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ABSTRACT

The adequate modeling of correlated input processes is necessary to obtain realistic models in areas like
computer or communication networks but is still a challenge in simulation modeling. In this paper we present
a new class of stochastic processes which has been developed for describing correlated input processes
and combines acyclic Phase-type distributions to model the marginal distribution with an ARMA process
to capture the autocorrelation. The processes are an extension of ARTA processes, a well established input
model in stochastic simulations. For the new process type we propose a fitting algorithm that allows one
to approximate arbitrary sets of joint moments and autocorrelation coefficients and investigate the effect of
different sets of approximated quantities on the quality of the fitted process empirically. We furthermore
present an efficient way to generate random numbers and show how the processes can be easily integrated
into simulation models.

1 INTRODUCTION

It is known for more than a decade that the load in computer networks has a high variance and a strong
autocorrelation over several lags (Leland et al. 1994; Paxson and Floyd 1995). Consequently, the adequate
modeling of traffic processes in simulation models is of outstanding importance for the accurate and
meaningful analysis of networks. However, building stochastic models of correlated arrival streams is a
complex problem which is not supported by available software tools for input modeling (Law and McComas
2003) and is also only briefly considered in simulation textbooks (Law and Kelton 2000).

A general and flexible approach for modeling correlated input streams is the ARTA process (Biller and
Nelson 2005) which combines autoregressive processes with different distributions. This model has been
extended in Kriege and Buchholz (2011a) to combine autoregressive processes with so called Phase-type
distributions, a very general and flexible class of distributions. The new class of models is denoted as CAPP
(Correlated Acyclic Phase-type Processes). Both mentioned approaches, ARTA processes and CAPPs,
try to fit the distribution function of the observed process and add the dependency structure using an
autoregressive model which is parameterized to approximate the coefficient of autocorrelation. It is known
that the coefficient of autocorrelation captures only part of the dependency structure, additional measures
are the joint distribution or higher order joint moments.

In this paper, we present an extended approach that allows one to fit the parameters of a CAPP according
to higher order joint moments. It is shown how the models are parameterized and an approach is presented
to integrate CAPPs into simulation models of computer networks using the simulation tool OMNeT++
(Hornig and Varga 2008). By building models for two network traces it is shown that the integration of
higher order joint moments results in more accurate simulation models. The structure of the paper is as
follows: In the next section we introduce the basic ingredients of our approach and describe the background.
Section 3 introduces the fitting approach to parameterize a CAPP. Afterwards, we show how CAPPs can
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be used in simulation models and in Section 5 some experimental results are presented. The paper ends
with the conclusions.

2 BASIC DEFINITIONS AND RELATED WORK

In this section we briefly introduce the basic ingredients of our approach.

2.1 Traces and Their Characteristics

A trace T = (t1, t2, . . . , tr) is a sequence of interevent times ti that describe the time distance between
events i and i+1 (1≤ i < r). Traces are measured in networks and build the base for a load description
in simulation models. From the trace various characteristics and statistical properties can be computed.
Common measures are the empirical moments and the variance

µ̂i =
1
r

r

∑
j=1

(t j)
i, σ̂

2 =
1

r−1

r

∑
i=1

(ti− µ̂1)
2

which are estimates for the moments E[X i] and variance Var(X) of the stochastic process Xt that is assumed
to generate the load. For our work the empirical lag-h autocorrelation coefficients ρ̂h and the joint moments
ν̂k,l,h are of importance which are given by

ρ̂h =
1

(r−h−1)σ̂2

r−h

∑
i=1

(ti− µ̂1)(ti+h− µ̂1) and ν̂k,l,h =
1

r−h

r−h

∑
i=1

(ti)k(ti+h)
l, (1)

respectively. ν̂k,l,h is an estimate of the joint moment E[Xk
t ,X

l
t+h] and ρ̂h is a normalized estimate of

E[X1
t ,X

1
t+h] = E[Xt ,Xt+h]. Both are measures of the process Xt .

