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ABSTRACT

This paper proposes an MCMC (Markov chain Monte Carlo) algorithm for estimating continuous phase-
type distributions (CPHs). In Bayes estimation, it is well known that MCMC is one of the most useful
and practical methods. The concrete MCMC algorithm for CPHs was developed by using Markov jump
processes by Bladt et al. (2003). However, the existing MCMC algorithm spends much computation time
in some cases. In this paper, we propose a new sampling algorithm which is based on uniformization
technique and backward likelihood computation. The proposed algorithm is easier to implement and is
more efficient in terms of computation time than the existing method.

1 INTRODUCTION

In the traffic modeling, discrete-time and continuous-time Markov chains (D/CTMCs) are popular approaches
to evaluate and estimate system performance indexes. In particular, since time-homogeneous DTMC and
CTMC are mathematically tractable, they are widely applied to model-based queueing and reliability
analysis in practice (Bolch et al. 2006).

Phase-type (PH) distribution provides a non-negative random variable which is defined as a time-
homogeneous DTMC or CTMC process, and can approximate any distribution with any precision (Asmussen
and Koole 1993). Therefore, it is frequently used to represent service and failure time distributions in
queueing and reliability analysis. On the other hand, when we deal with the performance evaluation of
practical systems which is described by PH distributions, it becomes a problem how to determine parameters
of PH distributions so that they fit to read data. Since PH distributions generally have the large number of
parameters, the parameter estimation of PH distributions causes the computational difficulty compared to
the parameter estimation for well-known statistical distributions such as normal distribution.

In the past literature, there are two major approaches to estimate PH parameters; moment matching and
maximum likelihood (ML) estimation. Moment matching determines PH parameters so that the theoretical
moments equate to the empirical ones. The accuracy of moment matching depends on how many moments
are used for the PH fitting. Many papers concern moment matching methods using only the first few
moments (van der Heijden 1988; Johnson and Taaffe 1989; Johnson and Taaffe 1990; Johnson 1993; Bosch
et al. 2000; Telek and Heindl 2002; Bobbio et al. 2003; Bobbio et al. 2005; Osogami and Harchol-Balter
2006). van de Liefvoort (1990) and Telek and Horváth (2007) discussed a general method to use up to
n moments for the fitting. On the other hand, ML estimation is to find the parameters maximizing the
probability that observed data is drawn from the original model. The ML estimation for PH distributions
was also discussed in several papers (Bobbio and Cumani 1992; Bobbio and Telek 1994; Asmussen et al.
1996; Thümmler et al. 2006; Panchenko and Thümmler 2007; Okamura et al. 2011).

The above two approaches give point estimates of PH parameters, and thus it is difficult to evaluate
the uncertainty of estimated parameters in these schemes. The performance evaluation of systems with
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uncertainty is often required in practical situations. For instance, in the area of reliability and traffic
modeling, failure probabilities or loss probabilities of packets should be estimated with extremely high
accuracy. In such situation, the uncertainty may considerably affect the system performance indexes.

This paper focuses on Bayes estimation for continuous PH distributions, which are defined by CTMCs,
to take account of the uncertainty of estimated parameters. The idea behind Bayes estimation is to
regard model parameters as random variables and it provides probability mass or density functions of
model parameters, called posterior distributions, as estimation results. Thus the uncertainty of estimated
parameters is evaluated by the variance of posterior distributions in Bayes estimation. However, it is well
known that computation cost to obtain posterior distributions is comparatively higher than point estimation
such as moment matching and ML estimation. To overcome this problem, Markov chain Monte Carlo
(MCMC) is often applied to getting posterior distributions approximately with low computation cost.

MCMC is a versatile approach to approximate the posterior distribution in Bayes estimation. MCMC
uses random samples drawn from posterior distributions, instead of analytical forms of them. To obtain such
samples, MCMC builds a Markov chain whose stationary distribution becomes the posterior distribution.
Bladt et al. (2003) proposed a concrete MCMC algorithm in Bayes estimation for continuous PH distributions.
However, since their algorithm is based on an acceptance-rejection sampling method (Ross 2000), it spends
much computation time to generate many samples as candidates. It degrades the computational efficiency
in some cases.

