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ABSTRACT 

The increasing scale and complexity of virtualized data centers pose significant challenges to system 
management software stacks, which still rely on special-purpose controllers to optimize the operation of 
cloud infrastructures. Autonomic computing allows complex systems to assume much of their own man-
agement, achieving self-configuration, self-optimization, self-healing, and self-protection without external 
intervention. This paper proposes an agent-based architecture for autonomic cloud management, where 
resources and virtual machines are associated with worker agents that monitor changes in their local envi-
ronments, interact with each other, make their own decisions, and take adaptive actions supervised by a 
network of management processes. To fulfill global objectives, the management processes conduct what-
if simulations and update the worker agents’ local rules when necessary. Such a guided decentralized de-
cision making method can mitigate the pressure on the system management stack, improve the effective-
ness of resource management, and accelerate the response to failures and attacks. 

1 INTRODUCTION 

Cloud computing has become an appealing technology to enable IT enterprise applications, using virtual-
ization techniques to allocate computational resources in a pay-as-you-go manner (Armbrust et al. 2009). 
From a high-level view, a cloud infrastructure may be built from several warehouse-scale data centers. 
Within a data center, the physical resources (e.g., processors, memory, network, and storage) of each 
server are managed by a virtualization layer that carves the shared resources into virtual machines (VMs), 
which can be provisioned as needed dynamically. Thanks to the decoupling of the VMs from the underly-
ing physical infrastructure, one can adjust the resources of the VMs to adapt to changing workload de-
mands and consolidate workloads across physical server boundaries. Data center virtualization is the cor-
nerstone that underlies the cloud computing paradigm, yielding such benefits as elastic scaling, high 
availability, increased server utilization, reduced power consumption, and disaster recovery support. 

Depending on the service model presented to customers, cloud computing offerings fall into three 
broad categories, namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software 
as a Service (SaaS). Among these service models, IaaS clouds, as exemplified by Amazon EC2 (Amazon 
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2012a) and IBM Smart Cloud Enterprise (IBM 2012a), provide the greatest flexibility to customers, giv-
ing them the illusion of having dedicated servers to host their applications. On the other hand, IaaS cloud 
providers face significant challenges to maximize the benefits associated with data center virtualization, 
partly due to the lack of application specific information at the infrastructure level. To cope with these 
challenges, data centers usually use sophisticated virtual infrastructure management software with layers 
of modules to carry out a variety of services, including admission control, resource allocation, VM life 
cycle management, scheduling, load balancing, utilization and power optimization, monitoring, billing, 
quality-of-service guarantee, intrusion detection, and failure/attack recovery (Sotomayor et al. 2009; 
Zhang and Zhou 2009). The interaction between these services is emergent in nature and commonly re-
sults in conflicting objectives among different services. In addition, many services require near real-time 
decision making in order to respond to unexpected events (e.g., network congestion, workload surge, or 
hardware failure) or to take proactive actions before the occurrence of adverse events (e.g., malicious at-
tacks or security vulnerabilities). Nonetheless, most of the current management software stacks still use 
special-purpose controllers organized in hierarchical structures to implement these services. With the in-
creasing scale of data centers, the controller hierarchies tend to grow vertically, leading to prolonged re-
sponse time when multiple controllers in the hierarchies are involved in the decision making process. 
Moreover, as the heterogeneity of the underlying virtual infrastructure continues to rise, the logic of the 
controllers and their interactions become more complex, resulting in higher possibility of software failure 
and making it more difficult to diagnose runtime errors. 

Envisioned as a solution for self-management of complex systems, autonomic computing uses various 
self-governing components to achieve self-configuration, self-optimization, self-healing, and self-
protection without human intervention (Huebscher and McCann 2008). Since self-management also re-
sembles the key characteristic of agent-based and serviced-oriented systems, it is natural to combine 
these technologies coherently in system design (Brazier et al. 2009). At the same time, Dynamic Data 
Driven Applications Systems (DDDAS/info-symbiotic) are known as particularly suitable for implement-
ing autonomic systems (Darema 2005; Darema et al. 2010). The success of autonomic computing, how-
ever, hinges on our ability to resolve issues such as behavioral modeling, collaborative optimization, and 
multilateral interaction in a multi-agent dynamically adaptive environment (Kephart and Chess 2003). As 
noted by Kephart and Chess, behavioral modeling lies at the heart of these issues, because it is necessary 
not only to understand what global behavior would be obtained from the local behavior of individual 
agents, but also to derive a set of local rules that, when implemented by the individual agents, can lead to 
the fulfillment of desired global objectives. In other words, a bidirectional modeling method is required to 
help explore the local-global behavioral relationship in either way.  

