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1117 Budapest, HUNGARY

ABSTRACT

Markov arrival processes (MAPs) are used extensively in traffic modeling. Consequently a wide variety
of fitting procedures have been developed. Most of these however are computationally demanding or not
general enough. To resolve this problem, two-step procedures of a specific type have been made, which fit
a phase-type distribution (PH) to static parameters in the first step, and extend it to a MAP in the second
while fitting dynamic parameters. Their general weakness is that the first step often restricts the attainable
range of dynamic parameters. In our paper we present a method, that aims at providing a good starting
point for the second step, by optimizing the representation of the PH that was produced by the first step.

1 INTRODUCTION

Stochastic modeling of communication and computer systems is usually based on computationally tractable
flexible analytical models. With these respects, Markov arrival processes (MAPs) are one of the most
attractive candidates to describe traffic processes. They are known to approximate a wide range of processes
from renewal ones to long range dependent ones (Andersen and Nielsen 1998; Horváth and Telek 2002a),
and they allow the use of the computationally effective matrix analytic methods (Latouche and Ramaswami
1999).

Because of the structure of the standard description of MAPs, it is a reasonable approach, to apply a fitting
procedure that is composed of two steps (Buchholz and Kriege 2009; Horváth, Telek, and Buchholz 2005).
The first one generates a phase type distribution for capturing traits of the inter-arrival time distribution of
the process (pdf, moments, etc.), while the second one approximates parameters that characterize dynamic
behavior (joint moments, lag correlations, etc.).

A phase type distribution has infinite different representations. The chosen representation affects the
obtainable range of the dynamic parameters of the second step, therefore it is important to find an appropriate
PH representation in the first step. In this work we propose a procedure that can be effectively used to find
such a representation.

The rest of this paper is organized as follows: Section 2 presents some basic properties of PH distributions
and MAPs, and Section 3 the above mentioned fitting procedure. The proposed transformation method and
its variants are discussed in Section 4. Section 5 provides numerical examples, comparing the different
versions. Section 6 concludes the paper.

2 PHASE TYPE DISTRIBUTIONS AND MARKOV ARRIVAL PROCESSES

2.1 Phase Type Distributions

Let us take a continuous time Markov chain (CTMC) with n transient states and one absorbing state. The
time to absorption from an initial state probability vector π̂ = (π,πn+1) defines a phase type distribution
(PH). The D generator matrix of such CTMCs has a specific structure:
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D =

[
D0 d1
0 0

]
.

The row sums of a CTMC generator matrix are 0, which means that D01 =−d1, where 1 is the column
vector of ones. In addition, it is usually assumed, that πn+1 = 0 (i.e. the process cannot start in the absorbing
state). Consequently, the PH is completely characterized by π and D0.

The distribution of the time to absorption is

P(X < t) = 1−π eD0t 1, (1)

the associated density function is
f (t) =−πeD0xD01, (2)

its kth moment is
E(Xk) = k! π (−D0)

−k 1 (3)

and the arrival intensity is

λ =
1

E(X)
=

1
π (−D0)−1 1

.

The same PH can be described with different (π,D0) matrix-vector pairs, which we call different
representations of the distribution. We can get a new representation of the PH using the following theorem:
Theorem 1 Let π be the initial probability vector and D0 be the generator matrix of a PH. By applying
the following similarity transformation:

D′0 = T−1D0T , π
′ = πT ,

where T is a non-singular matrix and T 1 = 1, we will get a different representation of the same distribution.

Proof. The theorem can be proven using:

f (t) =−πeD0xD01 =−π

∞

∑
i=0

t i

i!
D0

iD01 =−π

∞

∑
i=0

t i

i!
D0

iD0T 1 =

=−π

∞

∑
i=0

t i

i!
D0

iT D′01 =−πT
∞

∑
i=0

t i

i!
D′0

iD′01 =−π
′eD′0xD′01.

It is important to note, that the new representation is not necessarily Markovian. This means that π ′

and D′0 defines the same density function according to (2), but π ′ might contain negative elements, and D′0
might contain negative non-diagonal elements, which is not possible for the initial vector and the generator
of a CTMC.