2.2 Phase-Type Distributions

Phase-type (PH) distributions describe independent identically distributed random variables as absorption
times of a finite Markov chain (Neuts 1979; Neuts 1981). A PH distribution of order n consists of a
Markov chain with n transient and one absorbing state and is defined by an n×n matrix D0 and an initial
distribution vector π . Matrix D0 is the generator of an absorbing continuous time Markov chain. Events
are generated whenever an absorption occurs and the process is restarted immediately afterwards as defined
by distribution π . The moments and the cumulative distribution function of a PH distribution are given by

µi = E(X i) = i!πMi1 and FX(t) = 1−πexp(D0t)1 (2)

where M =−(D0)
−1 and 1 is a column vector of ones of length n.

The class of PH distributions contains several subclasses like Erlang, Hyper-Exponential or Hypo-
Exponential that exhibit special structures for matrix D0 and vector π . For example acyclic Phase-type
distributions are characterized by an upper triangular matrix D0.

For fitting the parameters of Phase-type distributions according to estimates resulting from a trace,
various approaches exist that can be roughly divided into two classes. Algorithms from the first class try
to maximize the likelihood value and work on the complete trace. Often Expectation Maximization (EM)
algorithms are used for this purpose. For the second class some characteristics like moments are derived
from the trace and the PH distribution is fitted to these characteristics. General PH distributions have been
fitted in Asmussen, Nerman, and Olsson (1996) using an EM algorithm, but the approach is very slow in
the general case. Faster EM algorithms have been tailored to different subclasses of PH distributions. E.g.,
in Khayari, Sadre, and Haverkort (2003) an EM algorithm was used to fit Hyper-Exponential distributions
and in Thümmler, Buchholz, and Telek (2006) the EM algorithm has been applied for fitting Hyper-Erlang
distributions. An example approach for fitting PH distributions according to empirical moments can be
found in Buchholz and Kriege (2009).
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2.3 Autoregressive Moving Average Processes

Autoregressive Moving Average Processes of order p and q are well established in time series modeling
(see Box and Jenkins (1970)). An ARMA(p,q) process is defined as

Zt = α1Zt−1 +α2Zt−2 + ...+αpZt−p +β1εt−1 +β2εt−2 + ...+βqεt−q + εt (3)

where the αi are p autoregressive coefficients, the β j are q moving average coefficients and the values
εt called innovations have normal distributions with mean zero and variance σ2

ε . For q = 0 the process
becomes an Autoregressive Process (AR(p)) and for p = 0 an Moving Average Process (MA(q)).

Methods for fitting the parameters of ARMA processes according to measures of a trace are available
and are implemented in standard statistical software tools (Box and Jenkins 1970). Observe, from Eq. 3 that
the marginal distribution of these models is always given as a weighted sum of N(0,σ2

ε ) random variables.
Therefore, only models with marginal distributions that can be derived from a normal distribution can be
adequately captured by ARMA processes.

2.4 Autoregressive-To-Anything Processes

ARTA processes (Biller and Nelson 2005; Cario and Nelson 1996) combine an AR(p) base process as
defined in Sect. 2.3 with an arbitrary marginal distribution FY and are defined as a sequence Yt = F−1

Y [Φ(Zt)]
(t = 1,2, ...) where FY is the marginal distribution, Φ is the standard normal cumulative distribution function
and {Zt ; t = 1,2, ...} is a stationary Gaussian AR(p) process that is constructed such that the distribution
of the {Zt} is N(0,1) (cf. Cario and Nelson (1996)). The probability-integral transformation Ut = Φ(Zt)
ensures that U(t) has uniform distribution on (0,1) (cf. Devroye (1986)) and the transformation Yt = F−1

Y [Ut ]
results in a time series {Yt , t = 1,2, ...} with the desired marginal distribution FY . Cario and Nelson (1996),
Biller and Nelson (2005) established a relation between the autocorrelation structures of the ARTA process
and the base process, gave an efficient numerical procedure to construct an AR(p) base process such that
the ARTA process has the desired autocorrelations that are e.g., estimated from a trace and presented two
approaches for fitting ARTA processes to a trace. The first approach from Cario and Nelson (1996) only
determines the AR(p) base process for a given marginal distribution and a trace, while the second fits a
Johnson marginal distribution and the base process.