This paper proposes a multi-agent info-symbiotic architecture for autonomic management of virtual-
ized data centers, where resource management can be done at the relatively coarse granularity of VMs in-
stead of application processes. In this architecture, worker agents are attached to the physical resources 
and virtual machines in a data center, continuously monitoring events of interest in their local environ-
ments, interacting with other worker agents in a peer-to-peer manner, making resource management deci-
sions according to their local rules, and coordinating their actions reactively and proactively under the su-
pervision of a network of management processes. The management processes, on the contrary, are 
responsible for ensuring that the emergent overall behavior of worker agents can lead to the fulfillment of 
prescribed global objectives, while influencing the worker agents indirectly by updating their local rules 
asynchronously when necessary. To this end, the management processes analyze the data collected from 
the worker agents in parallel, maintain an up-to-date world view of the worker agents’ operations, and 
conduct distributed what-if simulations to evaluate alternative options under different scenarios. By sepa-
rating the lightweight rule execution of the worker agents from the resource-intensive data analysis and 
simulation of the management processes, this approach can integrate efficient online decision making 
with continuous background optimization in a unified architecture. Furthermore, the results of the what-if 
simulations can be transformed into reusable knowledge to help accelerate proactive actions later on. It is 
our contention that such a guided decentralized decision making method could achieve the goal of adap-
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tive bidirectional modeling and improve the effectiveness of virtual infrastructure management. 
In the rest of the paper, Section 2 reviews related work. Section 3 introduces two example open-

source cloud management stacks. The agent-based symbiotic architecture is proposed in Section 4, fol-
lowed by a discussion of the bidirectional modeling and simulation in Section 5. Section 6 presents a use 
case study in data center business resilience assurance, while Section 7 outlines potential implementation 
challenges. Section 8 concludes the paper with future research directions. 

2 RELATED WORK 

Autonomic computing has been established as an effective method to handle the growing complexity in a 
wide range of application domains, from distributed storage systems (Devarakonda et al. 2003), commu-
nication networks (Dobson et al. 2006), to power control systems (Femal and Freeh 2005). In addition, a 
few architectural approaches were proposed to realize the vision of autonomic computing. In (White et al. 
2004), for example, the authors described the interfaces and behavioral requirements for autonomic 
agents, the interactions between them, and several common design patterns that can be used to produce 
desired system-level properties. In (Tesauro et al. 2004), the authors proposed a two-layer architecture 
called Unity, where autonomic agents compute resource-level utility functions in their local application 
environments based on service-level attributes and resource usage patterns. The resulting utility values are 
used by global arbiters to optimize resource allocation between application environments on a continuous 
basis. Built upon the Unity architecture, a prototype was developed to demonstrate the ability of system 
management under competing objectives, making tradeoffs through the interaction of performance agents, 
power agents, and coordination agents as intermediate brokers (Das et al. 2008). Other researchers ap-
plied model-driven architectures to the development of autonomic systems, transforming system proper-
ties expressed in abstract UML models into deployable operational policies at runtime (Pena et al. 2006). 
Similarly, goal model decomposition was considered as a way of exploring the space of all alternative be-
haviors by dividing a global objective into a hierarchy of sub-objectives, which are managed by corre-
sponding autonomic agents organized in an identical hierarchy (Lapouchnian et al. 2005).  