If D0 is an upper (or lower) triangular matrix, we speak of an acyclic phase type distribution (APH).
Every APH has infinitely many different representations, including the one called CF-1 canonical form
(shortly canonical form hereafter), whose D0 matrix has the following structure:

D0 =


−λ1 λ1

−λ2 λ2
. . . . . .
−λn−1 λn−1

−λn

 ,
where λ1 ≤ λ2 ≤ ·· · ≤ λn. The transformation of an APH representation to the distribution’s canonical

form is shown in Cumani (1982), He and Zhang (2006).
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2.2 Markov Arrival Processes

A Markov arrival process (MAP) is usually defined by two matrices, D0 and D1, such that D = D0 +D1
is the generator of the background continuous time Markov chain (CTMC), D0 contains the transitions of
the background CTMC without arrival and D1 describes the arrivals and the associated state transitions.
The row sum of matrices D0 and D1 satisfies D01 =−D11, since the row sum of the generator of a CTMC
satisfies D1 = 0, and we have 0 = D1 = D01+D11.

The steady state probability vector of the background CTMC, α , is the solution of the linear system
αD = 0, α1 = 1.

In case of MAPs, the discrete time process embedded at arrival instants plays an important role. The
state transition probability matrix of the embedded process is P = (−D0)

−1D1. The steady state probability
vector of the embedded process, π , is the solution of the linear system πP = π, π1 = 1. The steady state
distributions of the original and the embedded processes are related as

α =
π(−D0)

−1

π(−D0)−11
= λπ(−D0)

−1 .

In steady state, the inter-arrival time is phase type distributed with initial probability vector π , and
generator D0. Thus, the inter-arrival time distribution and the moments can be calculated using (1) and
(3). In addition the ρk lag-k correlation can be computed, using

ρk =
λ 2π(−D0)

−1Pk(−D0)
−1 1−1

2λ 2π(−D0)−1(−D0)−1 1−1
, (4)

and µi, j, the order (i, j) lag-k joint moment using

µi, j = E(Xn
iXn+k

j) = i! j!π(−D0)
−iPk(−D0)

− j1.

3 THE TWO-STEP MAP FITTING PROCEDURE

As the previous section showed, the static characteristics of a MAP only depend on π and D0, but not
on D1. This trait is the base of the two-step methods (Buchholz and Kriege 2009; Horváth, Telek, and
Buchholz 2005), which have the following general structure:

• In the first step, the inter-arrival time distribution is fitted by a phase type distribution, which
determines the D0 matrix (the generator of the PH distribution) and the π vector (the initial
probability vector of the PH distribution)

• Then the D1 matrix is constructed, using a method that fits to dynamic parameters, while leaving
the inter-arrival time distribution (i.e. π and D0) of the resulting MAP unchanged.

3.1 Constructing π and D0

The first step of the procedure is a phase type fitting problem for which we refer to (Asmussen and Nerman
1991; Bobbio and Cumani 1992; Horváth and Telek 2002b; El Abdouni Khayari, Sadre, and Haverkort
2001; Thümmler, Buchholz, and Telek 2005; Buchholz and Kriege 2009). Here we only recall that the
various PH fitting methods can handle different input data. The inter-arrival time distribution of the original
process can be given with its pdf or cdf, samples or by a given number of moments. The methods in
(Asmussen and Nerman 1991; El Abdouni Khayari, Sadre, and Haverkort 2001; Thümmler, Buchholz, and
Telek 2005) fit a phase type distribution to a set of samples. The methods in (Bobbio and Cumani 1992;
Horváth and Telek 2002b) allow to fit to both, pdf/cdf and a set of samples. Exact phase type fitting of
moments is available up to 3 moments (which is used in (Heindl 2004)). A heuristic approach is used to
fit moments in (Buchholz and Kriege 2009).
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All fitting methods in (Bobbio and Cumani 1992; Horváth and Telek 2002b; El Abdouni Khayari,
Sadre, and Haverkort 2001; Thümmler, Buchholz, and Telek 2005); and (Buchholz and Kriege 2009)
provide acyclic phase type distributions.