ARTA processes are applicable for all marginal distributions FY for which a closed-form expression for
the inverse cdf exists or for which F−1

Y can be computed efficiently using a numerical procedure. For the
interesting class of Phase-type distributions, for which it is known that they can represent every distribution
with a strictly positive density in (0,∞) (O’Cinneide 1990), the cdf contains a matrix exponential (cf. Eq. 2)
and F−1

Y cannot be computed in an efficient way. In Kriege and Buchholz (2011a) a different approach to
combine Phase-type distributions with a base process is presented that will be summarized in the following
section. Afterwards this approach is extended to use arbitrary joint moments instead of only autocorrelation
coefficients.

3 FITTING CORRELATED ACYCLIC PHASE-TYPE PROCESSES

A common measure for the dependence are autocorrelation coefficients which are directly related to the
joint moment E[Yt ,Yt+h]. However, more general joint moments E[Y k

t ,Y
l

t+h] capture additional parts of the
dependence structure of a trace or a stochastic process which is not visible in the first joint moments which
define the autocorrelation coefficients. In Kriege and Buchholz (2011a) Correlated Acyclic Phase-type
Processes (CAPP) that combine an acyclic Phase-type distribution with an ARMA(p,q) base process have
been introduced and a fitting algorithm for CAPPs using the empirical autocorrelation coefficients has
been presented. In the following the main results from Kriege and Buchholz (2011a) are summarized.
Afterwards we establish the theoretical framework to fit CAPPs according to arbitrary joint moments. In
Sect. 5 we will investigate the effect of different sets of joint moments on the fitting quality.
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3.1 Correlated Acyclic Phase-Type Processes

As already mentioned CAPPs of order (n, p,q) (denoted as CAPP(n, p,q)) combine an acyclic Phase-type
distribution of order n with an ARMA(p,q) base process. The acyclic Phase-type distribution is expressed
in terms of its elementary series (Cumani 1982), where each series describes one path from an initial state to
the absorbing state, and the ARMA(p,q) process is used to select series, thereby introducing correlation into
the sequence of Phase-type distributed random variables. More precisely, we can divide an PH distribution
with initial probability vector π and transition rate matrix D0 into m elementary series where each series
describes one path from an initial state to the absorbing state. The i-th series is then defined in terms of
a vector Λi that contains the transition rates of the states of the series and an associated probability τi
that is computed from the the transition rates along the path and the initial probability of the first state
of the path, i.e. for a series consisting of the states i1, i2, . . . , ik the vector of transition rates is given by
Λi = (−D0(i1, i1),−D0(i2, i2), . . . ,−D0(ik, ik)) and the initial probability is given by

τi = π i1
D0(i1, i2)
−D0(i1, i1)

D0(i2, i3)
−D0(i2, i2)

· · · t(ik)
−D0(ik, ik)

where t(ik) denotes the transition rate from state ik to the absorbing state. An example for an acyclic
Phase-type distribution and its elementary series is given in Fig. 1.
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Figure 1: An APH and its elementary series.

We then define disjoint subintervals [bi, b̄i] on [0,1] for each series and an indicator function δ (U, i),
i.e.

b1 = 0
b̄i = bi + τi i = 1, ...,m
bi = b̄i−1 i = 2, ...,m

, δ (U, i) =

{
1, U ∈ [bi, b̄i)

0, otherwise.
(4)

Now, let {X (Λi)
t } be sequences of iid random variables with Hypo-Exponential distribution described by a

vector of rates Λi with length Si that contains the transition rates of the i-th series and let {Zt} be a sequence
of correlated random variables with standard normal distribution generated by an ARMA(p,q) process as
defined in Eq. 3. Setting Ut = Φ(Zt) where Φ is the standard normal cdf we obtain a sequence {Ut} of
correlated random variables with uniform distribution on (0,1) (cf. Devroye (1986)) and can construct the
CAPP description

Yt =
m

∑
i=1

δ (Ut , i)X
(Λi)
t (5)

that uses the elementary series to describe a sequence of correlated random variables with the same acyclic
Phase-type distribution that the elementary series have been computed from Kriege and Buchholz (2011a).