With the rise of cloud computing paradigm, autonomic computing is gaining momentum in this area. 
Specifically, an autonomic mobile robot was integrated with commercial energy optimization software to 
help diagnose emerging thermal problems in data centers (Lenchner et al. 2011). In (Mola and Bauer 
2011), the authors used hierarchical collaboration between autonomous managers to improve application 
response time under given service-level agreements. In (Yazir et al. 2010), the authors proposed an archi-
tecture to distribute the task of resource allocation to a group of autonomous node agents, each of which 
is coupled with a physical server in a data center. The node agents make VM placement and migration 
decisions in response to changes in their local conditions, without aiming for optimal global configura-
tion. As shown in their experiments, this approach can attain better scalability while reducing the number 
of VM migrations, when compared to other methods that use global arbiters in the decision process. 
However, the authors did not describe how global objectives can be fulfilled in the proposed architecture. 
Recently, a flexible architecture called Monalytics was proposed in (Wang et al. 2011), which integrates 
continuous system monitoring with on-demand data analytics to enable cost-effective diagnosis and time-
ly actions in support of data center management. Moreover, autonomic methods have also been used in 
cloud environments to address security issues such as abnormal behavior identification (Smith, Guan, and 
Fu 2010) and intrusion detection/prevention (Roschke, Cheng, and Meinel 2009). Although these works 
offer valuable insight on the design of autonomic architectures and their applicability to specific aspects 
of system management, none of them directly tackles the problem of bidirectional behavioral modeling in 
the context of virtual infrastructure management. Furthermore, most of the existing approaches adopt a 
hierarchical structure for online decision support, which may not be the most suitable choice for large da-
ta centers with hundreds of thousands of heterogeneous physical and virtual resources.  

Symbiotic simulation is a paradigm that combines a simulation system and a physical system syner-
gistically in a closed feedback loop (Aydt et al. 2008; Aydt et al. 2009). Driven by real-time data collect-
ed continuously from the physical system, accurate what-if scenario simulations can be conducted, which 
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in turn help make active decisions in control of the physical system (including the measurement process 
itself). This paradigm has been used in autonomic systems to achieve, for example, real-time decision 
making under uncertainty (Mitchell and Yilmaz 2008) and proactive traffic routing in distributed road in-
frastructures (Claes and Holvoet 2010). Based on the symbiotic simulation paradigm, this paper proposes 
an architecture for autonomic cloud management, using worker agents to make decentralized manage-
ment decisions in a peer-to-peer manner while simultaneously using a complementary management net-
work to ensure the convergence of emergent behavior towards global objectives. 

3 VIRTUAL INFRASTRUCTURE MANAGEMENT STACKS 

There exist many virtual infrastructure management stacks being used by different IaaS cloud providers, 
including proprietary ones like Amazon AWS (Amazon 2012a) and IBM SmartCloud Provisioning (IBM 
2012c) as well as open source alternatives such as Eucalyptus (Eucalyptus 2012), OpenStack (OpenStack 
2012), and CloudStack (Citrix 2012). This section briefly introduces the logical architectures adopted in 
Eucalyptus and OpenStack, providing readers with the necessary background and a basis for comparison 
with the multi-agent architecture proposed in the next section. 

 

Figure 1: Logical architectures of Eucalyptus and OpenStack Nova (Eucalyptus 2012; OpenStack 2012) 

Eucalyptus implements the Amazon AWS interface using a hierarchy of controllers organized at three 
distinct levels, as illustrated in Figure 1a. At the top level, a single cloud controller serves as the entry 
point for incoming requests and makes global VM scheduling decisions across multiple clusters. Addi-
tionally, it uses a single scalable storage service called Walrus to manage persistent VM images and cus-
tomer data. At the middle level, a controller is created on each cluster to schedule the execution of VMs 
across the nodes and manage the private/public virtual networks. Each cluster also has a local storage 
controller to provide a block-based storage service to the cloud. At the bottom level, node controllers are 
attached to the physical servers within a cluster to carry out VM activities (e.g., create, execute, suspend, 
or terminate a VM) through the functionality provided by the hypervisors running on the nodes. 

As shown in Figure 1b, the OpenStack cloud management, called Nova, is composed of a cluster of 
components, including API daemons for accepting customer requests and initiating the orchestration ac-
tivities; compute daemons for creating and terminating VMs; volume daemons for creating, attaching, and 
detaching persistent storages to VMs; and network daemons for managing network connections. These 
daemons are coordinated by a set of central services, which use a queue for inter-daemon messaging, a 
database for state sharing, and a scheduler that determines the placement of VMs among the physical 
servers based on the current state of the entire infrastructure for efficient resource usage. 

4 AN AGENT-BASED MANAGEMENT ARCHITECTURE 

As shown in Figure 2, the proposed agent-based architecture consists of two interacting yet separate lay-
ers: a low-level execution layer and a high-level management layer, which correspond to the physical and 
simulation parts of a symbiotic system respectively. The distinction is purely logical based on the differ-
ent functionality provided by each layer. In practice, the management-layer components can share the 
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same virtual infrastructure with the other execution-layer applications and services. Alternatively, they 
can be hosted in a zone dedicated to management purposes in order to provide better isolation between 
execution and management in a data center. 