3.2 Constructing D1

The second phase of the procedure is the fitting of D1 to dynamic parameters. This is a non-linear
optimization with linear constraints. The constraints are:

C1: D1i, j ≥ 0, ∀1≤ i, j ≤ n,
C2: D11 = −D01,
C3: π(−D0)

−1D1 = π ,

where n is the number of states of the background CTMC.
The first two are general requirements for any MAP, while the last one ensures that the inter-arrival

time distribution remains the same as it was after the first step.
The goal function of the optimization is typically a weighted sum function of the normalized and

squared differences of the MAP’s and the original process’ dynamic parameters.
To be more specific, in Buchholz and Kriege (2009), the goal function is

θ = ∑
(i, j)∈J

βi, j
(
1−

µi, j

νi, j

)2
, (5)

where µi, j is the MAP’s, and νi, j is original process’ order (i, j) lag-1 joint moment, βi, j is the corresponding
weight and J is the set of (i, j) pairs for which the lag-1 joint moments have to be fitted. This expression
results in a least-squares problem with linear constraints.

In Horváth, Telek, and Buchholz (2005), the goal function is ∑
K
k=2 wk(ρk− ρ̂k)

2, where ρk and ρ̂k are
the lag-k correlation for the MAP and the original process respectively, and wk is the corresponding weight.

4 OPTIMIZING THE REPRESENTATION OF THE PH DISTRIBUTION

The introduced fitting method has an important issue. The representation of the resulting PH distribution
in the first step greatly affects the range of achievable lag correlation values. In the case of the canonical
form for example (or any other representation, with one entry or exit state), the lag-k correlation will be
zero, irrespectively of the actual D1. This makes clear, that finding a proper representation is crucial.

4.1 The Representation Optimization Method of Buchholz and Kriege

In (Buchholz and Kriege 2009) a representation optimization method is introduced, which has the canonical
form of an APH as input (the procedure can be used for any APH representation), and a representation
with all its states being exit states as output.
Representation Optimization Method 1
Execute the following steps for every (i, j) pair of states, where i < j, in lexicographical order.

1. Define δ ≤ δmax, where

δmax = min
(

π( j),
π(i)D0(i, j)

λ j−λi
,mink<i,D0(k,i)>0

(
π(i)

D0(k, j)
D0(k, i)

))
(6)

If λi = λ j, then the second term is considered to be infinite. If δmax > 0, then δ can be chosen
freely between δmax and 0.
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2. Compute

π
′(k) =


π(i)+δ , for k = i,
π( j)−δ , for k = j,
π(k), otherwise,

(7)

and

D0(k, l) =



D0(i, j) π(i)
π(i)+δ

− (λ j−λi)δ
π(i)+δ

, for k = i and l = j,

D0(i, l)
π(i)

π(i)+δ
+D0( j, l) δ

π(i)+δ
, for k = i and l 6= j,

D0(k, i)
π(i)+δ

π(i) , for k < j and l = i,
D0(k, j)+D0(k, i) δ

π(i) , for k < j and l = j,
D0(k, l), otherwise.

(8)

4.2 The Proposed Representation Optimization Method

The above described method is computationally advantageous, however it has some shortcomings:

• The connection between the attainable range of dynamic parameters and the method is not obvious,
consequently the resulting representation might be even worse than the original one (if that is not
the canonical form).

• The output representation depends greatly on the actual value of δ , for which δ = 0.9 ∗ δmax is
proposed by the authors, however, this proposal is based solely on experimental results.

• The input and the output of the procedure have structural constraints as they can only be APHs.
• The elements of the πout output probability vector (which contains the probabilities that state i is

the last state before absorption) are barely changing, which can be a limiting factor.

The procedure introduced in this section addresses these problems, and offers a more flexible alternative.
To this end, we introduce matrix T i, j(x) (i 6= j) of size n×n whose k, l element is

[T i, j(x)]k,l =


1− x, if k = l = i,
1, if k = l 6= i,
x, if k = i, l = j,
0, otherwise.

Indeed only two elements of matrix T i, j(x) differ from the identity matrix: element i, i and i, j. The core
of this method is Theorem 1 and it is composed of the following steps.

