
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

TUTORIAL: CONCEPTUAL SIMULATION MODELING WITH ONTO-UML

Giancarlo Guizzardi

Gerd Wagner

Federal University of Espírito Santo (UFES) Brandenburg University of Technology
Computer Science Department Institute of Informatics

Av. Fernando Ferrari P. O. Box 101344
s/n29060-970 Vitória, Espírito Santo, BRAZIL 03013 Cottbus, GERMANY

ABSTRACT

Conceptual modeling is of great importance not only to Information Systems and Software Engineering,
but also to Simulation Engineering. It is concerned with identifying, analyzing and describing the essen-
tial concepts and constraints of a real-world domain with the help of a (diagrammatic) modeling language
that is based on a set of basic modeling concepts (forming a metamodel). In this tutorial, we introduce the
ontologically well-founded conceptual modeling language Onto-UML and show how to use it for making
conceptual simulation models as the basis of model-driven simulation engineering.

1 INTRODUCTION

Even though there is a common agreement that conceptual modeling is an important first step in a simula-
tion engineering project, at the same time it is thought to be the least understood part of simulation engi-
neering (Tako et al. 2010). In a recent panel discussion on conceptual simulation modeling (Zee et al.
2010), the participants agreed that there is a lack of “standards, on procedures, notation, and model quali-
ties”. On the other hand, there is no such lack in the field of Information Systems and Software Engineer-
ing (IS&SE) where widely used standards such as the Unified Modeling Language (UML) and the Busi-
ness Process Modeling Notation (BPMN) and various model quality assurance methods have been
established.

In Section 2, we therefore first resort to the disciplines of IS&SE for better understanding the possible
purposes, languages and techniques of conceptual modeling and for answering the question of what is a
conceptual model (CM). Essentially, conceptual modeling is an activity performed in the analysis phase
of a software or simulation engineering project. Its main purpose is to capture, as faithfully as possible, a
relevant part of the real-world domain under consideration, using a well-defined (typically diagrammatic)
modeling language for making a CM in the form of a digital artifact.

An important approach to quality assurance for a conceptual modeling language (and the conceptual
models made with it) is to establish the ontological foundations of its core concepts for clarifying its real
world semantics. A clearly defined semantics of the conceptual model of a domain leads to a higher over-
all quality of the simulation software program built upon that model with respect to comprehensibility,
maintainability, interoperability and evolvability. We therefore propose in this tutorial to use an ontologi-
cally improved version of the UML Class Diagram language, called Onto-UML, originally proposed in
Guizzardi (2005), for conceptual information modeling.

This tutorial is based on our previous research on ontological foundations of conceptual modeling, re-
ported in (Guizzardi et al. 2003, Guizzardi 2005, Guizzardi and Halpin 2008, Guizzardi and Wagner
2010a, Guizzardi and Wagner 2010b, Guizzardi and Wagner 2011a, Guizzardi and Wagner 2011b,
Guizzardi 2011).

An extended version of this paper is available as a live document (Guizzardi and Wagner 2012).

978-1-4673-4781-5/12/$31.00 ©2012 IEEE

Guizzardi and Wagner

2 MODEL-DRIVEN SOFTWARE AND SIMULATION ENGINEERING

Model-Driven Engineering (MDE), also called model-driven development, is a well-established paradigm
in IS&SE, see, e.g., the Model-Driven Architecture proposal of the Object Management Group (MDA
2012). Since simulation engineering can be viewed as a special case of software engineering, it is natural
to apply the ideas of MDE also to simulation engineering. There have been several proposals of using an
MDE approach in Modeling and Simulation (M&S), see, e.g., the overview given in Cetinkaya and Ver-
braeck (2011).

2.1 Models in Software Engineering and Information Systems Engineering

Historically, research in conceptual modeling has first been carried out in the computer science field of
Database Systems. It started with two proposals for a conceptual data modeling language: the semantic
model proposed by Abrial (1974) and the entity-relationship (ER) model proposed by Chen (1976), which
triggered the series of ER conferences (ER 2012) starting in 1979. Later it was noticed that conceptual
modeling, e.g., in the forms of enterprise modeling and business process modeling, plays an important
role in software engineering, in general.