This paper presents another MCMC algorithm to obtain parameter samples from posterior distribution
in Bayes estimation for continuous PH distributions. Our idea is to use the uniformization and backward
likelihood computation. The uniformization is known as an efficient method to compute transient probability
vectors of CTMCs numerically, and it provides a DTMC representation from a CTMC. Moreover, the
backward likelihood computation is used in some of statistical models such as the forward-backward
algorithm of hidden Markov models (Baum et al. 1970). Specifically, after applying the uniformization
to the original continuous PH distribution, we compute the backward likelihood computation using the
DTMC obtained from the uniformization. Since we can avoid the acceptance-rejection method by applying
the uniformization and backward likelihood computation, we construct an efficient MCMC algorithm in
terms of computation time.

The paper is organized as follows. In Section 2, we introduce continuous PH distributions with their
definition. Section 3 presents Bayes estimation and general MCMC algorithms. In Section 4, we first
introduce the existing MCMC algorithm by Bladt et al. (2003), and propose our MCMC algorithm using
the uniformization and backward likelihood computation in Section 4.2. Section 5 is devoted to numerical
experiments to compare the proposed MCMC algorithm with the existing one in terms of computation
time. In Section 6, we give some remarks on the proposed method and point to future research directions.

2 CONTINUOUS PH DISTRIBUTIONS

A continuous PH distribution (CPH) is defined as the time to absorption in a CTMC with one absorbing
state. Let Q denote an infinitesimal generator matrix of the CTMC. Without loss of generality, Q is assumed
to be partitioned as follows:

Q =

(
T ξ

0 0

)
, (1)

where T and ξ correspond to transition rates among transient states and exit rates from transient states
to the absorbing state, respectively. Let a row vector π be an initial probability vector over the transient
states. The probability density function (p.d.f.) of the CPH is given by

fPH(t) = π exp(Tt)ξ , (2)

where the column vector ξ is often called an exit vector which represents transition rates to the absorbing
state, and is given by ξ = −T e. We assume that π , T and ξ are of finite size and that the number of
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transient states is m. The transient states are called phases in this paper. Moreover, we define πi, ξi and
λi, j as the i-th elements of π , ξ and the (i, j)-element of T , respectively.

The CPH is classified into several probability distributions according to its structure of the matrix
T (Thümmler et al. 2006). In particular, acyclic CPH (ACPH) is an important class which includes
well-known distributions such as Erlang, hypoexponential and hyper Erlang distributions. In addition,
ACPH is mathematically more tractable than general CPH. Cumani (1982) derived three canonical forms
of ACPH. All of the canonical forms have 2m−1 free parameters and any of ACPH can be reconfigured
to one of the canonical forms. Specifically, CF1 (canonical form 1) is defined by

π = ( π1 π2 · · · πm ), T =


−ζ1 ζ1

−ζ2 ζ2
. . . . . .
−ζm−1 ζm−1

−ζm

 , ξ =


0
...
0

ζm

 . (3)

where πi ≥ 0, ∑
m
i=1 πi = 1, and ζ1, . . . ,ζm are transition rates with constraints 0 < ζ1 ≤ ·· · ≤ ζm. When the

parameter constraint does not hold, the resulting PH distribution is reduced to a bidiagonal CPH (He and
Zhang 2008). Thus CF1 is also called the ordered bidiagonal CPH.

As shown in Eqs. (2), the p.d.f. of CPH includes a matrix exponential, i.e., it requires the transient
analysis of CTMC. The uniformization (Reibman and Trivedi 1988) is one of the most effective methods
to compute transient probability vectors of CTMCs. Let µ be a value that is greater than the maximum
value of absolute diagonal elements of T , i.e., µ > maxi |λi,i|. Then the p.d.f. of CPH can be rewritten in
the form:

fPH(t) =
∞

∑
n=0

µn+1tn

n!
e−µt

πPn
ν , (4)

where the matrix P is given by P = I+T/µ using the identity matrix I, and ν = ξ/µ . In Eq. (4), πPnν is
the probability mass function (p.m.f.) of a discrete PH distribution (DPH) which represents an absorption
time in a DTMC. Also, µn+1tne−µt/n! corresponds to a p.d.f. of Erlang distribution with shape and scale
parameters n+1 and µ , respectively. Hence the uniformization form can be regarded as a mixture of DPH
and Erlang distribution (Kijima 1997).

