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ABSTRACT

Simulation models are integral to modern scientific research, national defense, industry and manufacturing,
and in public policy debates. These models tend to be extremely complex, often with thousands of factors
and many sources of uncertainty. To understand the impact of these factors and their interactions on model
outcomes requires efficient, high-dimensional design of experiments. Unfortunately, all to often, many
large-scale simulation models continue to be explored in ad hoc ways. This suggests that more simulation
researchers and practitioners need to be aware of the power of experimental design in order to get the most
from their simulation studies. In this tutorial, we demonstrate the basic concepts important for design and
conducting simulation experiments, and provide references to other resources for those wishing to learn
more. This tutorial (an update of previous WSC tutorials) will prepare you to make your next simulation
study a simulation experiment.

1 INTRODUCTION

In June 2008, a new supercomputer called the ”Roadrunner” was unveiled. This bank of machines was
assembled from components originally designed for the video game industry; it costs $133 milion, and
is capable of doing a petaflop (a quadrillion operations per second). The New York Times coverage
stated that “petaflop machines like Roadrunner have the potential to fundamentally alter science and
engineering” by allowing researchers to “ask questions and receive answers virtually interactively” and
“perform experiments that would previously have been impractical” (Markoff 2008). Four years later,
IBM’s “Sequoia” supercomputer is the new world leader, with 16 petaflop capability. Yet let’s take a closer
look at the practicality of a brute-force approach to simulation experiments. Suppose a simulation has 100
factors, each factor has two levels (say, low and high) of interest, and we decide to look at each combination
of these 100 factors. A single replication of this experiment for simulation that runs as fast as a single
operation would take over 2.5 million years on the Sequoia and over 40 million years on the Roadrunner!

Efficient design of experiments can break this curse of dimensionality at a tiny fraction of the cost. For
example, suppose we want study 100 factors and all their two-way interactions. One screening design we
could use (a resolution 5 fractional factorial, described in Section 3.3) specifies 32768 specific combinations
of the factor levels to evaluate. How quickly can we finish such an experiment? On a desktop computer
with a simulation that takes a full second to run, each replication of this experiment takes under 9.5 hours;
even if the simulation takes a more reasonable one minute to run, we can finish this experiment on an 8-core
desktop (under $3,000) in 2.85 days. Other designs are even more efficient, and provide more detailed
insights into the simulation model’s behavior.

The field called Design of Experiments (DOE) has been around for a long time. Many of the classic
experimental designs can be used in simulation studies. We discuss a few in this paper to explain the concepts
and motivate the use of experimental design. However, the settings in which real-world experiments are
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performed can be quite different from the simulation environment, so a framework specifically geared
toward simulation experiments is beneficial.

Before undertaking a simulation experiment, it is useful to think about why this the experiment is
needed. Simulation analysts and their clients might seek to (i) develop a basic understanding of a particular
simulation model or system, (ii) find robust decisions or policies, or (iii) compare the merits of various
decisions or policies. The goal will influence the way the study should be conducted (Kleijnen et al. 2005).

We focus on setting up single-stage experiments to address the first goal, and touch briefly on the
second. Although the examples in this paper are very simple simulation models, the same types of designs
have been extremely useful for investigating more complex simulation models in a variety of application
areas. For a detailed discussion of the philosophy and tactics of simulation experiments, a more extensive
catalog of potential designs, and a comprehensive list of references, see Kleijnen et al. (2005) or Sanchez
et al. (2012); other useful references are Kleijnen (2007), Chapter 12 of Law (2007), or Sanchez (2009).

The benefits of experimental design are tremendous. Once you realize how much insight and information
can be obtained in a relatively short amount of time from a well-designed experiment, DOE should become
a regular part of the way you approach your simulation projects.

2 BASIC CONCEPTS

2.1 Definitions and Notation

One of the first things an experimenter or tester must do to design a good experiment is identify the
experimental factors. In DOE parlance, factors are the input (or independent) variables that are thought
might have some impact on responses (i.e., experimental outputs). In general, an experiment might have
many factors, each of which might assume a variety of values, called levels of the factor in DOE. A primary
goal of many DOEs is to identify which of the factors are really important for which responses, and which
are not and can thus be dropped from further consideration, greatly reducing the experimental effort and
simplifying the task of interpreting the results. Also, of the important factors, we would like to identify the
nature of the impact on the responses (e.g., increasing, linear, quadratic), and whether the levels of some
factors influence the effects that other factors have (called factor interactions).

To identify appropriate designs, it is often useful to classify the factors along several dimensions:

• Quantitative or qualitative. Quantitative factors naturally take on numerical values, while qualitative
factors do not (though they might be assigned numeric coded values).