In MDE, there is a clear distinction between three kinds of models as engineering artifacts resulting
from corresponding activities in the analysis, design an implementation phases:

1. domain models (also called ‘computation-independent’ models);
2. platform-independent design models
3. platform-specific implementation models.

Domain models are solution-independent descriptions of a problem domain produced in the analysis
phase of a software engineering project. The term ‘domain model’ is synonymous with the term ‘concep-
tual model’. A domain model may include both descriptions of the domain’s state structure (in conceptual
information models) and descriptions of its processes (in conceptual process models). They are solution-
independent, or ‘computation-independent’, in the sense that they are not concerned with making any sys-
tem design choices or with other computational issues. Rather, they focus on the perspective and language
of the subject matter experts for the domain under consideration.

In the design phase, first a platform-independent design model, as a general computational solution, is
developed on the basis of the domain model. The same domain model can potentially be used to produce
a number of (even radically) different design models. Then, by taking into consideration a number of im-
plementation issues ranging from architectural styles, nonfunctional quality criteria to be maximized (e.g.,
performance, adaptability) and target technology platforms, one or more platform-specific implementa-
tion models are derived from the design model.

In the implementation phase, an implementation model is encoded in the programming language of
the target platform. Finally, after testing and debugging, the implemented solution is then deployed in a
target environment.

A model for a software (or information) system, which may be called a ‘software system model’,
does not consist of just one model diagram including all viewpoints or aspects of the system to be devel-
oped (or to be documented). Rather it consist of a set of models, one (or more) for each viewpoint. The
two most important viewpoints, crosscutting all three modeling levels: domain, design and implementa-
tion, are

1. information modeling, which is concerned with the state structure of the domain;
2. process modeling, which is concerned with the dynamics of the domain.

In the computer science field of database engineering, which is only concerned with information
modeling, domain information models have been called ‘conceptual models’, information design models
have been called ‘logical design models’, and database implementation models have been called ‘physical
design models’.

Guizzardi and Wagner

Examples of widely used languages for information modeling are Entity Relationship Diagrams and
UML Class Diagrams, which subsume the former. Examples of widely used languages for process mod-
eling are (Colored) Petri Nets, UML Activity Diagrams and the Business Process Modeling Notation
(BPMN). Some modeling languages, such as UML Class Diagrams and BPMN, can be used on all three
modeling levels in the form of tailored variants. Other languages have been designed for being used on
one or two of these three levels only. E.g. Petri Nets cannot be used for conceptual process modeling,
since they lack the required expressivity.

We illustrate the distinction between the three modeling levels with an example in Figure 1. In a sim-
ple conceptual information model of a person, expressed as a UML class diagram, we require that any
person has exactly one mother and one father (according to our understanding of reality), expressed by
corresponding binary many-to-one associations, and we may not care about the data types of attributes,
while we do care about the data types of attributes in the design model where we also make the design de-
cision that it is not required that information about the father or mother of a person is available and,
hence, turn the multiplicity of the father and mother association ends from “exactly one” to “zero or one”.
Finally, in the Java implementation model, we specify Java-specific data types for attributes and we ex-
press the binary associations mother and father with corresponding reference properties.

Figure 1: From a conceptual model via a design model to an implementation model of persons.

The fact that the mother/father associations in Figure 1 are mandatory in the conceptual model, while
they are optional in the design model, shows that the conceptual model is concerned with the real world,
i.e. it takes an ontological perspective, while the design model is concerned with the representation of in-
formation about the real world, taking an epistemological perspective.

2.2 Models in Simulation Engineering

Unlike in IS&SE, there is no agreed upon definition, or common understanding, of what is a CM in M&S.
Unfortunately, the results achieved in the conceptual modeling field of IS&SE are often ignored by M&S
researchers.

