Proof. We write Ȳ = E(g(Y + Z)|Y ) and Z̄ = g(Y + Z)− E(g(Y + Z)|Y ), so that we have to show
V (Ȳ + Z̄) = V(Ȳ )+V(Z̄). To that end it is sufficient to prove that Ȳ and Z̄ are uncorrelated:

E(Ȳ Z̄) =E(E(g(Y +Z)|Y )g(Y +Z))−E(E(g(Y +Z)|Y )E(g(Y +Z)|Y ))
=E(E(E(g(Y +Z)|Y )g(Y +Z)|Y ))−E(E(g(Y +Z)|Y )2)

=E(E(g(Y +Z)|Y )E(g(Y +Z)|Y ))−E(E(g(Y +Z)|Y )2) = 0 .

Since E(Z̄) = 0, we have E(Ȳ )E(Z̄) = 0 = E(Ȳ Z̄).

We consider a special case that will rarely occur in practice but which gives a flavor of the best result
possible. Assume that g is Lipschitz continuous with constant L. Suppose further that Y and Z are not
only uncorrelated, but even independent.

Denote by FY , FZ the cumulative probability distribution functions of Y and Z, respectively. Using
independence we get

E(g(Y +Z)|Y ) =
∫

R

g(Y +z )dFZ(z ) .

Noting that E(g(Y +Z)−E(g(Y +Z)|Y )) = 0 we thus get

V(g(Y +Z)−E(g(Y +Z)|Y )) = E
(
(g(Y +Z)−E(g(Y +Z)|Y ))2)

= E

((∫

R

(
g(Y +Z)−g(Y +z )

)
dFZ(z )

)2
)

≤ E

(∫

R

(g(Y +Z)−g(Y +z ))2 dFZ(z )
)

≤ E

(
L2
∫

R

(Z −z )2 dFZ(z )
)

≤ L2E
(
Z2 −2ZE(Z)+E(Z2)

)
= 2L2V(Z) ,

where we also have used the Cauchy-Schwarz inequality. Thus with Theorem 6 we get

V( f (UX))−V(E(g(Y +Z)|Y ))≤ 2L2V(Z)

that is,

V( f (UX))−V(E( f (UX)|X1))≤ 2L2(V(h(UX))−‖a‖2).

So in this situation, if X1 captures a large fraction of the variance of h(UX), then X1 also captures a large
fraction of the variance of f (UX) provided that the Lipschitz constant L is not too big.
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We can also think of a variant of Algorithm 4 for slightly more complicated functions. We have
been inspired by Wang and Sloan (2011), where the authors consider functions of the form f (X) =
g(w>

1 X , . . . ,w>
mX) and show, that there is an orthogonal transform that makes this function m-dimensional.

We give a slightly modified version of their argument which guarantees that the orthogonal transform is
also fast to compute for small m, that is for m ≤ log(n).

Let f (X) = g(w>
1 X , . . . ,w>

mX) for w1, . . . ,wm ∈R
n. We may assume that w1 is not the zero vector. Let U1

be a Householder reflection which maps (1,0, . . . ,0) to w1
‖w1‖ . Then w>

1 U1X = ‖w1‖(1,0, . . . ,0)>X = ‖w1‖X1

and therefore f (U1X) = g(‖w1‖X1,(U1w2)
>X , . . . ,(U1wm)

>X). Next we write (U1wk)
>X = (U1wk)

>
1 X1 +

(U1wk)
>
2...nX2...n. That is,

f (U1X) = ḡ(X1, w̄
>
2 X2...n, . . . , w̄

>
mX2...n)

for some w̄2, . . . , w̄m ∈ R
n−1. Assuming that w̄2 6= 0, let Ū2 be the Householder reflection of R

n−1 that
maps (1,0, . . . ,0) to w̄2/‖w̄2‖ and let

U2 =

(
1 0
0 Ū2

)
.