The autocorrelation of the CAPP is given by

Corr[Yt ,Yt+h] =
E[Yt ,Yt+h]−E[Y ]2

Var[Y ]
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and E[Y ] and Var[Y ] are given by the Phase-type distribution and can be computed using Eq. 2. For the
remaining term E[Yt ,Yt+h] one obtains (Kriege and Buchholz 2011a)

E[Yt ,Yt+h] = E

[(
m

∑
i=1

δ (Ut , i)X
(Λi)
t

)(
m

∑
j=1

δ (Ut+h, j)X (Λ j)
t+h

)]
(6)

= ∑
i, j

((
Si

∑
s=1

1
Λi(s)

)(
S j

∑
s=1

1
Λ j(s)

)∫
Φ−1(b̄ j)

Φ−1(b j)

∫
Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt ,zt+h)dztdzt+h

)
where ϕρh(zt ,zt+h) is the bivariate standard normal density function with correlation ρh =Corr[Zt ,Zt+h].
In a fitting approach, parameters of the stochastic model are set to approximate the empirical measures
from a trace (i.e., E[Y i]≈ µ̂i and E[Yt ,Yt+h]≈ ν̂1,1,h).

Because the ARMA base process is short-range dependent, CAPPs are short-range dependent as well.
However, it has been shown in Horvath and Telek (2002) that in practice short-range dependent processes
can approximate long-range dependent behavior sufficiently close.

3.2 Computing Arbitrary Joint Moments of a CAPP

In the following we will generalize the ideas from the previous section to compute arbitrary joint moments
of a CAPP. Eq. 6 already gives the formula for the first joint moment which is needed for the computation
of the autocorrelation. For the computation of arbitrary joint moments E[Y k

t ,Y
l

t+h] we obtain

νk,l,h = E[Y k
t ,Y

l
t+h] = E

( m

∑
i=1

δ (Ut , i)X
(Λi)
t

)k

,

(
m

∑
j=1

δ (Ut+ j, i)X
(Λ j)
t+h

)l


= ∑
i, j

E
[

δ (Ut , i)X
(Λi)
t

k
,δ (Ut+h, j)X (Λ j)

t+h

l
]

(7)

= ∑
i, j

(
E [δ (Ut , i)δ (Ut+h, j)]E

[
X (Λi)

t
k
]

E
[

X (Λ j)
t+h

l
])

= ∑
i, j
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E [δ (Φ(Zt), i)δ (Φ(Zt+h), j)]µ(hexp)

k (Si,Λi)µ
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l (S j,Λ j)
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l (S j,Λ j)∫
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−∞

∫
∞
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δ (Φ(zt), i)δ (Φ(zt+h), j)ϕρh(zt ,zt+h)dztdzt+h

)
= ∑
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(
µ
(hexp)
k (Si,Λi)µ

(hexp)
l (S j,Λ j)

∫
Φ−1(b̄ j)

Φ−1(b j)

∫
Φ−1(b̄i)

Φ−1(bi)
ϕρh(zt ,zt+h)dztdzt+h

)
(8)

where µ
(hexp)
k (Si,Λi) is the k-th moment of a Hypo-Exponential distribution with Si phases and rate vector

Λi. Note, that the Eq. 7 holds because for a fixed U we have that δ (U, i) = 1 for exactly one i and δ (U, j) = 0
for all i 6= j. Eq. 8 holds because δ (U, i) = 1 for U ∈ [bi, b̄i) and 0 otherwise. Therefore, δ (·) can be
omitted in the double integral and used to determine the integration bounds. Note, that µ

(hexp)
k (Si,Λi) can

easily be computed using Eq. 2 and for the computation of the bivariate normal integral fast numerical
procedures exist (Drezner and Wesolowsky 1990). The goal is then to choose the parameters such that
E[Y k

t ,Y
l

t+h]≈ ν̂k,l,h.
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3.3 An Algorithm for Fitting CAPPs According to Joint Moments

Using Eq. 8 we can sketch the following fitting algorithm for CAPPs using arbitrary joint moments, which
is a generalization of the algorithm from Kriege and Buchholz (2011a).

The algorithm from Listing 1 expects an acyclic Phase-type distribution, a trace file with empirical
observations from a real system, the order (p,q) of the ARMA base process and the power and lag (k, l,h)
of joint moments E[Y k

t ,Y
l

t+h] as inputs. For fitting the Phase-type distribution any of the existing approaches
(cf. Sect. 2.2) can be used. For our implementation we used the approaches from Thümmler, Buchholz,
and Telek (2006) that fits an Hyper-Erlang distribution with an Expectation Maximization algorithm and
the moment fitting technique from Buchholz and Kriege (2009) that fits a general acyclic Phase-type
distribution.