A recent panel discussion (Zee et al. 2010) revealed that there are at least three different definitions of
what is a CM in M&S:

1. a document that states “what you will and will not include in the simulation and why”, or “a re-
pository of high-level conceptual constructs and knowledge specified in a variety of communica-
tive forms (e.g., animation, audio, chart, diagram, drawing, equation, graph, image, text, and vid-
eo)“ intended to assist in the design of a simulation, as proposed by Balci et al. (2008);

2. “a formal specification of a conceptualization”, or “an ontological representation of the simula-
tion that implements it” as proposed in Turnitsa et al. (2010), corresponding to what is called a
domain model in MDE;

3. “the specification of an executable simulation model”, or “a non-software specific description of
the computer simulation model” as proposed by Robinson (2008), corresponding to what is called
a design model in MDE;

Definition 1 reflects a view that is widespread in the M&S community, according to which conceptu-
al modeling is not a well-defined activity resulting in one or more model diagrams expressed in conceptu-

Guizzardi and Wagner

al modeling languages with a well-defined semantics, but rather a loosely defined term referring to all the
activities that precede the implementation of a simulation model. In particular, in this view, the issue of
information modeling is typically neglected, and only process models are used, often in the form of ad-
hoc flow diagrams that are not expressed in a well-defined language. This approach is exemplified by
Ingalls (2008), where entity types are only discussed, but not modeled (e.g., in an Entity Relationship Di-
agram), and only an ad-hoc process model (a “logic flow” diagram) is presented.

Definition 2 comes closest to the view taken in this tutorial, while definition 3 seems to presuppose
that there is nothing like a domain model and the modeling process starts right away with design model-
ing.

In the MDE approaches of McGinnis and Ustun (2009) and Cetinkaya et al. (2011), it is proposed that
the CM is to be transformed to a design model or to a simulation program. However, it should be clear
from the nature of a CM as a solution-independent description of a domain, that a CM cannot be automat-
ically transformed into a computational specification without human assistance.

Model-driven simulation engineering is based on the same kinds of models as model-driven software
engineering: going from a domain model via a simulation design model to a simulation implementation
model for the simulation platform of choice (or to several implementation models if there are several tar-
get simulation platforms). The specific concerns of simulation engineering, like, e.g., the concern to cap-
ture certain parts of the overall system dynamics with the help of random variables, do not affect the ap-
plicability of MDE principles. However, they may affect the modeling languages to be used.

We disagree with Robinson (2011) who states that conceptual modeling “is not a science, but an art”,
suggesting to make a conceptual model in the form of a set of documents about the M&S project objec-
tives, requirements and design assumptions, and completely ignoring the results achieved in IS&SE. Ra-
ther, conceptual modeling, both in software and simulation engineering, should be considered an engi-
neering discipline based on scientific research results and best practices.

2.3 Conceptual Modeling Languages

There are general purpose (domain-independent) modeling languages and domain- specific modeling
languages. In the sequel, we simply say ‘modeling language’ instead of ‘general purpose modeling lan-
guage’.

Discrete event simulation (DES) is concerned with the simulation of real-world systems that are con-
ceived as discrete event systems (or ‘discrete dynamic systems’). Such conceptualizations of discrete sys-
tems are immaterial entities that only exist in the mind of a developer (or a community of developers). In
order to be documented, communicated and analyzed they must be captured, i.e., represented in the form
of a concrete artifact with the help of a language. The representation of a conceptualization in a language
is called a model and the language used for its creation is called a modeling language. Notice that a dis-
crete event system is part of a real-world domain that typically also contains other discrete event systems.
A domain model may, therefore, also be called a conceptual system model.

One of the main success factors of a conceptual modeling language lies in its ability to provide a set
of modeling constructs that enable its users to directly express relevant domain concepts in an unambigu-
ous manner. A conceptual (or domain) modeling language is a representation of a meta-conceptualization
of (a viewpoint of) the real world. We could also say that the meta-conceptualization, which exists in the
mind of the language designer, provides an interpretation of the domain modeling language.

A domain (or system) conceptualization, which exists in the mind of the modeler and contains a num-
ber of domain (or system) concepts, instantiates a meta-conceptualization. It is represented in the form of
a domain (or conceptual system) model expressed in the conceptual modeling language representing the
meta-conceptualization. This is illustrated by the diagram shown in Figure 2.