3 BAYES ESTIMATION

Bayes estimation is a popular method to obtain the model parameters from empirical data. The key idea
behind Bayes estimation is to regard model parameters as random variables. Then, under given prior
information on model parameters, we provide the update formula of the information by using observed
information. Concretely, let θ and D denote a parameter vector to be estimated and observed data,
respectively. Then the update formula can be derived from Bayes theorem,

p(θ |D) =
p(D |θ)p(θ)

C
∝ p(D |θ)p(θ), (5)

where p(·) is a probability mass or density function. Thus p(D |θ) corresponds to the likelihood that the
data D is observed under the given parameter vector θ , and p(θ) is the prior information (knowledge)
on the parameter vector. Also ∝ denotes an operator representing a proportional relationship, which is
used to omit a normalizing constant C. Equation (5) means that the prior information on parameter vector
p(θ) is updated to the posterior distribution p(θ |D) by observing the data D . In general, the estimator
of parameters is given by the posterior distribution p(θ |D). Hence the variation of p(θ |D) means the
uncertainty of estimated parameters.
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Algorithm 1 MH algorithm
Step 1. Generate a candidate θ

′ from a proposal distribution q(θ ′|θ) with the current parameter vector
θ , where q(θ ′|θ) is a p.m.f. or p.d.f. of θ

′ provided that θ is given.
Step 2. Compute the acceptance probability a(θ ′|θ)

a(θ ′|θ) = min
(

p(θ ′|D)q(θ |θ ′)
p(θ |D)q(θ ′|θ)

,1
)
.

Step 3. Generate a uniform random number over [0,1].
Step 4. If U ≥ a(θ ′|θ), then θ

′ is a new sample. Otherwise, θ is a new sample.

Algorithm 2 Gibbs sampling
for i = 1 : |θ | do

Generate θ ′i from a marginal distribution of p(θ ′i |θ−i,D) provided that θ−i is given, where θ−i means
the parameter samples except for θi.
Replace an element θi of the current parameter vector with θ ′i .

end for

The difficulty of Bayes estimation comes from the computation of normalizing constant C. The
normalizing constant C is needed to ensure the posterior distribution becomes a proper mass or density
function, i.e., the normalizing constant is generally given by

C =
∫

p(D |θ)p(θ)dθ . (6)

A straightforward approach for computing the normalizing constant is to use numerical integration such
as trapezoidal rule and Gaussian quadrature. However, the integral of Eq. (6) is a multiple integral with
respect to the parameter vector θ . It is quite difficult to compute the normalizing constant when the number
of parameters is large. To overcome this computational problem, several approximation methods have been
proposed in Bayes estimation.

Markov chain Monte Carlo (MCMC) is a powerful approach to obtain the posterior distribution in
Bayes statistics. MCMC provides a set of parameter samples drawn from the posterior distribution, instead
of computing the exact posterior distribution analytically. In MCMC, we build a Markov chain whose
stationary distribution is consistent with the prior distribution, and iteratively simulate the Markov chain
to get samples drawn from the stationary distribution.

Metropolis-Hastings (MH) method and Gibbs sampling are two of the most popular algorithms that
build the Markov chain whose stationary distribution is the prior distribution. In the MH method, samples
(candidates) are generated from a proposal distribution. The candidates are accepted as new samples with
an acceptance probability which is computed from the likelihood and the proposal distribution. The Gibbs
sampling is a special case of the MH method. In the Gibbs sampling, the proposal distributions are derived
from marginal distributions of the posterior distribution, and then the acceptance probability is always 1.
Algorithms 1 and 2 present one-step execution of the MH method and the Gibbs sampling, respectively.
In Algorithm 2, |θ | denotes the number of parameters to be estimated.