• Discrete or continuous (quantitative factors only). Discrete factors can have levels only at certain
separated values; an example would be the number of x-ray machines in a hospital, which would
have to be a non-negative integer, presumably with some upper bound. Continuous factors can
assume any real value, perhaps within some range, such as the speed at which a vehicle is operated.

• Binary or not. Binary factors are naturally constrained to just two levels, like the classification of
a part as either defective or non-defective. Non-binary factors could take on more than two values,
but might still be tested at only two levels, typically “low” and “high,” or might be allowed to
assume (many) more than two levels in the experiment.

• Controllable or uncontrollable. In a simulation experiment all factors are manipulated and controlled,
but in reality factors might be controllable or not. For example, the degree or nature of enemy
jamming of a communications system would be controlled in a simulation, but not in an actual
fight. This can affect how the experimenter interprets the estimates of the effects of factors.

Throughout this paper, simulation model denotes any model that is evaluated using a computer.
Simulation models come in many flavors. There are deterministic simulations (e.g., numerical solutions
of differential equations, where the same set of inputs always produces the same output) and stochastic
simulations (where the same set of simulation inputs may produce different output unless the random-
number streams are carefully controlled). Simulations that model a process that occurs over time can also
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be characterized as terminating or non-terminating, depending on the stopping conditions. For ease of
presentation we assume that terminating simulations are used; the simulation stops after either a pre-specified
amount of simulation time has elapsed, or when a specific event or condition occurs.

Mathematically, let X1, . . . ,Xk denote the k factors in our experiment, and let Y denote a response
of interest. Sometimes graphical methods are the best way to gain insight about the Y ’s, but often we
are interested in constructing response surface metamodels that approximate the relationships between the
factors and the responses with statistical models (typically regression models).

First, suppose that the Xi’s are all quantitative, although they can be discrete or continuous. A main-effects
model means we assume

Y = β0 +
k

∑
i=1

βiXi + ε, (1)

where the ε’s are independent random errors with mean zero. Ordinary least-squares regression assumes
that the ε’s in (1) are also identically distributed, but the regression coefficients are still unbiased estimators
of the βi even if the underlying variance is not constant.

To explore any quadratic effects, we will include terms like X2
1 as potential explanatory variables for

Y . Similarly, two-way interactions are terms like X1X2. A second-order model includes quadratic effects
and two-way interactions, although it is best for numerical stability to fit this after centering the quadratic
and interaction terms, as in (2):

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βi,i(Xi −X i)
2 +

k−1

∑
i=1

k

∑
j=i+1

βi, j(Xi −X i)(X j −X j)+ ε. (2)

Some statistical packages do this centering automatically. It is worth noting that regression can also be
used when some of the X’s are qualitative—in fact, the ANOVA (analysis of variance) technique commonly
used for experimental designs with qualitative X’s is a special case of regression.

A design is a matrix where every column corresponds to a factor, and the entries within the column are
settings for this factor. Each row represents a particular combination of factor levels, and is called a design
point. If the row entries correspond to the actual settings that will be used, these are called natural levels.
Coding the levels in a standardized way is a convenient way to characterize a design. Different codes are
possible, but for quantitative data the low and high levels are often coded as −1 and +1, respectively, for
arithmetic convenience. Each repetition of the whole design matrix is called a replication and we generally
assume that the replications are independent. Let nd be the number of design points, and nr be the number
of replications. Then the total number of experimental units is ntot = ndnr.

2.2 Pitfalls to Avoid

Two common types of simulation studies are ill-designed experiments. The first can occur if several people
each suggest an “interesting” combination of factor settings, so a handful of design points end up being
explored where many levels change simultaneously. Consider an agent-based simulation model of the
child’s game, where two teams (blue and red) each try to “capture the flag” of the opposition. Suppose that
only two design points are used, corresponding to different settings for the speed (X1) and stealth (X2) of
the blue team, with the results in Figure 1a. (Instead of providing numerical response values, a blue circle
is used to represent a “good” average outcome for the blue team, while a red square represents a “bad”
average outcome.) One person might claim these results show that high stealth is of primary importance,
another that speed is the key to success, and a third that they are equally important. There is no way to
resolve these differences of opinion without collecting more data. In statistical terms, the effects of stealth
and speed are said to be confounded. In practice, simulation models easily have dozens or hundreds of
potential factors. A handful of haphazardly chosen scenarios, or a trial-and-error approach, can use up a
great deal of time without addressing the fundamental questions.
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Figure 1: Two poor designs for capture-the-flag.