For instance, for the simple conceptual model of a person shown on the left side of Figure 1, which is
a representation of a corresponding domain conceptualization of persons, a subset of UML class diagrams
containing language elements for the meta-concepts of classes, attributes and binary associations only, is
sufficient as a conceptual modeling language.

Guizzardi and Wagner

Figure 2: A conceptual modeling language is a representation of a meta-conceptualization.

Due to their great expressivity and their wide adoption as modeling standards, UML Class Diagrams and
BPMN seem to be the best choices for conceptual information and process modeling. However, since
they have not been specifically designed for this purpose, we may have to restrict, modify and extend
them in a suitable way. In fact, both an analysis of UML with respect to its suitability for conceptual
modeling in Guizzardi (2005) and an analysis of BPMN with respect to its suitability for agent-based
DES modeling in Guizzardi and Wagner (2011b) have revealed a number of ambiguities and shortcom-
ings that will have to be resolved and fixed for making these languages fit for conceptual modeling. This
issue is further discussed in the next section.

Several authors, e.g. Wagner et al (2009), Cetinkaya et al. (2011) and Onggo and Karpat (2011), have
proposed to use BPMN for discrete event simulation modeling and for agent-based modeling.

2.4 Section Summary

• It is natural to apply the general methodology of Model-Driven Engineering (MDE) also to sim-
ulation engineering.

• Unfortunately, the results obtained in the conceptual modeling field of IS&SE have largely been
ignored in M&S. Still today, conceptual modeling is often confused with design modeling in
M&S.

• A conceptual model is a solution-independent description of a problem domain expressed in a
well-defined (diagrammatic) modeling language.

• In model-driven simulation engineering, we first make a conceptual system model, from which
we derive a (platform-independent) simulation design model, which is then transformed into one
or more (platform-specific) simulation models.

• A conceptual modeling language is a representation of a meta-conceptualization of a viewpoint
of the real world. A system conceptualization, which exists in the mind of the modeler and con-
tains a number of system concepts, instantiates a meta-conceptualization. It is represented in the
form of a conceptual system model expressed in the conceptual modeling language representing
the meta-conceptualization.

• We propose to use improved variants of UML Class Diagrams and BPMN, which are based on a
foundational ontology, for conceptual information and process modeling.

Guizzardi and Wagner

3 ONTOLOGICAL FOUNDATIONS OF CONCEPTUAL SIMULATION MODELING

In the DES literature, it is often stated that DES is based on the concept of “entities flowing through the
system”. For instance, this is the paradigm of an entire class of simulation software such as ARENA
(ARENA 2012). However, the loose metaphor of a “flow” only applies to entities of certain types: events,
messages, and physical objects may, in some sense, flow, while many entities of other types, such as
buildings or organizations, do not flow in any sense. Also, subsuming these three different kinds of flows
under one common term “entity flow” obscures their meanings. It is therefore highly questionable to as-
sociate DES with a “flow of entities”. Rather, one may say that DES is based on a flow of events.

A discrete event system (or discrete dynamic system) consists of:

• objects (of various types) whose states may be changed by
• events (of various types) occurring at times from a discrete set of time points.

For modeling a discrete event system, we have to do the following:

1. describe its object types and event types;
2. for any event type, specify the state changes of objects and the follow-up events caused by the

occurrence of an event of that type.

In Ontology, which is the philosophical study of what there is, the following fundamental distinctions are
made:

• there are entities (or individuals) and entity types, which are called ‘universals’ in philosophy;
• there are the following categories of entities: objects, trope individuals (existentially dependent

entities such as qualities and relationships) and events.

We have discussed these ontological distinctions in depth in Guizzardi (2005) and in Guizzardi and Wag-
ner (2010a), where we present our proposal of a Unified Foundational Ontology (UFO 2012) based on
theories from Formal Ontology, Cognitive Psychology, Linguistics, Philosophy of Language and Philo-
sophical Logics. In Guizzardi and Wagner (2010b) and Guizzardi and Wagner (2011a) we propose the
discrete event system ontology DESO and its agent-based extension ABDESO, which are foundational
ontologies based on UFO and tailored to the domain of (agent-based) DES.