Although the MH method can be applied to any types of models, the efficiency of the algorithm
strongly depends on the selected proposal distribution. If the proposal distribution is far from the posterior
distribution, many candidates are rejected at Step 4. Therefore it needs many iterations of one-step execution
until the Markov chain converges to the stationary distribution. On the other hand, the Gibbs sampling is
more effective to generate samples. However, it is rare to obtain analytically simple forms of the marginal
distributions, and the marginal distributions becomes complex forms in many cases. In such cases, we
should carefully consider how to generate samples drawn from complicated forms on a case-by-case basis.
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In the MCMC scheme, one-step executions of Algorithms 1 and 2 are performed iteratively to collect
parameter samples as MCMC sequences. When θ

(1), . . . ,θ (M) are parameter samples from M steps MCMC
sequences, a point estimate and accuracy (uncertainty) of estimator are calculated as an arithmetic mean
and variance of parameter samples, i.e.,

E[θ̂ ]≈ 1
M

M

∑
l=1

θ
(l), Var(θ̂)≈ 1

M−1

M

∑
l=1

(θ (l)−E[θ̂ ])2. (7)

Also, the predictive distribution is obtained as the estimated p.d.f. namely,

f̂ (t) =
∫

f (t;θ)p(θ |D)dθ ≈ 1
M

M

∑
l=1

f (t;θ
(l)). (8)

4 MCMC ALGORITHMS FOR CPH

4.1 MJP-Based MCMC Algorithm

This section presents concrete MCMC algorithms for CPH. We first introduce an existing MCMC algorithm
based on Markov jump process (MJP) by Bladt et al. (2003).

Consider IID (independent and identically distributed) samples D = {t1, . . . , tK} drawn from a CPH.
Then the likelihood function p(D |θ) is given by

p(D |θ) =
K

∏
k=1

π exp(Ttk)ξ , (9)

where θ = (π,T ,ξ ). As seen in the above equation, the likelihood includes the matrix exponential. Thus it
is not practical to make parameter samples from the above likelihood function directly. The idea behind the
MJP-based MCMC algorithm is to generate unobserved samples regarding the underlying CTMC (phase
process) which dominates the CPH.

Define the following unobserved variables Z = (Bi,Si,Ni, j,Ai) under the IID samples D :

Bi: the number of times that the phase process begins with the phase i.
Si: total sojourn time of phase i.
Ni, j: the number of times that the phase process changes from the phase i to j.
Ai: the number of times that the phase process changes from the phase i to the absorbing state.

Let {Jk(t), t ≥ 0}, k = 1, . . . ,K, be a phase process of CPH for the k-th sample. Then the unobserved values
can be defined as follows.

Bi =
K

∑
k=1

χ(Jk(0) = i), Si =
K

∑
k=1

∫ tk

0
χ(Jk(t) = i)dt, (10)

Ni, j =
K

∑
k=1

∫ tk

0
χ(Jk(t−) = i,Jk(t) = j)dt, Ai =

K

∑
k=1

χ(Jk(tk−) = i), (11)

where χ(A) is an indicator function of the event A. The likelihood of the data (D ,Z ) is given by

p(D ,Z |θ) =
m

∏
i=1

π
Bi
i

m

∏
i=1

e−λi,iSi
m

∏
i=1

m

∏
j=1, j 6=i

λ
Ni, j
i, j

m

∏
i=1

ξ
Ai
i . (12)
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Algorithm 3 Gibbs sampling with data augmentation
Generate an unobserved sample Z from p(Z |D ,θ).
for i = 1 : |θ | do

Generate θ ′i from a marginal distribution of p(θ ′i |θ−i,D) provided that θ−i is given, where θ−i means
the parameter samples except for θi.
Replace an element θi of the current parameter vector with θ ′i .

end for

Algorithm 4 MJP-based MCMC algorithm
Step 0. Generate a sample path of CTMC, {J(s),0≤ s < t}, which is not absorbed before time t.
Step 1. Generate a sample path of CTMC, {J′(s),0≤ s < t}, which is not absorbed before time t.
Step 2. Generate a uniform random number U over [0,1].
Step 3. If U < ξJ(t−)/ξJ′(t−), then {J′(s),0≤ s < t} is accepted as a sample path during [0, t). Otherwise,
{J(s),0≤ s < t} is used as a sample path during [0, t).