Then U2 is a Householder reflection of Rn and

f (U1U2X) = ¯̄g(X1,X2, ¯̄w >
3 X3...n, . . . , ¯̄w >

m X3...n) .

for some ¯̄w3, . . . , ¯̄wn ∈ R
n−2. Proceeding that way one arrives at

f (U1 · · ·Um̂X) = ĝ(X1,X2, . . . ,Xm̂)

for some m̂ ≤ m (We may have m̂ < m if at some stage all remaining wk are zero).

We propose a similar procedure for an integration problem of the form f (X)= g(h1(X),h2(X), . . . ,hm(X))
where E(h j(X)Xk) can be computed explicitly (or at least efficiently).

Algorithm 7 Let X1, . . . ,Xn be independent standard normal variables. Let f be a function f : Rn −→R,
which is of the form f = g◦h where h : Rn −→ R

m and g : Rm −→ R.

1. Start with k = 1, `= 1 and U = I;
2. a(k)j := E(X jhk(UX)) for j = k, . . . ,n;

3. a(k)j := 0 for j = 1, . . . ,k−1;

4. if ‖a(k)‖= 0 go to 7;
5. else let U (`) be a Householder reflection that maps e` to a(k)/‖a(k)‖;
6. U =UU (`); `= `+1;
7. k = k+1;
8. while k ≤ m, go back to 2;
9. Compute E( f (UX)) using QMC.

We will give a numerical example in Section 4.

4 NUMERICAL TESTS

In this section we will apply our method to examples from mathematical finance.

Asian option

The first numerical example we give is the evaluation of an Asian call option with discrete arithmetic
average in the Black-Scholes model, which has been discussed previously. Since the payoff function f is
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of the form g◦h with g and h as in Example 5, we apply Algorithm 4 to the integration problem E( f (X))
where the vector a follows from Example 3, i.e. for every i = 1, . . . ,n

ai =
1
n

n

å
k=i

s
√

T
n

erkT/n.

For the quasi-Monte Carlo simulation we use a Sobol sequence of dimension n= 250 with a random shift and
we have S0 = 100,K = 100,r = 0.04,s = 0.2 as well as T = 1. We compute the standard deviation based
on 32 batches for N sample paths, where the number of sample paths ranges from 21 to 214. Note that the
standard deviation is different from the RQMC standard deviation defined in (L’Ecuyer and Munger 2012).

In Figure 1 we compare the regression method with the forward method, the PCA construction and
the LT method of Imai and Tan. We see that PCA, LT and the Regression method yield similar results, but
all of the three outperform the forward method. Note that the regression method can be applied in O(n).
Thus we can achieve the efficiency of the PCA with the regression method with lower computational costs.
Moreover, it is interesting that the LT method and regression method yield nearly the same results.
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Figure 1: Asian option (left) and Asian Basket option (right): Standard deviation of 32 runs on a log2-scale.

The computation time required to price the Asian option using quasi-Monte Carlo integration with 214

paths is given in Table 2. Note that PCA is implemented using the discrete sine transform as discussed in
Leobacher (2012). The LT method is implemented such that only the first 25 columns are optimized and
then the orthogonal transform is completed using Householder reflections as we suggested in Section 2.

Table 2: Computation times for pricing the Asian option.

Forward PCA LT Regression
time (sec) 0.08 0.64 1.94 0.15

Furthermore it should be mentioned that the regression method as well as the LT method produce an
overhead caused by determining the orthogonal transform. Nevertheless the overhead time is rather small
and is negligible for a large sample size.

The computation times of the subsequent numerical examples are similar to the result regarding the
Asian option.
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Asian basket option

We consider an Asian basket call option with arithmetic average and a basket consisting of m assets, an
example taken from Imai and Tan (2007). The i-th asset S(i) of the basket (i = 1, . . . ,m) is given by