For pragmatic reasons, we use the term ‘object’ ambiguously, both for objects in the narrow sense of
Aristotelian substances, which are existentially independent entities that are founded on matter and may
therefore be better called physical objects, and also for other kinds of objects in a broader sense, which
are also sometimes called ‘intangible’ in the literature, such as customer orders.

In the meta-model shown in Figure 3 we summarize the ontological type categories of DESO that
form the foundation of conceptual simulation modeling languages. Entity types classify entities, which
are said to be their instances. An entity type may be the domain of attributes and reference properties,
which are also entity types since their instances, which are attributions and references, are entities (in fact,
they are trope individuals). The range of an attribute is a datatype, which is an abstract thing (namely a
structure consisting of a symbol set as the datatype’s lexical space, an abstract set as its value space and a
mapping from the lexical space to the value space). The range of a reference property is an entity type.
Reference properties are (binary) relationship types. Since objects may participate in events, an event type
may have a number of object types as participant types. Causal laws define the dynamics of a discrete
event system (formally, they may be viewed as transition functions). Each causal law has one type of
triggering event and zero or more types of resulting events.

In addition to a theory of object type categories, summarized in Section 3.1, UFO/DESO also con-
tains theories of attribution, relationships, parthood, causality and agency. All of these theories are rele-
vant to conceptual simulation modeling and are the basis for special modeling elements in Onto-UML,
but for a lack of space, we cannot report on them in this paper.

Guizzardi and Wagner

EventType

PhysicalObjectType
EntityType

ObjectType

range

1

*

domain1

*

Attribute

domain 1
*

Datatype

range1

*

CausalLaw

*

resultingEventTypes*

*

1

triggering
EventType

*
participantTypes*

ReferenceProperty

RelationshipType

Figure 3: A meta-model describing the basic type concepts of DESO.

3.1 Different Categories of Object Types

Any object type is endowed with an application condition that allows us to use the object type for classi-
fying objects, that is, to judge if an object is an instance of it. For being able to understand the issues of
identity and dynamic classification, we need to make a number of distinctions between different catego-
ries of object types. We summarize the theory of object type categories presented in Chapter 4 of
Guizzardi (2005).

3.1.1 Sortal Types and Mixin Types

A sortal type is an object type that is endowed with an object identity condition for its instances allowing
us to judge if two of its instances are the same. The object types Person, Car, Dog, Child and Student are
examples of sortal types.

Object types that are not sortal types are called mixin types. Examples of mixin types are RedThing
and InsurableItem, as these object types do not provide any identity conditions for their instances, so we
could not tell, for instance, if two red objects perceived at different times are the same or not.

We have the following two postulates about mixin types:
• A mixin type cannot have direct instances. This means that a mixin type M must have sortal sub-

types, which are directly instantiated by the instances of M.
• A mixin type cannot be a subtype of a sortal type. This is a consequence of the fact that all sub-

types of a sortal type are again sortal types since they inherit its object identity condition.

3.1.2 Kinds and Subkinds

We define the modal notions of rigidity and non-rigidity for being able to distinguish different categories
of object types. An object type O is rigid if all instances of O are necessarily instances of O (as long as
they exist). In other words, if x instantiates O in some possible world, then x must instantiate O in all pos-
sible worlds, in which x exists.

A rigid sortal type may have rigid subtypes, which inherit its object identity condition. A top node in
such a rigid sortal type hierarchy is called a kind, while a rigid subtype of a kind is called a subkind,

An important postulate of UFO is:

Guizzardi and Wagner

• Every object must instantiate exactly one kind.
Examples of kinds are Planet, Person and Organization. Examples of subkinds are FemalePerson,

which is a rigid subtype of Person, and University, which is a rigid subtype of Organization.

3.1.3 Role Types and Phase Types

An object type O is anti-rigid if no instance of O is necessarily an instance of O. In other words, if x in-
stantiates O in some possible world, then there is another possible world, in which x exists, but does not
instantiate O.