Listing 1: Steps for fitting CAPPs.
Inputs:

acyclic Phase-type distribution APH(n)
Trace T = (t1, t2, ..., tr)
p,q: number of AR and MA coefficients
J = {(k1, l1,h1),(k2, l2,h2), · · · ,(ks, ls,hs)}: set of empirical joint moments used for fitting

1) determine and sort elementary series of APH(n)
2) compute empirical joint moments ν̂k,l,h,∀(k, l,h) ∈J from T according to Eq. 1
3) for each (ki, li,hi) determine ARMA autocorrelation ρki ,li ,hi using Eq. 8
4) minimize Eq. 9 to find an ARMA(p,q) model for the ρk,l,h
5) set variance of ARMA(p,q) according to Eq. 10
6) return CAPP(n, p,q) model with base ARMA(p,q) process and distribution APH(n)

In the first step of the algorithm the elementary series of APH(n) are computed. Additionally, the
elementary series are sorted according to their expected durations, i.e. i≤ j⇒ E

[
X (Λi)

]
≤ E

[
X (Λ j)

]
. This

is not a restriction because the order of the series has no effect on the distribution, but a requirement for
a correct modeling of the autocorrelation (Kriege and Buchholz 2011a). In the second step the empirical
joint moments of the trace ν̂k,l,h are computed according to Eq. 1. These are the desired joint moments
that the CAPP should exhibit at the end of the fitting algorithm. Note, that if k = l = 1 the algorithm fits
according to the joint moments E[Yt ,Yt+h] that correspond to the lag-h autocorrelation coefficients.

Steps 3-5 of the algorithm from Listing 1 describe the construction of the ARMA(p,q) base process.
The ARMA(p,q) base process has to observe two requirements. First, it has to exhibit an autocorrelation
structure such that the CAPP(n, p,q) approximates the given set of joint moments estimated from the trace
in step 2. Second, the ARMA(p,q) base process from Eq. 3 has a standard normal distribution, i.e., the
variance (or autocovariance at lag 0) of the ARMA(p,q) process has to be 1. Hence, the construction of
the ARMA base process consists of three parts. We have to determine the autocorrelation structure of
the base process depending on the desired joint moments of the CAPP model (step 3 of the algorithm
from Listing 1), we have to fit an ARMA model according to that autocorrelation structure (step 4 of the
algorithm) and we have to modify the ARMA model to have a standard normal distribution (step 5 of the
algorithm).

In step 3 of the algorithm for each empirical joint moment ν̂k,l,h the corresponding autocorrelation
ρh = ρk,l,h of the ARMA(p,q) base process is determined. Then the parameters of the ARMA process are
computed such that the CAPP has the joint moment νk,l,h according to Eq. 8 match the empirical moments
ν̂k,l,h. Observe that Eq. 8 defines how to compute νk,l,h = E[Y k

t ,Y
l

t+h] from a given process description,
but includes no method to set the process parameters to match predefined values νk,l,h. In our case ν̂k,l,h
is given (i.e., estimated from the trace) and we have to determine the corresponding ρk,l,h that determine
the parameters of the ARMA process. This has to be done numerically by a simple line search algorithm
(Press et al. 1993). Note, that for the CAPP fitting approach using the autocorrelations instead of joint
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moments from Kriege and Buchholz (2011a) and for the original ARTA approach from Cario and Nelson
(1996) it is also necessary to determine the base process autocorrelation numerically.

Once the base process autocorrelations (ρk1,l1,h1 ,ρk2,l2,h2 , · · · ,ρks,ls,hs) have been determined we need
to construct an ARMA(p,q) that exhibits these autocorrelations, which is done in step 4 of the algorithm.
This can be done by using a general purpose optimization algorithm like Nelder and Mead (1965), Nash
(1990) to minimize

min
s

∑
i=1

(
ρ̄ki,li,hi

ρki,li,hi

−1
)2

(9)

where ρ̄ki,li,hi are the autocorrelations of the ARMA(p,q) model that is constructed during the minimization
process and ρki,li,hi are the autocorrelations to be achieved. See e.g., Brockwell and Davis (1998) how to
compute the autocorrelations of an ARMA(p,q) process.