Representation Optimization Method 2
For a given goal function G (a few options will be discussed later)

1. Set a to 0.5
2. Maximize G (PH(πT i, j(x),T−1

i, j (x)D0T i, j(x))),
for i, j ∈ {1, . . . ,n}, i 6= j and x ∈ {a,−a},
such that πT i, j(x) and T−1

i, j (x)D0T i, j(x) are Markovian.
3. If there is no such representation, or its goal function value is lower than the original representation’s,

then halve a,
else set

π = πT i∗, j∗(x∗) and D0 = T−1
i∗, j∗(x

∗)D0T i∗, j∗(x∗),

where i∗, j∗,x∗ are the parameters of the best new representation.
4. Stop if a gets smaller than a predefined amin, or the cycle limit is reached,

otherwise go to step 2.
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We examined two major types of goal functions for the representation optimization. The first group
consists of various functions of the entropy of the input and output probability vectors. Former is
Hin = ∑

i
π(i)log(π(i)), the latter is Hout = ∑

i
πout(i)log(πout(i)), where πout is the previously defined

output probability vector which can be calculated using πout = (πD0
−1) · (−D01)T , where · denotes

elementwise multiplication operation of the vectors. We experimented with the sum and product of the
input and output vectors’ entropies. Higher entropy means better spread of probability in the probability
vector. If the probability concentrates into one state, it results in a PH with one significant initial or exit
state, leading to poor dynamic behavior. (Close to zero lag-1 autocorrelation for example.)

The second group of goal functions we examined for the representation optimization is related to the
achievable range of lag-1 autocorrelation (ρ1). We inspected the maximal and minimal ρ1 that can be
attained from a representation, as well as their difference as possible goal functions. From (4) it is clear,
that ρ1 is a linear function of the elements of D1. As such, constraint C2 and C3 (as constraints) and (4)
(as the base of the goal function) form a linear programming problem with n2 variables and 2n constraints,
where n is the order of the MAP, and can be solved with little cost.

Other goal functions can be used as well, the main issue to be considered is that they have to be
calculated many times. (The number of calculations increases with the square of the order of the MAP in
the third step, furthermore the number of iterations grows too.)

The introduced algorithm has a crucial issue. The initial representation has a significant effect on the
result of the optimization procedure. This is due to two main reasons. The first one is that the method
uses a greedy algorithm, thus the optimization will get stuck at local optimums. The second one is that
the algorithm might not find any other valid PH representation at all. This is usually the case when one
tries to optimize a canonical representation, which is the result of many PH fitting algorithms.

Taking into account the flaws of both the method of Buchholz and Kriege and the just introduced,
transformation matrix based method, it is a reasonable approach to combine them: we use the former one,
to leave the canonical representation, then the latter one to eliminate the weaknesses of the Buchholz-Kriege
method.

5 NUMERICAL EXPERIMENTS

In this section we will demonstrate and discuss a few specialities of the method presented in the previous
chapter through a number of examples. We will also compare it with the method of Buchholz and Kriege
and make a few remarks regarding that procedure.

Hereinafter we will use the notation < group>(<method>)
<type> in the figures and in the text, where < group>

shows the group of the goal function, and can be ρ for lag-1 correlation and θ for the goal function in
(5), < type > selects the specific goal function of the group, and < method > specifies the optimization
method.

The possible categories for type are:

• min and max - the minimal and maximal achievable correlation
• range - the distance between the minimal and maximal achievable correlations

The possible categories for method are:

• Buchh - result of Buchholz-Kriege method
• sum, prod - result of the entropy sum and product based optimization method
• min, max, range - the first two are for the result of the minimal correlation, maximal correlation

based optimization method, the third is for the sum absolute value of the maximal and minimal
achievable correlation
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For example ρ
(sum)
max denotes the maximal achievable correlation by the entropy sum based representation

optimization method. In other words the maximal achievable lag-1 autocorrelation after using H(sum) =

H(in)+H(out) = ∑
i

π(i)+∑
i

πout(i) as goal function to be maximized in the representation optimization.

In the examples we used PhFit to fit a PH distribution to data samples. The tool was introduced in
Horváth and Telek (2002b) and has many different features. What is important from our work’s point of
view is that it fits a PH of given order in canonical representation.

In the second step of the MAP fitting we used (5) as a goal function i.e. we fitted to a weighted sum
function using the normalized and squared differences of the lag-1 joint moments of the MAP and the
original process. Our main reason for this choice is that it results in a least squares optimization, while in
the case of the other presented option a polynomial optimization problem has to be solved.