An anti-rigid sortal type is a subtype of a kind or a subkind and may be either a phase type or a role
type. In the case of a phase type P, the specialization condition only depends on attributes of P. For in-
stance, the phase type Child classifies persons in a certain age. For a role type R, in contrast, the speciali-
zation condition depends on a relationship type involving R and one or more other sortal types that partic-
ipate in this relationship type. For instance, the role type Student classifies persons who are enrolled in a
school. Here, the relationship type is ‘enrolled in’ and the other involved sortal type is School.

In the special case of an anti-rigid mixin type that is partitioned into role subtypes, we speak of a role
mixin.

As a direct consequence of the definitions above, we obtain the following postulate:
• A rigid object type cannot be a subtype of an anti-rigid object type.

PhaseType

MixinTypeSortalType

Kind RoleType

ObjectType

Subkind

Figure 4: Different categories of object types with instances.

Notice that the particular object types chosen to exemplify the proposed type categories are used for illus-
tration purposes only. For example, when categorizing the object type Person as a kind, we are not advo-
cating that Person must be, in general, considered as a kind in conceptual modeling. Rather , the intention
is to make the consequences of such a modeling choice explicit. The choice itself, however, is always left
to the model designer.

3.2 The Conceptual Modeling Language Onto-UML

We use the UML extension mechanism of a UML profile for defining a conceptual modeling language
whose elements represent the DESO type categories, including the different categories of object types
discussed in Section 3.1 to 3.4. It is important to emphasize, however, that the language defined does not
depend on UML, which is used here only for exploiting the convenience of its built-in profile extension
mechanism and due to its wide adoption in computer science and its practical relevance. Alternatively, we
could have proposed a new modeling language based on the same concepts. For a short introduction to
UML Class Diagrams, which is a prerequisite for understanding Onto-UML, the reader is referred to Am-
bler (2010).

Guizzardi and Wagner

The Onto-UML profile contains a set of stereotyped classes that support the design of ontologically
well-founded conceptual models according to UFO and (AB)DESO. Moreover, the profile also contains a
number of constraints that are derived from the postulates stated above restricting the way the modeling
elements can be related.

Almost all of the basic type concepts of DESO shown in Figure 3 are directly supported by UML
Class Diagrams, where relationship types are called ‘associations’, as shown by the mapping in Table 1.
Only the three categories of physical object types, event types and causal laws are not supported. Conse-
quently, we have to add them to the Onto-UML profile in the form of the class stereotypes «physical ob-
ject type», «event type» and «causal laws».

The postulates of UFO lead to the following Onto-UML modeling guidelines:

• Any subkind must be a subtype of a kind.
• Any anti-rigid sortal type must be a subtype of a kind.
• A kind must not be a subtype of a subkind, a phase, a role or a role mixin.
• A subkind must not be a subtype of a phase, a role or a role mixin.
• Mixin types must be represented as abstract classes (which are rendered in UML with class

names in italics).
• A mixin type must not be a subtype of a kind, a subkind, a phase or a role.

Table 1: Mapping DESO type concepts to corresponding UML elements

DESO type concept Corresponding UML element
Entity type Class
Datatype Datatype
Attribute Property whose type is a datatype
Reference property Property whose type is a class
Relationship type Association
Object type Class stereotyped «object type»
Physical object type Class stereotyped «physical object type»
Kind Class stereotyped «kind»
Subkind Class stereotyped «subkind»
Role type Class stereotyped «role»
Phase type Class stereotyped «phase»
Mixin type Class stereotyped «mixin»
Role mixin Class stereotyped «role mixin»
Event type Class stereotyped «event type»
Causal law Class stereotyped «causal law»

3.3 The Conceptual Process Modeling Language Onto-BPMN

Conceptual process models are based on the event types and causal laws as modeled in a conceptual in-
formation model. They are expressed in a variant of BPMN, which we call Onto-BPMN, where a causal
law takes the form of an event subprocess, which describes a process type the instances of which are trig-
gered by events of a certain type as parallel threads. While a conceptual information model describes the
informational aspects of events and causal laws, the corresponding conceptual process model describes
the dynamic aspects, including the succession of events. As opposed to Onto-UML, which has originally
been proposed in (Guizzardi 2005) and has been used and validated in many modeling projects since then,
Onto-BPMN has not been presented before and is still under development by the authors of this tutorial.