Step 5 of the algorithm consists in adjusting the variance such that the base process has a standard
normal marginal distribution. The autocorrelation of a stationary ARMA(p,q) process is given by ρ1,1,h =
ρh = γ(h)/γ(0), where γ(h) is the autocovariance at lag h. Since both γ(h) and γ(0) depend on the variance
of the innovations σ2

ε (cf. Brockwell and Davis (1998)) the fraction can be reduced by eliminating σ2
ε

and thus, ρh is independent of σ2
ε . Consequently, we can set σ2

ε such that the {Zt ; t = 1,2, ...} have a
standard normal distribution without modifying the autocorrelation structure of the base process. For a
given ARMA(p,q) process with σ̃2

ε being the variance of the white noise and γ̃(0) being the autocovariance
at lag 0 we can set the new variance to

σ
2
ε = σ̃

2
ε /γ̃(0) (10)

resulting in a new N(0,1) process with the same autocorrelations as the old process.
Finally, the ARMA(p,q) base process and the Phase-type distribution APH(n) can be combined and

the CAPP(n, p,q) model is returned in step 6 of the algorithm.

4 USING CORRELATED ACYCLIC PHASE-TYPE PROCESSES IN SIMULATION MODELS

Stochastic processes have to fulfill several requirements to be used in simulation models. First, fitting the
processes, i.e., setting the parameters according to observations measured from a real system, should be
possible in an efficient way. For CAPPs we have outlined an efficient fitting approach in the previous
section. Second, random number generation, i.e., sampling from the process, should be possible in an
efficient way and the integration of the processes into simulation models has to be possible without much
additional effort. In the following we will outline random number generation and the integration into
simulation models for CAPPs.

Zt = α1Zt−1 + α2Zt−2 + ... + αpZt−p

+β1εt−1 + β2εt−2 + ... + βqεt−q + εt
Ut = Φ(Zt)

Zt ∼ N(0, 1)
Yt =

∑m
i=1 δ(Ut, i)X

(Λi)
t

Ut ∼ U(0, 1)

Figure 2: Steps for Generating Random Numbers from Correlated Acyclic Phase-type Processes.

The basic steps for sampling from a CAPP are shown in Fig. 2. In the first step a normally distributed
random number εt is drawn that serves as new innovation and the weighted sum according to Eq. 3 is
computed to obtain the next Zt . The Zt is transformed into Ut = Φ(Zt) with uniform distribution and Ut
is used to determine the elementary series i for which δ (Ut , i) = 1. Finally, a random number from a
Hypo-Exponential distribution that corresponds to series i is drawn to determine the next element of the
time series Yt .

Since for an ARMA(p,q) process it is assumed that p previous observations and q previous innovations
exist, i.e., when generating Zt the previous observations Zt−1, · · · ,Zt−p and the innovations εt−1, · · · ,εt−q
are required, the ARMA(p,q) should be initialized with suitable values for the previous observations and
innovations when generating the first observations Z1,Z2, · · · . For the innovations this is straightforward,
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because they are iid random numbers, and consequently the εt−1, . . . ,εt−q can be drawn from a normal
distribution with zero mean and variance σ2

ε . For the initialization of the p previous observations we have
to observe that they are correlated and hence, they have to be drawn from a multivariate normal distribution,
which can be done using standard theory (Law and Kelton 2000). Let

Σ =


r0 r1 · · · rp−1
r1 r0 · · · rp−2
...

...
. . .

...
rp−1 rp−2 · · · r0


be the covariance matrix with the autocovariance values (r0,r1, · · · ,rp−1) of the ARMA process and let
µ = (µ, · · · ,µ) be a vector that contains p times the mean value µ of the ARMA process. In our case µ = 0
because we required the Zt to have standard normal distribution. Now we draw p independent random
numbers X = (X0,X1, · · · ,Xp−1)

T from a standard normal distribution and compute the lower triangular
matrix C with Σ =CCT by a Cholesky decomposition (Fishman 1973). Then, the Zt−i, i = 1...p are obtained
by setting Z = µ +CX .