S(i)
k T

n
= S(i)0 exp

((
r− s2

i

2

)
k

T
n
+siB

(i)
k T

n

)

where S(i)0 is the current price of the i-th asset, r is the risk-free interest rate, si is the volatility of the i-th
asset and B = (B(1), . . . ,B(m)) is an m-dimensional Brownian motion. The correlation between B( j) and
B(k) is denoted by r jk. The payoff function of the Asian basket option is given by

f (X) = max

(
1

nm

m

å
i=1

n

å
k=1

S(i)
k T

n
(X)−K,0

)
,

where

S(i)
k T

n
(X) = S(i)0 exp

(
nm

å
k=1

C(k−1)m+i,kXk +(r− s2
i

2
)k

T
n

)
,

and where C is an mn×mn−matrix with CC> = S̃ := R⊗S and R is an m×m−matrix with Rii =
√

T/ns2
i

for all i and Ri j =
√

T/nri jsis j for i 6= j. Note that the discussion of the previous sections also holds
for a discrete Brownian path with covariance matrix S̃. Since the problem is of the form f (X) = g(h(X)),
Algorithm 4 can be applied. Since the function h is of the form considered in Example 3, we can compute the
corresponding vector a analytically. Furthermore, notice that the PCA construction can be computed in this
example efficiently by using the orthogonal transform V1D1 ⊗V2D2 where V1D2

1V>
1 = R and V2D2

2V>
2 = S.

The parameters are T = 1,r = 0.04,K = 100 and r jk = 0.05 for j 6= k. Moreover, the volatility of the

10 assets is equally spaced from 0.1 to 0.3 and we assume that S(i)0 = 100 for all i = 1, . . . ,m. Since we
simulate every asset at 250 time points, we take a Sobol sequence in dimension n = 2500 with a random
shift. In Figure 1 we can observe the standard deviation based on 32 batches of the forward method, the
PCA construction, the LT method and the regression method for N sample paths with N up to 214.

Digital barrier option

A digital (up-and-in) barrier option is a derivative which pays 1 if the underlying asset breaks through
a barrier u on the time interval [0,T ] and pays 0 otherwise. We intend to price the option in a discrete
Black-Scholes model, where the path of the stock is given by S = (S1, . . . ,Sn) with

Sk(X) = S0 exp

((
r− s2

2

)
k

T
n
+sBk T

n

)
(6)

with current stock price S0, interest rate r, volatility s , Brownian path B=(Bk T
n
)n

k=1 where Bk T
n
=
√

T
n åk

j=1 X j

and standard normal vector X = (X1, . . . ,Xn). Hence, the payoff function h of the digital barrier option is

h(X) = 1maxk=1,...,n Sk(X)≥u

which leads us to an integration problem of the form E(exp(−rT )h(B)). We can use Algorithm 4 for
solving this problem and therefore, we have to compute ai = E(h(X)Xi) for i = 1, . . . ,n. In the appendix we
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show how to calculate this expectation for a function depending on the maximum of a Brownian motion
with drift n . We can adjust our problem by

max
k=1,...,n

Sk ≥ u ⇐⇒ max
k=1,...,n

S0 exp

((
r− s2

2

)
k

T
n
+sBk T

n

)
≥ u

⇐⇒ max
k=1,...,n

(r− s2

2 )

s
k

T
n
+Bk T

n
≥ log(u/S0)

s
⇐⇒ max

k=1,...,n
Bn

k T
n
≥ ũ

with Bn
t = nt +Bt , n =

(r− s2
2 )

s and ũ = log(u/S0)
s . With (7) we get that the vector a in Algorithm 4 can be

approximated by

a ≈ S−1b −n
√

T/ng 1

where S is given by (2), b = (b1, . . . ,bn)
> with bi = E(1max0≤s≤T Bn

s ≥uBn
i T

n
), g = E(1max0≤s≤T Bn

s ≥u) and

1 = (1, . . . ,1)>. The computation of bi with i = 1, . . . ,n can be reduced to a 1-dimensional integration
problem using (10) with f = idR and t = i T

n and formula (8) with f ≡ 1 simplifies g . Consequently, we
end up with 1-dimensional integrals which can be evaluated efficiently with an adaptive quadrature rule.