In the same way as our Onto-UML information modeling concepts do not depend on the language of
UML Class Diagrams, the concepts of Onto-BPMN do not depend on BPMN, which is used only due to
its wide adoption in computer science and information systems, and its practical relevance. For an intro-

Guizzardi and Wagner

duction to BPMN, which is a prerequisite for understanding Onto-BPMN, the reader is referred to
Mancarella (2011).

Ontologically, BPMN activities, including tasks and subprocesses, are special events. However, this
subsumption of activities under events is not supported by BPMN. It is one of the departures of Onto-
BPMN from standard BPMN.

4 MAKING CONCEPTUAL MODELS − EXAMPLES

When we model a particular discrete system, including the many different things that make up the system,
do we model these particular things and this particular system or do we model this type of system with all
the types of things that make up such a type of system? The answer to this question seems to vary from
case to case. In the case of modeling a machine, it is clear that we are interested in a model of this type of
machine, and not in a model of a particular machine. But in the case of modeling an organization, it seems
that we want a model of this particular organization only, and we are not really interested in considering
the more general case of the type of organization that is instantiated by this particular organization. How-
ever, we argue that we should always model types, and not individuals. Even in the case of modeling a
particular organization o, we should adopt the view that there is not only o, but there is also a correspond-
ing type of organization O, which is instantiated by o, and the goal of our modeling project is to model O,
and not o.

4.1 Example: A Service Queue System

In the service queue system example, as implemented in the Simurena Library (Simurena 2012), custom-
ers arrive at random times at a service desk where they have to wait in a queue when the service desk is
busy. Otherwise, when the service desk is not busy, they are immediately served by the service clerk.
Whenever a service is completed, the next customer from the queue will be served, if there is any.

4.1.1 The Conceptual Information Model

A naïve conceptual information model of this system may look as shown in Figure 5. There are one-to-
one binary relationship types between the object types ServiceDesk and ServiceClerk and between Ser-
viceDesk and ServiceQueue. The fact that a service queue is composed of zero or more private customers
is modeled with the help of the UML composition relationship (rendered with a solid ‘diamond’ at the
side of the aggregate type).

Figure 5: A naïve information model of a service queue system.

Typically, in a simulation design model we would make several simplifications and, for instance, abstract
away from the object type ServiceClerk, but in a conceptual system model, we include all entity types that
are relevant for understanding the real-world system, independently from the simplifications we make in
the solution design and implementation models.

The Onto-UML modeling guidelines require that we identify, which object types are kinds, role types
or phase types, and that we identify suitable kinds to be added as supertypes of role types and phase types,
for making the conceptual model ontologically complete. As a result of following these guidelines we ob-
tain the improved model shown in Figure 6. One of the improvements achieved is that a service clerk may
now also be a customer, which is a special case of the real-world possibility that an employee may also be
a customer.

Guizzardi and Wagner

Figure 6: An improved version of the model of Figure 5.

The model of Figure 6 can be further improved by adding event types and related causal laws, as shown
in Figure 7. There are three types of events in this system: customer arrival events, service start events
and service end events (also called ‘customer departure events’).

Figure 7: Adding event types and causal laws.

For simplicity, we have omitted service start events, since they can be modeled to coincide either with
customer arrival events, when the service queue is empty, or with customer departure events, when the
queue is non-empty. In the extended model shown in Figure 7, both customer arrival events and customer
departure events have exactly two participants: a customer and the service desk. The CustomerArrival-
Law is triggered by a customer arrival event and causes a corresponding customer departure event. Simi-
larly, the CustomerDepartureLaw, which is not shown in the diagram of Figure 7, is triggered by a cus-
tomer departure event and causes another customer departure event (for the next customer), if the queue is
non-empty, as shown in Figure8.

Figure 8: The customer departure law is triggered by a customer departure event.