 

Figure 2: Logical view of agent-based autonomic management   

At the execution layer, physical and virtual resources are associated with worker agents, as follows.  
 Physical resource worker agents. For each type of physical resources (i.e., compute servers, 

network switches, and storage servers), a type of worker agents is defined. A worker agent is at-
tached to an instance of the corresponding type of physical resources at bootstrap time, as a dae-
mon process in the host OS. The runtime behavior of a worker agent is governed by a set of exe-
cution rules specifying such policies as which and when system metrics of interest are monitored, 
how to filter the collected metric data before passing them to the management processes, how to 
establish neighborhood relations with the other worker agents, what communication and negotia-
tion protocols to use for inter-agent interactions, and what actions to take when a particular event 
occurs. To consolidate workloads, for instance, the agents can make joint decisions about live 
VM migration using system metrics (such as server utilization, storage availability, and network 
traffic condition) collected along planned migration paths, which are formed by spreading query 
messages to neighboring agents, assembling a list of potential source and destination servers, and 
mutually selecting the most suitable ones using criteria encoded in the execution rules.  

 Virtual resource worker agents. Similarly, worker agents are also created and attached to the 
VMs provisioned on top of the virtualization layer, in the form of resident daemon processes in 
the guest OS. The VMs (and their worker agents) are divided into two groups: application VMs 
that host customer business logic (shown as App VMs in Figure 2) and service VMs that imple-
ment the various services of the system management stack (e.g., load balancer, admission control-
ler, scheduler, and so forth). For the former group, the agents perform operations in the back-
ground with minimal interference with the application execution. For example, they can help 
scale up or scale down VMs’ virtual memory dynamically as a response to changes in the ob-
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served memory usage pattern even without knowing the application logic. Conversely, the agents 
in the latter group are service-aware in the sense that they are tightly integrated with the services 
to take advantage of the knowledge about the specific functionalities in determining their actions. 

 Execution rule definition. To allow for agile and deterministic actions, the behavior of a worker 
agent is defined by a complete set of execution rules, each consisting of four components: a pre-
condition that specifies the condition under which a particular rule will be fired, a delay that gives 
the interval between the current and the next rule evaluations in real time, a post-condition that 
defines the action to take for the current rule, and an annotation that captures the characteristics 
of the action (e.g., deadline, timeout, number of tries, etc.). These execution rules are implement-
ed as code templates in advance using parameters that can be varied within predefined con-
straints, allowing the management processes to instantiate rule variations for evaluation at 
runtime. For instance, a load balancing rule could be programmed to use one out of several dif-
ferent algorithms, each with such adjustable parameters as operation scope (cluster vs. infrastruc-
ture), frequency (from once per day up to once per hour with discrete step sizes), and triggering 
conditions (thresholds that indicate the degree of imbalance). By combining these algorithms and 
parameters, a wide range of variations can be generated by management processes for scenario 
simulations. Note that the rules of a worker agent can also be updated by management processes 
dynamically in order to tune the agent’s behavior based on the result of simulation analysis. 

The various components at the management layer are described as follows. 
 Distributed data repository. The worker agents publish data into a distributed repository, in-

cluding distilled metric data that collectively capture the current state of the virtual infrastructure 
and action log data that record the actions taken by the worker agents and the resultant system 
state changes. These data are further analyzed by the management processes asynchronously to 
construct a world view for context-aware reasoning. Due to the semi-structured nature of the data 
and high fault tolerance requirement, a distributed storage system such as HBase (Apache 2012) 
or BigTable (Chang et al. 2008) would be appropriate to implement the repository, while the data 
analysis could be based on the MapReduce programming model (Dean and Ghemawat 2008).  