Suppose that the prior distributions of π , λi, j and ξi are Dirichlet and gamma distributions, namely,

p(π) = Dirichlet(π;u1, . . . ,um) =
Γ(∑m

i=1 ui)

∏
m
i=1 Γ(ui)

m

∏
i=1

π
ui−1
i , (13)

p(λi, j) = Gamma(λi, j;αi, j,βi) =
β

αi, j
i λ

αi, j−1
i, j e−βiλi, j

Γ(αi, j)
, (14)

p(ξi) = Gamma(ξi;αi,0,βi), (15)

where ui, αi, j, βi are hyper parameters of the prior distributions. From Eq. (12), the posterior distributions
are explicitly given by

p(π|D ,Z ) = Dirichlet(π;u1 +B1, . . . ,um +Bm), (16)

p(λi, j|D ,Z ) = Gamma(λi, j;αi, j +Ni, j,βi +Si), (17)

p(ξi|D ,Z ) = Gamma(ξi;αi,0 +Ai,βi +Si). (18)

Since Z is unobservable, Bladt et al. (2003) applied the data augmentation technique (Tanner and
Wong 1987). The data augmentation is a kind of Gibbs sampling where the unobservable variables are
regarded as model parameters. Algorithm 3 presents one-step execution of the Gibbs sampling with data
augmentation. In the algorithm, p(Z |D ,θ) is a p.d.f. or p.m.f. of unobserved sample provided that the
data D and model parameter vector θ are given:

p(Z |D ,θ) =
p(D ,Z |θ)∫

p(D ,Z |θ)dZ
. (19)

In the case of CPH estimation, sampling from the above p.d.f. is equivalent to making K CTMC sample
paths which are absorbed at t1, . . . , tK . It is not easy to make such sample paths from the CTMC directly.

Bladt et al. (2003) also proposed a sampling algorithm based on MJP shown in Algorithm 4. Algorithm
4 presents concrete procedures to generate a CTMC sample path which goes to the absorbing state at time
t, provided that the CTMC parameters are given. In Step 0 and Step 1, we should make sample paths
which are not absorbed before time t. Bladt et al. (2003) suggested the acceptance-rejection method to
make such sample paths in Step 0 and 1. That is, we make a CTMC sample path without any constraints
from the starting time. If the path is absorbed before time t, we retry to make a path from the starting time.

Algorithm 4 comes from the MH method for two MJPs. In fact, the unobserved data Z can be computed
from the CTMC sample paths by executing Algorithm 4 for each t1, . . . , tK . However, it is pointed out that
the sampling algorithm in Step 0 and Step 1 is ineffective if the absorbing time t is large.
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4.2 Uniformization-Based MCMC Algorithm

Next we propose an efficient MCMC algorithm for CPH based on the uniformization technique and
backward likelihood computation. As mentioned before, the uniformization provides a mixture of DPH
and Erlang distributions as another representation of CPH. This implies that the unobserved data of CPH
can be replaced by sample paths of the DPH. This is a basic idea of our algorithm.

Consider IID samples D = {t1, . . . , tK} drawn from a CPH, and define the following unobserved data
in the uniformized CPH:

Rk: the number of steps until the DTMC process goes to the absorbing state for the sample tk.
Bi: the number of times that the DTMC process begins with the phase i.
Ni, j: the number of times that the DTMC process changes from the phase i to j.
Ai: the number of times that the DTMC process changes from the phase i to the absorbing state.