Our decision does not conflict with the usage of correlation based goal functions in the representation
optimization, as, having a fixed inter-arrival time distribution, the higher flexibility of ρ1 is equivalent to the
higher flexibility of the µ1,1 joint moment, as can be easily seen from the definition of the two measures.

It is also worth mentioning that, while reaching θ = 0 would mean errorless fitting to the chosen lag-1
joint moments, the value set might be out of the bounds of what can be fitted with MAPs of the chosen
order, therefore prefect fitting can be theoretically impossible in many cases.

5.1 Fitting MAP(5) to MAP(5)

In our first example we approximated an order 5 MAP with an other order 5 one through its inter-arrival
time distribution and dynamic parameters. The original MAP is defined by

D0 =


−8 7.6 0 0 0

0 −9 6.7 0 0
0 0 −12.9 9.5 0
0 0 0 −16.3 10.6
0 0 0 0.3 −11.7

 , D1 =


0 0 0.1 0 0.3
0 1.2 1.1 0 0
0 3.4 0 0 0

2.7 3 0 0 0
11.4 0 0 0 0

 .
First we generated a trace with 100,000 arrivals and fitted an order 5 PH to it. The fitting resulted in

π = [0.52298, 0.132574, 0.153669, 0.102099, 0.088678], and

D0 =


−6.20831 6.20831 0 0 0

0 −14.1202 14.1202 0 0
0 0 −17.9148 17.9148 0
0 0 0 −18.5773 18.5773
0 0 0 0 −19.6338

 .
Before continuing with the joint moment fitting, let us examine how the achievable correlations change

with δrate = δ/δmax. In Figure 1 the results of the entropy based and the correlation based optimizations
can be compared to that of the Buchholz-Kriege method. The correlation of the trace is ρ1 = 0.1197.
Perhaps the most striking observation is that the Buchholz-Kriege method reaches its maximum around
δrate = 0.63, with ρ

(Buchh)
max = 0.106 and by δrate = 0.9 it decreases to 0.02. This behavior can be explained

by taking a look at the initial probability vector of the PH (i.e. the embedded probability vector of the
MAP) in the δrate = 0.9 point: π = [0.943, 0.021, 0.025, 0.007, 0.004]. The probabilities of the latter
states get near zero, in other words the representation gets close to one with a single entry state, which
cannot be complemented to a MAP that has any dynamic behavior. This drift to the initial states is a general
characteristic of the method, as can be easily seen from (7). (If δmax is small, or the original values of the
initial probabilities are high enough, they might remain sufficiently high after using the Buchholz-Kriege
method even for bigger δrate values, in which case this is not an issue.)
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Figure 1: Example 1: Range of achievable correlations after optimizing the representation of the PH.
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Figure 2: Example 1: Result of the joint moment fitting.

The entropy based optimizations address exactly this problem. In Figure 1(a) we can see that the usage
of the two goal functions have similar outcome for a large scale of δrate. The differences at smaller δrate
values are mainly due to the small local optimums in which the entropy product based optimization gets
stuck, and not because of the significant difference in the goal functions themselves. In general, when the
maximal correlations are similar for the two cases, the optimized representations are similar as well.

The situation is a bit more complicated in the correlation based methods’ case. The representations
might differ considerably despite the close correlation values. This seems to suggest that the representation
could not be improved further significantly. This assumption is also supported by the fact that the achievable
correlation does not change substantially for larger values of δrate. In accordance with the expectations,
the representation with maximal attainable correlation (ρ1 = 0.114) can be obtained using the maximal
correlation as goal function.

Now let us move on to the construction of D1. We made the fitting based on the νi, j, 1≤ i, j ≤ 4 joint
moments of the trace, with βi, j = 0.25i+ j−2. The results can be seen in Figure 2. By comparing Figure
1 and 2, it is obvious, that the θ goal function shows close connection with the ρ1 values. This is partly
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(b) Correlation based optimization.

Figure 3: Example 2: Range of achievable correlations after optimizing the representation of the PH.

because we approximated a MAP with a MAP of the same order, but the other reason is that the most
important µ1,1 joint moment is in direct connection with ρ1.

5.2 Fitting a Real Trace

In these examples we fitted to real data, the first 100,000 arrivals of the pAug89 traffic trace (The Internet
Traffic Archive 1989), which contains arrival times of Ethernet packages. The correlation of the data is
ρ1 = 0.167.