 Management network. The key component at the management layer is a network of manage-
ment processes running on a group of interconnected virtual or physical machines. As will be dis-
cussed in Section 5, the primary task of the management processes is to ensure the fulfillment of 
prescribed global objectives in a timely and stable manner. To do so, the management processes 
use machine learning techniques to extract long-term trends from the repository data, update the 
global world-view models (discussed next), and conduct what-if simulations to determine when 
and how the execution rules shall be updated at the worker agents. Using a variable number of 
management processes allows for exploiting parallelism during data analysis, distributed simula-
tion of different scenarios, and/or concurrent simulation of different rule variations within each 
scenario. Depending on the scenario under study, the simulation can be applied to the entire infra-
structure or just part of it. To provide fault tolerance and accommodate changing computational 
needs, management processes are allowed to join or leave the network as necessary, using stand-
ard frameworks to facilitate simulation interoperability (Chen et al. 2008). 

 World view. The management processes perform context-aware reasoning and simulation based 
on a world view, which defines a set of models to represent the execution layer details with prop-
er abstractions. At the minimum, the world view would include a topological model that mimics 
the connectivity patterns established between the worker agents, a behavioral model that links the 
conditions, actions, and effects in the decision process of individual worker agents, a utility model 
that directs the heuristic scenario analysis by assigning appropriate rewards and costs to different 
actions in line with prescribed global operational policies and priorities, and a constraint model 
that defines the feasible ranges in the multi-dimensional decision space. Initially, these models 
are provided by administrators as parameterized templates, which are subsequently updated over 
time either by external inputs (e.g., human administrators or expert systems) or by metrics de-
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rived from the repository data that are measured in a symbiotic fashion. The up-to-date world-
view models are also stored in the repository to be shared by all management processes. 

 Knowledge store. When the results of the scenario analysis meet certain criteria (e.g., beyond 
given confidence thresholds), they are transformed and stored as reusable knowledge in a ma-
chine-processable and human-comprehensible format. The knowledge is enriched by additional 
data from external services and systems, such as the nature and severity of potential security 
threats as provided by the IBM X-Force service (IBM 2012b). To allow for effective information 
exchange and integration, this body of knowledge is expressed in formal conceptual ontologies 
(Haase et al. 2010). At runtime, the knowledge is processed by an inference engine to derive ad-
ditional inferable facts, which are used by management processes to accelerate decision making. 

It is worthwhile to point out several distinctive features of the proposed architecture. First, the virtual 
infrastructure is governed entirely by worker agents that make decentralized operational decisions in a 
peer-to-peer way. This not only eliminates any potential bottleneck or weak point in the architecture, but 
also allows the worker agents to join, leave, or fail independently without jeopardizing the infrastructure 
management as a whole. Secondly, each worker agent is attached to one specific physical or virtual re-
source. The increasing heterogeneity of the infrastructure can be addressed by defining additional types of 
worker agents, without complicating the logic of existing ones. Thirdly, the interaction between manage-
ment processes and worker agents is indirect and connectionless, using a distributed repository to mediate 
upward data/state refreshment and an interest management mechanism to achieve infrequent downward 
rule update. Decoupling the management processes and worker agents allows for better scalability at each 
layer as there is no need for explicit mapping or synchronization. Finally, as will be discussed in the next 
section, the capability of performing bidirectional modeling and scenario-based simulation analysis at the 
management processes is a critical component in the symbiotic feedback loop, ensuring that the emergent 
behavior from individual worker agents closely follows the prescribed global management objectives. 

5 BIDIRECTIONAL MODELING AND SIMULATION 

At the core of the agent-based architecture is a feedback control loop between the worker agents and the 
management process network, allowing the latter to carry out symbiotic simulations of the former using 
metric data collected from the virtual infrastructure in real time. The role of the symbiotic loop is twofold. 
First, it provides the management processes with an up-to-date world view, enabling more accurate and 
reliable simulations. Conversely, the simulation results are used to guide the behavior of individual work-
er agents by updating their execution rules when necessary, ensuring that the worker agents exhibit a 
weak overall emergent behavior that converges to prescribed global objectives. Note that the management 
processes can also update the data collection policies encoded in the worker agents’ execution rules, thus 
actively steering the measurement process to improve the effectiveness of data analysis at reduced com-
putational overhead. Section 7 gives an example of such active steering of data measurement. 
 Emergence was discussed by Grand in his classic book (Grand 2001), while Lecky-Thompson re-
viewed approaches to achieving different types of emergence (Lecky-Thompson 2008). In order to suc-
cessfully manage a virtualized data center using autonomic agents, weak emergence must be maintained 
as unexpected behavior spiraled out of control could lead to the violation of hard constraints in service-
level agreements and result in a system that cannot be trusted. Hence, when runaway behavior of the 
worker agents is observed, it is important to be able to discern its cause and rectify it accordingly. This 
can be achieved in the proposed architecture by virtue of the symbiotic feedback control loop, as follows.  