For the notational convenience, we define two unobserved data R = (R1, . . . ,RK) and Z = (Bi,Ni, j,Ai).
Then the likelihood for (D ,Z ,R) is given by

p(D ,Z ,R|θ) =
K

∏
k=1

µRk+1tRk
k

Rk!
e−µtk

m

∏
i=1

π
Bi
i

m

∏
i=1

m

∏
j=1

η
Ni, j
i, j

m

∏
i=1

ν
Ai
i , (20)

where ηi, j and νi are the (i, j)-element of P and the i-th element of ν , respectively. It should be noted that
the uniformization factor µ becomes a model parameter. Similar to Section 4.1, we suppose that the prior
distributions of µ , π , ηi, j and νi are given as follows.

p(µ) = Gamma(µ;αµ ,βµ), (21)

p(π) = Dirichlet(π;u1, . . . ,um), (22)

p(ηi) = Dirichlet(η i;αi,1, . . . ,αi,m,αi,0), (23)

where η i = (ηi,1, . . . ,ηi,m,νi) and αµ , βµ , ui and αi, j are hyper parameters of the prior distributions. Thus
we have the following closed forms of the posterior distributions:

p(µ|D ,Z ,R) = Gamma(µ;αµ +K +∑
K
k=1 Rk,βµ +∑

K
k=1 tk), (24)

p(π|D ,Z ,R) = Dirichlet(π;u1 +B1, . . . ,um +Bm), (25)

p(η i|D ,Z ,R) = Dirichlet(η i;αi,1 +Ni,1, . . . ,αi,m +Ni,m,αi,0 +Ai). (26)

Using the above unobserved data, we can also develop the MCMC algorithm with data augmentation for the
uniformized CPH, which is the same scheme as Algorithm 3. Then the problem is how to make unobserved
samples R and Z .

First we discuss the sampling of Rk. Since the marginal distribution with respect to Rk is given by

p(Rk|D ,Z ,θ) ∝
µRk+1tRk

k e−µtk

Rk!
πPRk ν , (27)

it is not easy to draw a sample from the above distribution. Thus we apply the MH method to generate Rk.
Concretely, we use the following proposal distribution which is a Poisson p.m.f.

q(Rk) =
µRk+1tRk

k e−µtk

Rk!
. (28)
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Algorithm 5 Sampling of an absorbing DTMC path
Step 1 Compute the backward likelihoods for each k = R, . . . ,1

bk = Pbk+1, bR+1 = ν .

Step 2. Generate an initial phase J0 which is drawn from a multivariate Bernoulli distribution with
(π1b1,1, . . . ,πmb1,m).
Step 3. Generate a path {Jk,k = 1, . . . ,R} iteratively by using Step 3-1.
Step 3-1. Generate a phase at the k-th step, Jk, which is drawn from a multivariate Bernoulli distribution
with (ηJk−1,1bk+1,1, . . . ,ηJk−1,mbk+1,m).

From the above proposal distribution, the acceptance probability for a candidate R′k is given by

a(R′k|Rk) = min

(
πPR′k ν

πPRk ν
,1

)
. (29)

Next we consider a method to generate a sample path of DTMC which is absorbed at the step R. To
generate such sample paths efficiently, we propose the method using the backward likelihood computation.
Algorithm 5 shows our algorithm to generate a DTMC path which is absorbed at the R-th step with
the backward likelihood computation. This is a variant of forward-backward algorithm used in some of
statistical models such as hidden Markov model (Baum et al. 1970). Although this method requires the
computation of backward likelihoods, it is not necessary to execute the acceptance-rejection method. Thus
the computational efficiency is improved from the MJP-based method by Bladt et al. (2003).

Finally, Algorithm 6 presents pseudo code of our algorithm to generate unobserved data, provided
that (R1, . . . ,RK) are given as the outputs of the previous MCMC execution. The notation ∼ represents
generating a random number from the left-hand side p.m.f. or p.d.f., and← means substitution from left to
right. Also, Poisson(µ) is a p.m.f. of Poisson distribution with mean µ , Uniform(0,1) is a p.d.f. of uniform
distribution over [0,1] and MBernoulli(c1, . . . ,cm) is a p.m.f. of the multivariate Bernoulli distribution with
the (non-normalized) probability vector (c1, . . . ,cm).