The approaches for the simulation of CAPPs described above have been integrated into a module for
OMNeT++ to allow an easy integration of stochastic processes into simulation models. OMNeT++ (Hornig
and Varga 2008) is an open source simulation framework that has been developed and extensively used for
the modeling of communication protocols and networks. Models for OMNeT++ consist of modules that
can be arranged in a hierarchical way and that communicate via gates with message passing. So called
simple modules are the basic building blocks of a model, while compound modules are a collection of
simple modules and other compound modules.

In Kriege and Buchholz (2011b) a module called OMNeT++ Arrival Process Module is presented that
generates random numbers from Markovian Arrival Processes, ARTA processes and ARMA processes and
has been subsequently extended to generate random numbers from CAPPs. The generation of random
numbers from ARMA models and the initialization step described above are already supported by the
module from Kriege and Buchholz (2011b) and therefore it only has to be extended by a class for CAPPs
that implements the transformation Ut = Φ(Zt) and the generation of the next Yt from Ut (cf. Fig. 2). As
preparation the class computes the elementary series of the APH distribution and sorts them according to
their mean values resulting in a list of the rates and the probability for each elementary series. For random
number generation the class then chooses the series i for which δ (Ut , i) = 1 and draws m random numbers
from an exponential distribution with rates corresponding to the elementary series. The sum of this m
random numbers is returned as the next sample.

Figure 3: Simple OMNeT++ simulation model with Arrival Process module.

A simple OMNeT++ example model consisting of the Arrival Process module initialized with a CAPP
and a single server queue is shown in Fig. 3.

5 EXPERIMENTAL RESULTS

The algorithm from Listing 1 can be used to fit CAPPs according to an arbitrary set of joint moments
J . In the following we will investigate the effect of different sets J on the quality of the fitted process.
We fitted CAPPs to two different benchmark traces from the Internet Traffic Archive (http://ita.ee.lbl.gov).
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Table 1: Joint moments of the trace LBL-TCP3 and three fitted CAPPs.
νk,l,h LBL-TCP-3 CAPP(8,5,2) CAPP(12,6,3) CAPP(25,3,3)
ν1,1,1 1.3013 1.30129 1.30177 1.29945
ν1,1,2 1.2328 1.23285 1.23363 1.23544
ν1,1,3 1.1957 1.19534 1.19933 1.19583
ν1,1,4 1.1741 1.17443 1.17007 1.17277
ν1,1,5 1.1575 1.15781 1.1567 1.15792
ν1,1,6 1.1490 1.1501 1.14836 1.14934
ν1,1,7 1.1434 1.14313 1.14381 1.14354
ν1,1,8 1.1429 1.14039 1.14106 1.14022
ν1,1,9 1.138 1.13727 1.13849 1.13779
ν1,1,10 1.13597 1.13634 1.13716 1.13639
ν2,2,1 17.4164 14.8483 12.9159 16.9957
ν3,3,1 890.542 501.286 323.586 769.042

The trace BC-pAug89 (Leland et al. 1994) contains a million packet arrivals observed at the Bellcore
Morristown Research and Engineering facility in August 1989. The trace LBL-TCP-3 (Paxson and Floyd
1995) contains two hours of TCP traffic from the Lawrence Berkeley Laboratory and was recorded in
January 1994. Since one can expect that the CAPPs provide a good approximation of the joint moments in
J that have been used for fitting but a loose approximation of other joint moments, we will not compare
the joint moments of the fitted processes and the traces as our primary measure for the fitting quality.
Table 1 shows the joint moments νk,l,h of different CAPPs fitted to the trace LBL-TCP-3. For all models
joint moments with k = l = 1 have been used for fitting and as one can see all processes provide a good
approximation for these joint moments, but provide only a rough approximation for other joint moments
like ν2,2,1. Similar observations can be made for most of the fitted processes.

Therefore, we use the results of a simple queueing model as measures to compare different input
processes. The queueing model consists of a single server with a queue capacity of 10 that is fed by
arrivals generated by the Arrival Process Module described in Sect. 4. The Arrival Process Module is
initialized with the different CAPPs that resulted from the fitting step and we run the model with different
utilization levels between ρ = 0.3 and ρ = 0.9 using the queue length distribution as result measure. To
obtain reference values we use a trace driven simulation where the arrivals for the server are generated by
the two traces BC-pAug89 and LBL-TCP-3.