For the numerical test we use a Sobol sequence of dimension n = 2000 with a random shift and the
parameter set is chosen as S0 = 100,u = 110,r = 0.04,s = 0.2 and T = 1. The number of sample paths N
ranges from 21 to 214 and we compute the standard deviation for those N based on 32 batches. Since it is
not clear how to apply the LT method of Imai and Tan to barrier options, we compare the regression method
with the forward method and the PCA construction only. In Figure 2 we can observe that the difference
between the forward method and the PCA is smaller than in the previous examples. Furthermore, we see
that the regression method is slightly behind the PCA, but this seems to be the best we can achieve by
linear approximation.
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Figure 2: Digital barrier option (left) and Asian barrier option (right): Standard deviation of 32 runs on a
log2-scale.

Asian barrier option

The last example we provide is an Asian (up-and-in) barrier option by which we mean that the payoff of
the option is similar to an Asian option as in the first numerical example, but is paid only if the underlying
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asset breaks through an upper barrier u. The corresponding function is then given by

f (X) = exp(−rT )1maxk=1,...,n Sk(X)≥u max

(
n

å
k=1

1
n

Sk(X)−K,0

)

where Sk(X) is as in (6) for k = 1, . . . ,n. Since the function f is of the form f (X) = g(h1(X),h2(X))
with g(x,y) = exp(−rT )xy, h1(X) = 1maxk=1,...,n Sk(X)≥u and h2(X) = max(ån

k=1
1
n Sk(X)−K,0), we apply

Algorithm 7 with m = 2 to the problem. The computation of the vectors a(1) and a(2) is already discussed
in the examples above, i.e. a(1) is related to the digital barrier option and a(2) corresponds to the Asian
option.

The numerical test is based on 32 batches and we again compare the standard deviation of the forward
method, the PCA construction and the regression method for various numbers of sample paths N, ranging
from 21 to 214. Moreover, we use a Sobol sequence in dimension n = 1000 with a random shift and the
parameters are S0 = 100,K = 100,u = 110,r = 0.04,s = 0.2 and T = 1. Figure 2 shows that the regression
method yields slightly better results than the PCA and that the forward method is behind the other two
approaches.

APPENDIX: REGRESSION FOR THE MAXIMUM

We give the computations needed for examples of barrier type, that is we want to compute E(h(X)Xi)
where h is some function of the maximum of a discrete Brownian path with drift n , i.e.

h(X) = h̃

(
max

k

(
B kT

n
+n

kT
n

))
,

and where B kT
n
=
√

T
n åk

j=1 X j. We make the approximation

E

(
h̃

(
max

k

(
B kT

n
+n

kT
n

))
Xi

)
≈ E

(
h̃

(
max

0≤s≤T
(Bs +ns)

)√
n
(

B iT
n
−B (i−1)T

n

))

= E

(
h̃

(
max

0≤s≤T
Bn

s

)√
n

(
Bn

iT
n
−Bn

(i−1)T
n

−n
T
n

))
, (7)

where Bn denotes Brownian motion with drift n ∈ R, i.e. Bn
t := Bt + nt, t ≥ 0. Moreover, let Mn

t,T :=
maxt≤s≤T Bn

s and Mn
t := Mn

0,t . At first we compute E(1Mn
T≥u f (Bn

t )) for given u > 0 and measurable f with

E(| f (Bn
t )|)< ¥. Then we show how the expectation for more general h̃ can be computed using the first

result.
We start with a simple calculation for a Brownian motion B with drift 0 and let Mt := M0

t . For u ≥ 0
we get, using the reflection principle for Brownian motion,

E(1Mt≥u f (Bt)) = E(1Mt≥u1Bt≥u f (Bt))+E(1Mt≥u1Bt<u f (Bt))

= E(1Bt≥u f (Bt))+E(1Bt≥u f (2u−Bt)) .