5 NUMERICAL EXPERIMENTS

In numerical experiments, we compare our MCMC algorithm with MJP-based approach by Bladt et al.
(2003) in terms of computation speed. We generate 1,000 samples from the following four CPHs:

PH2STF: π = (0.3 0.7), T =

(
−0.01 0.01

0 −0.1

)
, ξ =

(
0

0.1

)
(30)

PH2NSF: π = (0.3 0.7), T =

(
−0.1 0.1

0 −0.1

)
, ξ =

(
0

0.1

)
(31)

PH2GEN: π = (0.3 0.7), T =

(
−1.0 0.2
0.8 −1.0

)
, ξ =

(
0.8
0.2

)
(32)

PH5: π = (0.2 0.2 0.2 0.2 0.2), (33)

T =


−0.1 0.1

−0.1 0.1
−0.1 0.1

−0.1 0.1
−0.1

 , ξ =


0
0
0
0

0.1

 . (34)



Watanabe, Okamura, and Dohi

Algorithm 6 Uniformization-based MCMC algorithm
for k = 1 : K do

R′k ∼ Poisson(µtk).
end for
R←max(R1, . . . ,RK ,R′1, . . . ,R

′
K)

bR+1← ν

for k = R : 1 do
bk← Pbk+1

end for
for k = 1 : K do

U ∼ Uniform(0,1)
if πbR′k

/πbRk <U then
Rk← R′k.

else
Rk← Rk.

end if
Jk,0 ∼MBernoulli(π1bR−Rk+1,1, . . . ,πmbR−Rk+1,m)
for l = 1 : Rk do

Jk,l ∼MBernoulli(ηJk,l−1,1bR−Rk+k+1,1, . . . ,ηJk,l−1,mbR−Rk+k+1,m)
end for

end for

The first three CPHs are 2-phase CPHs. PH2STF and PH2NSF are canonical forms and PH2GEN is a
general form of CPH. In addition, the stiffness of the underlying CTMC of PH2STF is higher than that of
PH2NSF.

For each 1,000 samples of PH2STF, PH2NSF, PH2GEN and PH5, we execute MJP-based MCMC
algorithm and our MCMC algorithm until 5,000 parameter samples are obtained. Both MCMC algorithms
are implemented by R (The R- Project for Statistical Computing, http://www.r-project.org/), and the initial
values of MCMC algorithms are set as original CPH parameters given in Eqs. (30)– (34). Moreover, the
hyper parameters are set as u· = 1, α·,· = 1 and β· = 1 in all the cases.

Table 1 presents computation time (user time) in seconds until 5,000 parameter samples are obtained in
the AMD Opteron 2.3GHz processor with a single thread. From the table, it can be found that the proposed
uniformization-based MCMC algorithm is much faster than the existing MJP-based method. In all the
cases, the proposed method is more than 10 times faster as the MJP-based MCMC algorithm. Particularly,
in the case of PH2STF, our method is 24 times faster as the MJP-based method. The MJP-based algorithm
generates a candidate as a CTMC path which is not absorbed before an observation time. However, Since
PH2STF is dominated by a stiff Markov chain, it has a higher coefficient of variation compared to the
other cases. Therefore, the samples of PH2STF include a few large values. As mentioned in Section 4.1,
the acceptance-rejection method in Step 0 and Step 1 of Algorithm 4 is ineffective in the case where the
absorbing time is large, namely, many rejections occur in the acceptance-rejection method of the MJP-based
algorithm. Hence the MJP-based algorithm spent much computation time in the case of PH2STF. Also
we find that the computation time of MJP-based algorithm in PH2NSF is faster than that in PH2GEN.
This is the reason why possible CTMC paths of PH2NSF are less than those in PH2GEN because the
phase structure of PH2NSF is restricted to CF1. In this way, computation time of the MJP-based algorithm
strongly depends on the efficiency of the acceptance-rejection method in Step 0 and Step 1 of Algorithm 4.