The second type of study that can be problematic occurs when people start with a “baseline” scenario
and vary one factor at a time. Revisiting the capture-the-flag example, suppose the baseline corresponds to
low stealth and low speed. Varying each factor, in turn, to its high level yields the results of Figure 1b. It
appears that neither factor is important, so someone using the simulation results to decide how to choose
a team would not know how (or if) to proceed. But combining the results of Figure 1a and b, it is clear
that success requires both high speed and high stealth. This means the that factors interact—and if there
are interactions, one-at-a-time sampling will never uncover them!

The pitfalls of using a poor design seem obvious on this toy problem, but the same mistakes are made
far too often in larger studies of more complex models. When only a few variations from a baseline are
conducted, there may be many factors that change but a few that decision makers think are “key.” If they
are mistaken, changes in performance from the baseline scenario may be attributed to the wrong factors.
Similarly, many analysts change one factor at a time from their baseline scenario, but fail to understand that
this approach implicitly assumes that there are no interaction effects. This assumption may be unreasonable
unless the region of exploration is very small.

Another pitfall to avoid is more subtle. The statistical DOE literature focuses, in large part, on comparing
designs in terms of the number of design points or the precision of specific factor effect estimates (e.g.,
main effects) based on assumed response behavior. This means there is a tendency to limit the investigation
to a very small number of factors and/or limit the number of levels for each factor. This mindset is
counterproductive for simulation experiments, particularly given the availability of computing clusters and
the relative time required to create (vs. run) the model. It is better to gather enough data, via larger designs
and more than one replication, to be able to explore the simulation’s performance without resorting to lots
of simplifying assumptions or relying on series of small experiments that may need to be back-tracked.

2.3 Choosing Factors

Potential factors in simulation experiments include the input parameters or distributional parameters of a
simulation model. For example, a simulation model of a repair facility might have both quantitative factors
(such as the number of mechanics of different types, or the mean time for a particular task) and qualitative
factors (such as priority rules).

Generating a list of the potential inputs to a simulation model is one way of coming up with an initial
factor list. However, factors need not correspond directly to simulation inputs. For example, suppose two
inputs are the mean times µ1 and µ2 required for a specific agent to process messages from class 1 and
class 2, respectively, where message class 1 is considered more complex than message class 2. Varying
µ1 and µ2 independently may either result in unrealistic situations where µ1 < µ2, or require the analyst
to select narrow factor ranges. Instead, we could use µ1 as one factor to represent the capabilities of the
agent, and vary the ratio µ2/µ1 over a range of interesting values (say, 0.4 to 0.9) to represent the relative
difference in message complexity.
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2.4 Sample-Size Issues

In live experiments, where data are extremely expensive, the total sample size is often very small. This
affects the choice of an experimental design as well as the number of replications.

In simulation experiments, where a major portion of the effort often occurs in model development, the
total sampling budget may not be so constrained. This increases the set of potential designs that can be
used, and it may be possible to generate a great deal of information (even hundreds of thousands of runs)
in a relatively short time. We discuss this further in Section 3.

2.5 Non-terminating Simulations

Different types of simulation studies involve different types of experimental units. For a static Monte
Carlo simulation, where no aspect of time is involved, the experimental unit is a single observation. For
time-stepped or discrete-event stochastic simulation studies, it more often is a run or a batch, yielding
an averaged or aggregated output value. When runs form the experimental units for non-terminating
simulations, and steady-state performance measures are of interest, care must be taken to delete data during
the simulation’s warm-up period before performing the averaging or aggregation. Details may be found in
any simulation textbook, such as Law (2007) or Kelton, Smith, and Sturrock (2011).

3 POTENTIAL EXPERIMENTAL DESIGNS

Many designs are available in the literature. We focus on a few basic types that we have found particularly
useful for simulation experiments. Factorial or gridded designs are straightforward to construct and readily
explainable—even to those without statistical backgrounds. Coarse grids (2k factorials) are most efficient
if we can assume that the simulation response is well-fit by a model with only linear main effects and
interactions, while fine grids (more than two levels for factors) provide greater detail about the response and
greater flexibility for constructing metamodels of the responses. When the number of factors is large, then
more efficient designs are required. We have found Latin hypercubes to be good general-purpose designs
for exploring complex simulation models when little is known about the response surfaces. Two-level
designs called resolution 5 fractional factorials (R5-FFs) allow the linear main effects and interactions
of many factors to be investigated simultaneously; they are potential choices either when factors have
only two qualitative settings, or when practical considerations dictate that only a few levels be used for
quantitative input factors. Expanding these R5-FFs to central composite designs provides some information
about nonlinear behavior in simulation response surfaces.