First we fitted with an order 3 MAP. The PH fitting set resulted in

π = [0.0382422, 0.70902, 0.252738] and D0 =

−89.7068 89.7068 0
0 −863.648 863.648
0 0 −881.203

 ,
Figure 3 shows the maximum achievable correlations after the different optimizations of this representation.

We can see that the different optimizations give almost identical results for the whole range of δrate
(except for the Buchholz-Kriege method). Furthermore, the actual representations are very similar for all
of the cases. This suggests that the PH distribution is inherently flexible. Also it affirms that the entropy
based optimization can give good results in many cases, while having lower computational cost than the
correlation based ones.

Figure 4 shows the outcome of the joint moment fitting. The curves are in accordance with our
earlier observations: the higher the maximal correlation is, the better the fitting can be. In this case,
however, the maximal achievable correlation is significantly bigger, than what the trace has. The reason
why they are still that closely connected is that the variance of the original trace is higher then the MAP’s.
(σ2

trace = 1.95∗10−5, σ2
MAP = 1.21∗10−5) The Buchholz-Kriege method gives approximately equal result

(θ = 0.22) to the other methods at its optimum, which is just below δrate = 1, while at δrate = 0.9, θ = 0.34.
In our third example we fitted the pAug89 trace with an order 5 MAP. The PH fitting resulted in

π = [0.042174, 0.359523, 0.454311, 0.000272131, 0.14372] and

D0 =


−96.5378 96.5378 0 0 0

0 −1036.68 1036.68 0 0
0 0 −1257.18 1257.18 0
0 0 0 −1474.71 1474.71
0 0 0 0.3 −2951.7

 .



A. Mészáros and M. Telek

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
δrate

θ

θ(Buchh)         

θ(sum)         

θ(prod) 

(a) Entropy based optimization.

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
δrate

θ

θ(Buchh)         

θ(min)         

θ(max)  

θ(range)

(b) Correlation based optimization.

Figure 4: Example 2: Result of the joint moment fitting.
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(b) Correlation based optimization.

Figure 5: Example 3: Range of achievable correlations after optimizing the representation of the PH.

The maximum achievable correlations of the different optimizations can be seen in Figure 5. The results
show that the applied methods could not improve the representation significantly. The entropy sum based
optimization even worsens the attainable correlation, which decreases to zero regardless of the value of
δrate. This reveals that the entropy based goal functions are not completely reliable.

The results suggest that the PH itself is inflexible. The Buchholz-Kriege method can barely move the
representation from the canonical form (this is because the δmax value is far smaller than in previous cases),
and the first and fourth elements of π reach zero rapidly when the optimizations increase the maximal
achievable correlation.

The results of the joint moment fitting are shown in Figure 6, and are in accordance with the expectations
based on the previous examples. The θ goal function’s value is in close connection with the maximal
achievable correlation.

The second and third example show, that the fitting does not necessarily improve with the increase of
the order of the MAP, on the contrary, our experiments show that higher order PHs are often less flexible
than smaller ones.
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Figure 6: Example 3: Result of the joint moment fitting.

6 CONCLUSIONS

In this paper we presented a new PH transformation algorithm, which can improve the existing two-step
MAP fitting methods. The algorithm optimizes the representation of the PH obtained in the first step, this
way produces a better representation for the second step.

The numerical examples show that generally the new transformation algorithm gives better results than
the method of Buchholz and Kriege. We have to note however, that the correlation based optimization is
relatively slow (and its run time increases rapidly with the order of the PH), although the algorithm’s speed
can be controlled by changing the amin value in the stopping condition, while the entropy based optimization
gives worse results than the Buchholz-Kriege method in some cases. The experiments also affirm that
the achievable lag-1 autocorrelation can be effectively used to judge the flexibility of a representation in
general.

It is also worth pointing out, that the δrate = 0.9 choice is generally suboptimal for the Buchholz-Kriege
method, thus it may be beneficial to check the results for multiple δrate values.

The last example also made clear that the representation optimization has its limitations, as the structure
of the PH may narrow down the possible range of dynamic behavior significantly. This is a serious flaw of
the two step optimization procedures in general. It is among our future goals to develop an optimization
method that eliminates this weakness.
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