On the other hand, in our method, we generate DTMC paths by using the backward likelihoods. This
ensures that a generated DTMC path is never rejected. However, the computation cost of our method
depends on the backward likelihood computation. In general, it requires much computation cost in the
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Table 1: Computation time for MCMC algorithms.

Computation time (seconds)
CPH MJP Uniformization

PH2STF 22389.0 896.9
PH2NSF 7043.2 456.5
PH2GEN 6273.9 570.1
PH5 50035.4 808.9

Table 2: Z scores of MCMC parameter sequences (PH2STF).

MJP Uniformization
iteration π1 λ1,1 λ2,2 π1 λ1,1 λ2,2

1000 0.50 1.27 0.10 2.41 2.52 2.45
2000 0.98 1.68 0.49 2.05 1.88 2.32
3000 1.34 1.43 0.67 1.01 1.06 1.32
4000 0.76 0.41 -0.02 0.87 0.68 1.28
5000 0.00 0.05 -0.36 0.72 0.73 1.07

cases where CPH is dominated by stiff and large Markov chains. Therefore, in the table, we also find that
the computation times in PH2STF and PH5 become almost double than that in PH2NSF.

Next we examine convergence of MCMC parameter sequences. In general, as the number of parameters
to be estimated increases, so does the large number iterations required for MCMC to converge to the stationary
distribution. As seen in Section 4.2, in our method, we regard a uniformization factor µ as a model parameter
to be estimated. Thus our method requires more MCMC iterations than the MJP-based algorithm.

In this experiment, Geweke diagnostic (Geweke 1992) is used to check the convergence of MCMC
parameter sequence. Geweke diagnostic is an application of Z test to time series data and computes Z
scores for partitioned time spans. If the absolute Z scores are within 1.96, the sequence is considered
converged (Strictly speaking, the hypothesis that the sequence does not converge is not rejected.).

In this experiment, we did not set burn-in periods because we give true parameters as initial param-
eters. Table 2 shows Z scores of MCMC parameter sequences for PH2STF generated by MJP-based and
uniformization-based algorithms, which were computed by CODA (Convergence Diagnostic and Output
Analysis software) for each 1,000, 2,000, 3,000 4,000 and 5,000 MCMC iterations. Since PH2STF consists
of only three non-redundant parameters, we present Z scores for parameters π1, λ1,1 and λ2,2 in the table.
Moreover, MCMC sequences did not converge even for 5,000 iterations in other PH2NSF, PH2GEN and PH5
cases, and thus we discuss only the PH2STF case. In Table 2, MCMC sequence of MJP-based algorithm has
already converged at 1,000 iterations. On the other hand, our method needs 3,000 iterations for the sequence
to converge to the stationary distribution. It indicates that our method requires 3 times larger as MCMC
sequences than the MJP-based method. However, since the computation speed of uniformization-based
method is 24 times faster in the case of PH2STF, it is concluded that the proposed approach is faster even
if we execute the uniformization-based MCMC algorithm until the sequence converges.

6 CONCLUSIONS

This paper has presented an improved MCMC algorithm for CPH in terms of computation speed. More
precisely, we have applied the uniformization and the backward likelihood computation to enhance the
computation speed of generating latent phase processes. Although the proposed method has the disadvantage
of requiring longer MCMC sequences than the existing method, the computation speed of our method is
still faster even if we generate the long MCMC sequences. In the numerical experiment, we have applied
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both proposed and existing methods to 4 types of CPH parameter estimation. As a result, we have examined
that our approach was effective to obtain the MCMC parameter sequences even if the phase process is
represented by stiff-type and 5-phase CPHs. However, since our method includes the backward likelihood
computation, the computational problem for stiffness and large phases has not completely been solved.

In future, we will apply generalized ensemble algorithms such as replica-exchange method to the
uniformization-based MCMC algorithm to reduce MCMC sequences needed for the convergence. Also, to
overcome the stiffness from the viewpoint of computation time, we develop a parallel variant of MCMC
algorithms.
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