Factorials (or gridded designs) are perhaps the easiest to discuss: they examine all possible combinations
of the factor levels for each of the Xi’s. A shorthand notation for the design is mk, which means k factors
are investigated, at m levels for each factor, in a total of mk design points. Crossed designs, where different
sets of factors are investigated at different numbers of levels are written as, e.g., mk1

1 ×mk2
2 , where k1 factors

are evaluated at m1 levels each, and another k2 factors are evaluated at m2 levels each.

3.1 2k Factorial Designs (Coarse Grids)

The simplest factorial design is a 2k because it requires only two levels for each factor. These can be
low and high, often denoted −1 and +1 (or − and +). 2k designs are very easy to construct. Start by
calculating the number of design points N = 2k. The first column alternates −1 and +1, the second column
alternates −1 and +1 in groups of 2, the third column alternates in groups of 4, and so forth by powers of
2. Conceptually, 2k factorial designs sample at the corners of a hypercube defined by the factors’ low and
high settings. The left of Figure 2 shows an example for a 23 design. Envisioning a 24 or larger design is
left to the hyperimaginative reader.

Factorial designs have several nice properties. They let us examine more than one factor at a time, so
they can be used to identify important interaction effects. They are also orthogonal designs: the pairwise
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Table 1: Terms for a 23 factorial design

Design Term
Point 1 2 3 1,2 1,3 2,3 1,2,3

1 �1 �1 �1 +1 +1 +1 �1
2 +1 �1 �1 �1 �1 +1 +1
3 �1 +1 �1 �1 +1 �1 +1
4 +1 +1 �1 +1 �1 �1 �1
5 �1 �1 +1 +1 �1 �1 +1
6 +1 �1 +1 �1 +1 �1 �1
7 �1 +1 +1 �1 �1 +1 �1
8 +1 +1 +1 +1 +1 +1 +1

X
1

X
1

X
2

X
2

X
3

1 2

3 4

5 6

7 8

Figure 2: 23 factorial design, graphically and in matrix form, with numbered design points.

correlation between any two columns (factors) is equal to zero. This simplifies the analysis of the output (Y ’s)
we get from running our experiment, because estimates of the factors’ effects (β̂i’s) and their contribution
to the explanatory power (R2) of the regression metamodel will not depend on what other explanatory
terms are present in the regression metamodel. From Figure 2, there are seven different terms (three main
effects, two two-way interactions, and one three-way interaction) that we could consider estimating from
a 23 factorial experiment. But since we also want to estimate the intercept (overall mean), that means
there are eight things we could try to estimate from eight data points. That will not work—we will always
need at least one degree of freedom (d.f.) for estimating error (and preferably, a few more). A similar
relationship holds as we increase the number of factors k.

So, what do people do with a factorial design? One possibility is to replicate the design to get more
d.f. for error. Estimating eight effects from eight observations (experimental units) is not possible, but
estimating eight effects from 16 observations is simple. Replication also makes it easier to detect smaller
effects by reducing the underlying standard errors associated with the estimates of the β ’s. In simulation
experiments replication is quite important for another reason: the response variability can differ dramatically
across design points, and understanding the behavior of the response variability may be as important (or
more important) than understanding the behavior of the response mean.

Another option is to make simplifying assumptions. The most common approach is to assume that
some higher-order interactions do not exist. In the 23 factorial of Figure 2, one d.f. would be available
for estimating error if the three-way interaction could safely be ignored. We could then fit a second-order
regression model to the results. Similarly, if we have data for a single replication of a 24 factorial design
but can assume there is no four-way interaction we have one d.f. for error; if we can assume there are no
three-way or four-way interactions, we have five d.f. for error estimation. Making simplifying assumptions
sounds dangerous, but it can be a good approach. Over the years, statisticians conducting field experiments
have found that often, if there are interactions present, the main effects also show up unless you “just
happen” to set the low and high levels so the effects cancel. There is also a rule of thumb stating that the
magnitudes of two-way interactions are at most about 1/3 the size of main effects, and the magnitudes of
three-way interactions are at most about 1/3 the size of the two-way interactions, etc. Whether or not this
holds for experiments on simulations of complex systems is not yet certain–we may expect to find stronger
interactions in a simulation of a supply chain or humanitarian assistance operations than when growing
potatoes. Consequently, we advocate checking (at a minimum) for second-order interactions.