The management processes conduct distributed what-if scenario simulations of the world-view mod-
els to explore the space of possible behaviors of the worker agents in a systematic way. Different simula-
tion cloning techniques can be used to achieve efficient scenario management, dynamically spawning new 
simulation instances at critical decision points to exploit alternative options in parallel (see, e.g., Hybi-
nette and Fujimoto 2001; Chen et al. 2005). In the proposed architecture, these decision points could be 
defined as a set of scenario events, such as the failure/overutilization/underutilization of a physical server, 
a congestion at a network switch, or the detection of an attack of specific characteristic. For each scenario 
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event, the management processes would evaluate different variations of the worker agents' execution rules 
within the limits set by the constraint model, trying to find the most suitable rule definition for each type 
of worker agents involved. To ensure weak emergence, the simulation results of different rule variations 
are mapped to vectors of scalar values using functions defined in the world-view utility model. These vec-
tors are then compared to prescribed global objectives, which are also expressed as a vector of scalar met-
rics. When the most desirable behavior is determined for a given scenario (i.e., the simulation produces a 
utility vector that is the closest match to the objective vector), the corresponding execution rules are cho-
sen as the candidate solution for that specific event, ready to be downloaded to the worker agents. 

6 CASE STUDY IN BUSINESS RESILIENCE ASSURANCE 

Building a virtual infrastructure that is resilient against failures and attacks is an ongoing effort. In a book 
released by Google researchers (Barroso and Holzle 2009), the common sources of failures in a data cen-
ter are classified into software errors (~65%), human administrative mistakes (~20%), and hardware fail-
ures (less than 10%). Due to the complex interplay between management services, a seemingly small 
software bug or operational mistake could result in a wave of cascading failures, rendering a significant 
portion of the infrastructure inoperable with severe service disruption consequences. For instance, the lat-
est service disruption occurred at Amazon EC2 cloud was because of an incorrect change in network con-
figuration as part of their normal service scaling activities (Amazon 2012b), whereas the disruption at Mi-
crosoft Azure cloud was caused by a leap day bug in their service code that failed to generate transfer 
certificates for application data encryption (Windows 2012). 

Using the proposed architecture, the robustness of a virtual infrastructure can be enhanced by prevent-
ing most software- and human-related faults while mitigating the effects of hardware failures as follows.  

To reduce administrative mistakes, the planned operations are first defined as scenarios whenever 
possible. These scenarios will be simulated by the management network in advance. The administrative 
operations are applied to the infrastructure only if the scenario simulations produce satisfactory results. 
Presently, many cloud providers already conduct preventative tests in separate cloud testbeds in order to 
verify their maintenance operations. However, such testing is often a costly and difficult task as it is al-
most impossible to reproduce the exact condition of the real infrastructure in a miniature testbed envi-
ronment. It is our contention that this task can be facilitated by taking advantage of the modeling and da-
ta-driven simulation capability of the management network, which possesses an up-to-date world view of 
the operations currently happening in the cloud. 

Software errors can also be reduced to a certain extent through continuous what-if simulations per-
formed by the management network. In the proposed architecture, the management service logic is im-
plemented by the worker agents' execution rules. The exact same rules are defined in the models of the 
worker agents during the simulations, albeit they are executed against models of the real infrastructure in 
the world view. Hence, the simulations themselves serve as automatic intensive regression tests of the 
management software, achieving broader coverage of the code than a human-initiated testing could attain. 
The coverage would only increase over time as more and more scenarios are simulated. Any suspicious 
bugs that might show up in the simulations are brought to the attention of software developers, allowing 
them to inspect and fix potential faults before they actually occur in production. During rule updates, the 
simulated (and properly tested) rules are directly downloaded to the worker agents without the need for 
code transformation, further reducing the possibility of inadvertent errors. 