In a first series of experiments we fitted CAPPs according to empirical joint moments ν̂k,l,h,h= 1, · · · ,15
for fixed k and l, e.g. for one CAPP the joint moments ν̂1,1,1, ν̂1,1,2, · · · , ν̂1,1,15 have been used, for another
one the joint moments ν̂2,2,1, ν̂2,2,2, · · · , ν̂2,2,15 and so on. Fig. 4 shows the queue length distribution for the
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Figure 4: Queue length distribution for the trace LBL-TCP-3 and different CAPP(12, ·, ·).

trace LBL-TCP-3 and different CAPPs with Phase-type distributions of order 12. The labels k l indicate
which joint moments have been used for fitting, i.e they denote the joint moments ν̂k,l,h,h = 1, · · · ,15. As
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Figure 5: Queue length distribution for the trace LBL-TCP-3 and different CAPP(25, ·, ·).
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Figure 6: Queue length distribution for the trace BC-pAug89 and different CAPP(25, ·, ·).

one can see the best approximation was obtained for k = l = 1 followed by the CAPP with k = 1, l = 2.
Note, that the plot for ρ = 0.7 was omitted in Fig. 4 because it is similar to the plot for ρ = 0.9. The
results from Fig. 5 that show the results for CAPPs with Phase-type distributions of order 25 confirm these
observations. Again we can see that the CAPPs that were fitted according to empirical joint moments ν̂k,l,h
with smaller k and l provided the closest approximation regarding the queue length distribution.

Finally, some results for the trace BC-pAug89 are shown in Fig. 6. Although in this case the
approximation of the queue length distribution is better than for the previous trace for all CAPPs, the
CAPPs that have been fitted according to smaller joint moments still provide the best approximation.

As we have seen from the previous examples fitting according to smaller joint moments usually yields
better results than fitting according to higher joint moments only, since the empirical joint moments get very
large for larger k and l values, which makes fitting more difficult. However, a combination of smaller and
higher joint moments can be used to increase the quality of the approximation, which we will demonstrate
in the following. Fig. 7 shows the queue length distribution for three different CAPPs with Phase-type
distributions of order 6. The curve labeled 1 1 was generated by a CAPP that was fitted according to the
joint moments ν̂1,1,h,h = 1, · · · ,20. For the other two CAPPs we omitted the higher lags (h = 16, · · · ,20)
for fitting and added higher joint moments for the lower lags instead, such that the overall number of joint
moments considered for fitting remained the same. In particular, for the CAPP corresponding to the curve
labeled with 1 1a we added ν̂2,2,1, ν̂1,2,1, ν̂2,1,1, ν̂2,2,2, ν̂2,2,3 and for the one with the curve 1 1b we added
ν̂2,2,1, ν̂2,2,2, ν̂2,2,3, ν̂2,2,4, ν̂2,2,5. These added higher joint moments helped to capture more information of
the dependance structure caused by the (usually) more important lower lags and as we can see from Fig. 7
this procedure resulted in an improvement of the approximation of the queue length distribution without
increasing the computational effort for fitting. These observations are confirmed by the results from Fig. 8
that shows the results for different CAPPs that have been fitted to the trace LBL-TCP-3 in a similar setup
as described above. Again, using higher joint moments for the lower lags increased the approximation of
the queueing behavior, especially for the higher utilization levels.
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Figure 7: Queue length distribution for the trace BC-pAug89 and different CAPP(6, ·, ·).
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Figure 8: Queue length distribution for the trace LBL-TCP-3 and different CAPP(10, ·, ·).

6 CONCLUSIONS

The paper presents a new approach for modeling correlated input processes in computer and communication
networks. The approach combines ARMA processes and Phase-type distributions and generates a process
which is denoted as a CAPP. Phase-type distributions are used for an accurate fitting of the observed
distribution using maximum likelihood or moment based fitting methods. Parameters of the ARMA are
computed to capture higher order joint moments which is an extension of other available methods that
only consider the coefficient of autocorrelation which corresponds to the first joint moment for describing
the autocorrelation. An algorithm for generating the process description is presented and it is shown how
the resulting CAPPs can be used in simulation models and especially in network simulation models of the
software tool OMNeT++ where CAPPs are available as standard modules.
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