3.2 mk Factorial Designs (Finer Grids)

Examining each of the factors at only two levels (the low and high values of interest) means we have
no idea how the simulation behaves for factor combinations in the interior of the experimental region.
Finer grids can reveal complexities in the landscape. When each factor has three levels, the convention
is to use -1, 0 and 1 (or −, 0, and +) for the coded levels. Consider the capture-the-flag example once
more. Figure 3 shows the (notional) results of two experiments: a 22 factorial (on the left) and an 112

factorial (on the right). For the 22 factorial, all that can be said is that when speed and stealth are both
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high, the agent is successful. Much more information is conveyed by the 112 factorial: here we see that
if the agent can achieve a minimal level of stealth, then speed is more important. In both subgraphs the
blue circles—including the upper right-hand corner—represent good results, the tan triangles in the middle
represent mixed results, and the red squares on the left-hand side and bottom represent poor results.
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Figure 3: 22 and 112 factorial designs for capture-the-flag.

When we study more than two factors, a scatterplot matrix of the design points is a useful graph for
visualizing the design—it shows the projections of the full design onto each pair of factors. Consider
the left-most graph in Figure 4 for a 24 factorial. This graph contains cells of subplots of the design
points for pairs of factors at a time. For instance, the third cell over in the top row plots the (X3,X1)
factor combinations; the third cell down in the left column is just its transpose, plotting the pairs (X1,X3),
so carries the same information. The second graph in Figure 4 contains the scatterplot matrix for a 44 factorial.
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Figure 4: Scatterplot matrices for selected factorial and NOLH designs.

The larger the value of m for an mk factorial design, the better its space-filling properties. Yet despite
the greater detail provided, and the ease of interpreting the results, fine grids are not suitable for more than
a handful of factors because of their massive data requirements. A 220 requires nd over one million, a 510

requires nd > 9.7 million, and a 1010 factorial requires 10 billion design points.
Considering the number of high-order interactions we could fit but may not believe are important

(relative to main effects and two-way or possibly three-way interactions), this seems like a lot of wasted
effort. It means we need smarter, more efficient types of experimental designs if we are interested in
exploring many factors.

3.3 2k−p Resolution 5 Fractional Factorial and Central Composite Designs

Sometimes many factors take on only a few levels. In these cases, we can consider variations of gridded
designs. If we are willing to assume that some high-order interactions are not important, we can cut down
(perhaps dramatically) the number of runs required to examine a fixed number of factors using a fractional
factorial design.
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Graphically, these sample at a carefully-chosen fraction of the corner points on the hypercube. The
left-most cube in Figure 5 shows the sampling for a 23−1 factorial design, i.e., investigating three factors,
each at two levels, in only 23−1 = 4 runs. There are two points on each of the left and right faces of the
cube, and each of these faces has one instance of X2 at each level and one instance of X3 at each level, so
we can isolate the effect for factor X1. Similarly, averaging the results for the top and bottom faces allows
us to estimate the effect for factor X2, and averaging the results for the front and back faces allows us to
estimate the effect for factor X3.

X
2

X
1

X
3

Factorial or Fractional
Factorial

Central Composite
Design

Star  Points+ =

}
Fractional Factorial or Factorial               +       Star Points   =   Central Composite Design. 

Figure 5: Examples of fractional factorial and central composite designs.

Saturated or nearly-saturated fractional factorials are often called screening designs because they can
be useful for eliminating factors that are unimportant (though they will not do a good job of revealing the
underlying structure of the response surface if there truly are strong interactions but we ignore them when
setting up the experiment.) They very efficient (relative to full factorial designs) when there are many
factors. For example, 64 runs could be used for a single replication of a design involving 63 factors, or two
replications of a design involving 32 factors. Screening designs that allow only main effects to be estimated
are called resolution 3 fractional factorials (R3-FFs); designs that provide valid estimates of main effects
in the presence of two-way interactions (without allowing the analyst to estimate the interaction effects)
are called resolution 4 fractional factorials (R4-FFs). More recently, Xing, Wan, and Zhu (2011) propose
analysis-method-directed supersaturated designs for high-dimensional screening experiments.

Resolution 5 fractional factorials (R5-FFs) allow all main effects and two-way interactions to be fit,
and may be more useful for simulation analysts than saturated or nearly-saturated designs. Sanchez and
Sanchez (2005) developed a method, based on discrete-valued Walsh functions, for rapidly constructing
very large R5-FFs—a short program generates designs up to a 2120−105 in under a minute. The gains in
efficiency (as compared to full factorials) are dramatic enough to be worth mentioning again: running a
2100 full factorial would require over 40 million years on the world’s fastest supercomputer in 2009, while
a R5-FF requires only 2100−85 = 32768 design points.