In contrast, hardware failures are handled mainly through the collaboration between neighboring 
worker agents, which may exchange “heart beat” messages periodically to determine the healthiness of 
each other. When an anomaly is detected by a worker agent, early warning messages will be propagated 
to all relevant agents through the neighborhood relations, enabling those agents to verify and confirm the 
observed error and take appropriate actions accordingly (e.g., migrating the affected VMs to other servers 
based on self-evacuation rules defined in the server agents or shifting network traffic to alternative routes 
as defined by traffic control rules in the switch agents). As these actions have already been simulated (or 
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maneuvered) previously by the management network, this approach allows for fast response time while 
simultaneously minimizing potential adverse side-effects. 

7 IMPLEMENTATION CHALLENGES 

In order to realize the potential of the proposed architecture, a key challenge is to minimize the expected 
time to action, which is the delay between when an unanticipated event occurs in the infrastructure until it 
is recognized and incorporated in the next rule update at the relevant worker agents. This is necessary be-
cause, even though many scenario events can be anticipated and simulated in advance, there are occasions 
when anomalies not seen before emerge in production that require quick response. This challenge can be 
addressed by streamlining the main operations in the symbiotic feedback loop, as briefly discussed here.   

 Efficient system monitoring and data analysis. It is important to identify a minimum set of sys-
tem metrics to be collected by different types of worker agents, as well as the proper frequencies 
at which these metrics are measured. The metric data must provide enough information for diag-
nosis of anomalies, while reducing the overhead of data collection. As suggested in (Wang et al. 
2011), an adaptive multi-phased monitoring approach could be used to combine lightweight 
anomaly scanning at global scale using low-cost measurement rules and focused anomaly scruti-
ny based on additional data collected from only a small subset of the worker agents around a de-
tected anomaly area using more elaborated measurement rules. This approach also exemplifies 
the ability of symbiotic simulation to steer the process of data measurement interactively in ac-
cordance with changing needs of data analysis. Consequently, appropriate analytics algorithms 
should be chosen to consume the data incrementally over time and space, exploiting the inherent 
data parallelism to improve performance.   

 Prioritized behavior exploration. The space of all possible behaviors of the worker agents under 
different scenarios can be too large to be explored exhaustively using a brutal force method, espe-
cially when the time to action becomes a major concern. One way to tackle this problem is 
through the prioritization of different rule variations so that the most valued options are explored 
first (e.g., ensuring application performance for premium customers at the cost of lower server 
utilizations). Although this approach may not always find the optimal solution, it increases the 
likelihood of figuring out an acceptable one within a given time limit, while still allowing for fur-
ther optimization afterwards.   

 Agile adaptation to model changes. The models in the world view are subject to constant evolu-
tion as monitoring data arrive continuously. This includes not only numerical state updates, such 
as fluctuation in server utilizations, but also structural model changes as worker agents are creat-
ed or destroyed dynamically in the virtual infrastructure. As a result, the scenario simulations 
must be able to adapt to these changes in a timely fashion. To this end, incremental simulation 
cloning mechanisms could be useful to avoid repeated computation among independent scenarios 
before and after model changes (Chen et al. 2005); and existing approaches developed to support 
variable structure models would shed light on accommodating the dynamics of the modeling pro-
cess (Uhrmacher 2001). Issues related to model adaptation in agent-based symbiotic simulations 
are discussed in (Kennedy et al. 2011). 

8 CONCLUSION AND FUTURE WORK 

Autonomic computing is gaining popularity as a promising technology to achieve self-management of 
virtualized cloud infrastructures. This paper proposed an agent-based info-symbiotic architecture towards 
this goal, using autonomous worker agents to make decentralized resource management decisions in a 
peer-to-peer manner. The architecture employs a network of management processes to ensure that the 
emergent behavior of individual worker agents converges to prescribed global objectives, performing 
concurrent data analysis and scenario-based simulation to determine the appropriate execution rules for 
different types of worker agents. Through the use of continuous system monitoring and asynchronous rule 
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updates, a symbiotic feedback control loop is established between the management network and the 
worker agents to achieve bidirectional modeling. This paper also presented a qualitative case study in the 
context of data center business resilience assurance, arguing for the effectiveness of the proposed archi-
tecture in enhancing the robustness of virtual infrastructures. Some of the implementation challenges were 
discussed, along with possible approaches to addressing them in the proposed architecture. 
 As part of our future research, we plan to implement a prototype of the proposed architecture in open 
source cloud management stacks, starting from the most suitable services. In the process, we will address 
the challenges outlined in the previous section and evaluate different approaches quantitatively. 
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