Next we make a Girsanov-type change of measure such that under the new measure Q the Brownian motion

Bn with drift becomes a standard Brownian motion. So with dQ
dP = e−nBt− n2

2 t , that is dP
dQ = enBn

t − n2
2 t ,

E
(
1Mn

t ≥u f (Bn
t )
)
= EQ

(
1Mn

t ≥u f (Bn
t )e

nBn
t − n2

2 t)

= EQ
(
1Bn

t ≥u f (Bn
t )e

nBn
t − n2

2 t)+EQ
(
1Bn

t ≥u f (2u−Bn
t )e

n(2u−Bn
t )− n2

2 t)

= E
(
1Bn

t ≥u f (Bn
t )
)
+EQ

(
1−Bn

t ≥u f (2u+Bn
t )e

n(2u+Bn
t )− n2

2 t)

= E
(
1Bn

t ≥u f (Bn
t )
)
+ e2unE

(
1Bn

t ≤−u f (2u+Bn
t )
)
. (8)
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The next step is to consider E(1Mn
T≥u f (Bn

t )) for t < T . Let {Ft}0≤t≤T denote the standard filtration of B.

E
(
1Mn

T≥u f (Bn
t )
)
= E

(
E(1Mn

T≥u f (Bn
t )|Ft)

)
= E

(
f (Bn

t )E(1Mn
T≥u|Ft)

)

= E
(

f (Bn
t )E(1Mn

t ≥u +1Mn
t <u1Mn

t,T≥u|Ft)
)

= E
(

f (Bn
t )1Mn

t ≥u

)
+E
(
1Mn

t <u f (Bn
t )E(1Mn

t,T≥u|Ft)
)
. (9)

We have already computed the first term. For the second term we note that by the Markov property of
Brownian motion,

E(1Mn
t,T≥u|Ft) = E(1Mn

t,T≥u|Bn
t ) = E(1maxt≤s≤T (Bn

s −Bn
t )≥(u−Bn

t )
|Bn

t ) .

We can use our earlier result (8) with f (x)≡ 1 to obtain

E(1maxt≤s≤T (Bn
s −Bn

t )≥(u−Bn
t )
|Bn

t ) = F
(Bn

t −u−n(T − t)√
T − t

)
(1+ e2un) .

Let us write g(u,x) := F
( x−u−n(T−t)√

T−t

)
(1+ e2un). Then, using (8) and (9) we obtain

E(1Mn
T≥u f (Bn

t )) =E( f (Bn
t )1Mn

t ≥u)+E(1Mn
t <u f (Bn

t )g(u,B
n
t ))

=E( f (Bn
t )g(u,B

n
t ))+E( f (Bn
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t ≥u f (Bn
t )(1−g(u,Bn

t ))
)

=E( f (Bn
t )g(u,B
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t ))+E

(
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t ≥u f (Bn
t )(1−g(u,Bn
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)

(10)

+ e2unE
(
1Bn

t ≤−u f (2u+Bn
t )(1−g(u,2u+Bn

t ))
)
.

Note that the expectations can be computed explicitly for suitable f .
We can also use (10) to compute E(h(Mn

T ) f (Bn
t )) for h differentiable and h(0) = 0 and such that the

expectations all converge absolutely:

E(h(Mn
T ) f (Bn

t )) =E(E(h(Mn
T )|Bn

t ) f (Bn
t ))

=E
(∫ ¥

0
h′(u)E(1Mn

T≥u|Bn
t )du f (Bn

t )
)

=
∫ ¥

0
h′(u)E(E(1Mn

T≥u|Bn
t ) f (Bn

t ))du

=
∫ ¥

0
h′(u)E(1Mn

T≥u f (Bn
t ))du .
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methods and applications 12 (3-4): 231–238.

Leobacher, G. 2012. “Fast orthogonal transforms and generation of Brownian paths”. Journal of Complex-
ity 28 (2): 278–302.

Owen, A. B. 2012. “Effective dimension for weighted function spaces”. Technical report, Department of
Statistics, Stanford University.

Papageorgiou, A. 2002. “The Brownian bridge does not offer a consistent advantage in quasi-Monte Carlo
integration.”. J. Complexity 18 (1): 171–186.

Scheicher, K. 2007. “Complexity and effective dimension of discrete Lévy areas.”. J. Complexity 23 (2):
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