For quantitative factors, an R5-FF can be extended to a central composite design (CCD) that lets the
analyst estimate all full second-order models (i.e., main effects, two-way interactions, and quadratic effects).
Start with a 2k factorial or R5 2k−p fractional factorial design. Add a center point and two “star points” for
each of the factors. In the coded designs, if −1 and +1 are the low and high levels, respectively, then the
center point occurs at (0,0, ...,0), the first pair of star points are (−c,0, ...,0) and (c,0, ...,0); the second
pair of star points are (0,−c,0, ...,0) and (0,+c,0, ...,0), and so on. A graphical depiction of a CCD for
k = 3 appears in Figure 5. Using the efficient R5-FFs of Sanchez and Sanchez (2005) as the base designs,
a CCD for 10 factors requires 152 design points, while a 310 factorial requires over 59000 design points.
Once again, it is clear that a brute force (full factorial) approach is impossible when k is large, but efficient
experimental designs allow the analyst to conduct an experiment.
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3.4 Space-filling Designs

Latin hypercube (LH) designs provides a flexible way of constructing efficient designs for quantitative
factors. They have some of the space-filling properties of factorial designs with fine grids, but require
orders of magnitude less sampling. Once again, let k denote the number of factors, and let nd ≥ k denote
the number of design points. Every column of the LH design is a permutation of the nd equally-spaced
factor levels. Figure 6 lists a random LH with k = 2 and m = 11, and provides a picture of results
that might arise by using this experimental design for our capture-the-flag simulation. Compare this de-
sign to those of Figure 3. Unlike the 22 factorial design, the LH design provides some information about
what happens in the center of the experimental region, but requires far less effort than the 112 factorial design.
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Figure 6: Random Latin hypercube for capture-the-flag.

Random LH’s may not work well unless nd >> k, but other LH designs are available. Cioppa and
Lucas (2007) construct nearly orthogonal Latin hypercube (NOLH) designs that have good space-filling
and orthogonality properties for small or moderate k (k ≤ 29). Portions of two of their designs are shown
in Figure 4c and d: an NOLH design with 17 design points, and an NOLH design with 257 design points.
The two-dimensional space-filling behavior of the NOLH compares favorably with that of the 44 factorial
for roughly 1/15 the computational effort, so experimenters concerned about the level of computational
effort might prefer the latter. Alternatively, experimenters considering the use of the 44 factorial (and thus
willing to run 256 design points) might prefer the NOLH with 257 design points (just one more)—and
gain the ability to examine a much denser set of factor-level combinations, as well as explore up to 25
additional factors using the same design! The benefits of LH sampling are greatest for large k. Assuming
that a single design point takes one second to run, each replication of a 29-factor experiment would take
under five minutes using an NOLH design, but over 17 years using a 229 factorial design. More recently,
Hernandez, Lucas, and Carlyle (2012) use a mixed integer programming approach to generate sets of Latin
hypercubes that are saturated or nearly-saturated. These extend Latin hypercube designs for simulation
studies with larger numbers of factors. MacCalman, Vieira Jr., and Lucas (2012) develop NOLH designs
that allow for the estimation of full second-order response models.

Replicating the design allows us to determine whether or not a constant error variance is a reasonable
characterization of the simulation’s performance, and is highly recommended. If we have the time and
budget for even more sampling, then two or more different Latin hypercubes or NOLHs can be stacked to
obtain a larger design with better space-filling properties. Stacking two designs means running both sets
of design points; one way to obtain two different designs from the same NOLH matrix is to reassign the
factors to different columns of the experimental design matrix.

When discrete-valued factors with limited numbers of levels are present, then rounded NOLH designs
may no longer retain their near-orthogonal properties. The nearly orthogonal and balanced (NOB) mixed
designs of Vieira Jr. et al. (2011ab, 2012) are suitable in these situations. One general-purpose design with
nd = 512 allows for the simultaneous investigation of up to 300 factors: 20 each with discrete numbers of
levels m (m = 2,3, . . . ,11) and 100 continuous-valued factors.
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3.5 Robust Design Methods

A distinction can be made between decision factors that can be controlled in the real world, and noise
factors that cannot be controlled during actual operations. For example, in a simulation of search-and-rescue
operations after a natural disaster, the decision factors might include the communication systems, available
equipment, or number of people on the rescue team. Noise factors might include weather conditions, the
number and location of those in need of rescue, and the skill levels of the emergency medical technicians.
An alternative to an exploratory analysis that seeks to understand how these noise factors affect the responses
is a robust design approach, where the goal of the experiment(s) is to identify design points that yield good
performance across the range of noise factor settings—in other words, to identify robust systems, rather than
systems that are effective only against specific threat and environmental conditions—particularly if these
correspond to the most favorable settings for threat and environmental factors. The robust design philosophy
was pioneered by Taguchi (1987) for manufactured-product design, where it has been successfully used
to achieve high-quality products while keeping costs in line; it also facilitates the evaluation of trade-offs
between quality and cost. An important consideration for the simulation community is that the robust
design philosophy explicitly requires analysts to consider variances, as well as means, in assessing system
performance.

The classification of factors as either decision or noise factors may affect the choice of the design.
Generally, we are interested in fitting metamodels that explain the relationship between the decision factors
(and their interactions, etc.) and the response. Interactions among noise factors may affect the variability
of the response but are not of direct interest, while (noise factor)×(decision factor) interactions show up
as unequal response variances across different decision-factor combinations.

Applying robust design principles to simulation experiments is discussed in Sanchez (2000). A more
detailed discussion and examples appear in Kleijnen et al. (2005), where identifying robust systems and
processes is considered one of three primary goals of simulation experiments.

3.6 Sequential Screening Methods

When the number of factors is very large, then sequential screening approaches may be of interest. Two
procedures of particular interest are controlled sequential bifurcation (CSB) procedure (Wan, Ankenman,
and Nelson 2006) and a variant called CSB-X (Wan, Ankenman, and Nelson 2010). These have the
important property of providing guaranteed limits on the probabilities of observing false positives and
false negatives when screening for important factors. Sequential approaches we find particularly useful
for simulation experiments are fractional factorial controlled sequential bifurcation (F-CSB) and a variant
called FFCSB-X (Sanchez, Wan, and Lucas 2009), and the hybrid method (Shen, Wan, and Sanchez 2010).
Although these methods are heuristic, they nonetheless have been shown to have very good properties in
terms of both efficiency and effectiveness. Unlike CSB and CSB-X, these latter procedures do not require
a priori knowledge of the direction of factor effects, which makes them suitable for screening factors in
simulation models of complex systems where little subject-matter expertise exists. Screening experiments
are often followed up with more detailed experiments involving those factors identified as important.

3.7 Design-of-Experiment Based Simulation Optimization

Response Surface Methodology (RSM) was introduced by Box and Wilson (1951). It has been extensively
used in industry to select the optimal operating conditions or product designs. The fundamental RSM
framework can be briefly described as follows for a minimization problem (Myers and Montgomery 2002):

• Stage I
– Plan and run a (fractional) factorial design plus the center point in the region of interest.
– Test for curvature (i.e., a quadratic effect). If the curvature test is not statistically significant,

go to Step 3. Otherwise go to Stage II.
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– Fit a linear regression model to the data. Determine the path of steepest descent. Move along
the path of steepest descent until the response no longer improves. Go back to Step 1.

• Stage II
– Run a central composite design and fit a quadratic model.
– Based on the quadratic model, find the optimal solution.

In summary, RSM sequentially explores local regions and performs line searches along the steepest
decent to approach the optimal region. Stage II (the quadratic model) is only performed once, therefore the
obtained “optimal” solution is usually not the true optimal solution of the underlying system—and may
not even be close. One of the biggest advantages of RSM is its generality. An arsenal of well-studied
statistical tools such as regression analysis, design of experiments, and ANOVA can be incorporated in its
framework, and it is widely used despite its drawbacks.

Since simulation models representing real world systems can be very complex, the local simplified
metamodel approach is appealing. Early applications of RSM in simulation were reported in Biles (1975)
and Kleijnen (1975). However, two issues need to be solved. Firstly, RSM is not automated. Human
intervention is required to determine the local region and appropriate design for each iteration. Secondly,
RSM is heuristic, and the quality of the solution cannot be quantified. To mitigate these problems, Chang,
Hong, and Wan (2009) propose the Stochastic Trust-Region Response-Surface Method (STRONG) for
simulation optimization. It combines the RSM framework with the trust region method (developed for
deterministic optimization). Like RSM, the method relies on a series of experimental designs for repetitive
curve fitting and subsequent optimization. The difference lies on that at each iteration, the local optimization
is restricted within a trust region to guarantee the reliability of the solution. If the metamodel does not
fit the response well or the new solution fails to give sufficient improvement, the trust region will shrink,
and vice versa. This approach eliminates the requirement of human intervention and leads to competitive
asymptotic convergence property of STRONG. More importantly, the framework allows the incorporation
of various experimental designs to improve the efficiency of optimization. Numerical evaluations show that
this can significantly improve the efficiency of simulation optimization (Chang, Hong, and Wan 2009).

4 DESIGN COMPARISONS

In Figure 7 (updated from Sanchez and Wan 2011) we provide some guidance about experimental designs
for simulation experiments. This list is not intended to be exhaustive, but we hope that it will help
experimenters identify some suitable designs for particular contexts. We focus on designs discussed in
Section 3 that we believe are relatively easy to generate, implement, and analyze, as well as to interpret
and explain the results. However, if circumstances dictate that none of the designs are suitable, alternatives
are often available from a statistician or a detailed look at some of the experimental design references. A
version of this chart is maintained at the SEED Center web pages (http://harvest.nps.edu), and updated as
new designs become available to fill some of the gaps. All acronyms are defined on the web site.

Selecting a design is an art, as well as a science. Clearly, the number of factors and the mix of different
factor types (binary, qualitative or discrete with a limited number of levels, discrete with many levels,
or continuous) play important roles. But these are rarely cast in stone—particularly during exploratory
analysis. The experimenter has control over how factors are grouped, how levels are determined, etc. Even
if these are specified, different experimenters may prefer different designs.

5 GAINING INSIGHT

We believe the following are three basic goals of simulation experiments: (i) developing a basic understanding
of a particular simulation model or system; (ii) finding robust decisions or policies; and (iii) comparing
the merits of various decisions or policies (Sanchez and Lucas 2002, Kleijnen et al. 2005). Experimental
design approaches, coupled with analytic and graphical methods such as response-surface methodology
and data-mining techniques, can be useful for all these goals. They help the experimenter develop a better
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understanding of the system. This process typically follows an iterative cycle, where insights gained from
simulation experiments can be used in many ways. Results can be used to evaluate or improve the simulation
model. By identifying important factors, interactions, and nonlinear effects, the experimenter can improve
their understanding, find robust solutions, or raise questions to be explored in subsequent experiments.
Thresholds, plateaus, or other interesting features of the response surfaces might provide guidance about
situations that are particularly good (or particularly bad).

6 FINDING OUT MORE

For more on the philosophy and tactics of designing simulation experiments, examples of graphical methods
that facilitate gaining insight into the simulation model’s performance, and extensive literature surveys, we
refer the reader to Sanchez et al. (2012) or Kleijnen et al. (2005).

Books that discuss experimental designs for simulation include Santner, Williams, and Notz (2003),
Law (2007), and Kleijnen (2007). Note that their goals for those performing simulation experiments
may differ from those in this paper. For experiments where it is very time-consuming to run a single
replication, there are other single-stage designs (often used for physical experiments) that require fewer
runs than fractional factorial designs. Some of these designs appear in the above references; others can
be found in experimental design texts such as Box, Hunter and Hunter (2005) or Ryan (2007). A more
detailed discussion of how simulation experiments might be used to assist with planning live tests (physical
experiments) appears in Sanchez (2009).

Finally, the benefits of efficient experimental design are often more tangible if you see how they are
used in practice. Designs like the ones described in this paper have assisted the U.S. military and several
allied countries in a series of international data farming workshops. Interdisciplinary teams of officers and
analysts develop and explore agent-based simulation models to address questions of current interest to the
U.S. military and allies, such as network-centric operations, effective use of unmanned vehicles, peace
support operations, and more. Sanchez and Lucas (2002) provide an overview of issues in modeling and
analysis aspects of agent-based simulation. A humanitarian assistance scenario is discussed in Kleijnen
et al. (2005). Lucas et al. (2007) describe several defense and homeland security applications: critical
infrastructure protection, non-lethal capabilities in a maritime environment, and emergency first response to a
crisis event. The website of the SEED (Simulation Experiments & Efficient Design) Center for Data Farming
(at http://harvest.nps.edu) also has links to many papers, both methodological and application-oriented,
design spreadsheets and software, and over 100 student theses covering a wide range of applications.
These provide more details about statistical and graphical analysis of the simulation results, along with
implementation issues regarding leveraging high-performance computing assets.

7 CONCLUSIONS

The process of building, verifying, and validating a simulation model can be arduous—but once complete,
then it is time to have the model work for you. One extremely effective way of accomplishing this is to use
experimental designs to help explore your simulation model. This tutorial has touched on a few designs
that we have found particularly useful, but other design and analysis techniques exist. Our intent was to
open your eyes to the benefits of DOE, and convince you to make your next simulation study a simulation
experiment. As we have shown, if you are interested in exploring the behavior of a simulation model with
more than a handful of input factors, efficient experimental designs are readily available—and much more
powerful—than a petaflop supercomputer.
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