Guizzardi and Wagner

4.1.2 The Conceptual Process Model

The conceptual process model for the service queue system consists of two event subprocesses, one for
the CustomerArrivalLaw that is triggered by CustomerArrival events, and one for the CustomerDepar-
tureLaw that is triggered by CustomerDeparture events, as shown in Figure 9. The CustomerArrivalLaw
subprocess includes the BPMN task “perform service for arrived customer”, while the CustomerDepar-
tureLaw subprocess includes the BPMN task “perform service for next customer”.

Figure 9: A conceptual process model of the service queue system.

4.2 Example: A Drive-Thru Restaurant

In the Drive Thru example, as presented in Ingalls (2008) and implemented in the Simurena Library
(Simurena 2012), cars enter a drive thru from the street and the drivers decide whether or not to get in
line. If the driver decides to leave the restaurant, he counts as a lost customer. If he decides to get in line,
he waits until the menu board is available. At that time, he gives the order to the order taker at the menu
board. After the order is taken, two things occur simultaneously:

1. The driver moves forward if there is room, otherwise he has to wait at the menu board until there
is room to move forward.

2. The order is sent back to the kitchen where it is prepared with some delay.

As soon as the driver reaches the pickup window, he pays and picks up his food, if it is ready. If the food
is not yet ready, he has to wait until his order is delivered to the pickup window. In (Ingalls 2008), neither
a conceptual information model nor an information design model is presented. The only model presented
is a “logic flow” model expressed in a diagram language without a clearly defined semantics.

Guizzardi and Wagner

4.2.1 The Conceptual Information Model

Our conceptual information model shown in Figure 10 contains DriveThru as a subkind of Restaurant,
which is a subkind of the kind Organization. The role types OrderTaker, Cook and PickupWindowClerk
specialize the role type Employee, which is a subtype of the kind Person.

Figure 10: A conceptual information model of a drive thru.

REFERENCES

Abrial J-R. 1974.‘Data semantics. In: Klimbie and Koffeman (eds.), Data Management Systems, North-
Holland.

Ambler S.W. 2010. UML 2 Class Diagrams. http://www.agilemodeling.com/artifacts/classDiagram.htm.
Accessed July 25, 2012.

ARENA. 2012. http://www.arenasimulation.com. Accessed May 23, 2012.
Balci, O., J.D. Arthur and R.E. Nance. 2008. Accomplishing reuse with a simulation conceptual model. In

Proceedings of the 2008 Winter Simulation Conference, ed. S. J. Mason, R. Hill, L. Moench, and O.
Rose, 959-965. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Cetinkaya D and A. Verbraeck. 2011. Metamodeling and Model Transformations in Modeling and Simu-
lation. In: S. Jain, R.R. Creasey J. Himmelspach, K. P. White, and M. Fu. Proceedings of Winter
Simulation Conference. Phoenix, Arizona, USA.

Cetinkaya D, A. Verbraeck, and M. D. Seck. 2011. MDD4MS: A Model Driven Development Frame-
work for Modeling and Simulation. In Proceedings of the 2011 Summer Computer Simulation Con-
ference (SCSC 2011). The Hague, Netherlands.

Chen P. 1976. The entity-relationship model: Towards a unified view of data, ACM Transactions on Da-
tabase Systems 1(1).

ER (International Conference on Conceptual Modeling). 2012. http://www.conceptualmodeling.org/. Ac-
cessed May 23, 2012.

Guizzardi and Wagner

Guizzardi, G. 2005. Ontological foundations for structural conceptual models. PhD thesis, University of

Twente, Enschede, The Netherlands. CTIT Ph.D.-thesis series No. 05-74 ISBN 90-75176-81-3.
Guizzardi, G. 2011. Theoretical Foundations and Engineering Tools for Building Ontologies as Reference

Conceptual Models, Semantic Web Journal, IOS Press, Amsterdam, 2011.
Guizzardi, G. and T. Halpin (2008). Ontological Foundations for Conceptual Modeling. Applied Ontolo-

gy, vol. 3, p. 91-110.
Guizzardi, G.; H. Herre and G. Wagner. 2003. On the General Ontological Foundations of Conceptual

Modeling”, 21st International Conference on Conceptual Modeling (ER-2002). Springer-Verlag, Ber-
lin, Lecture Notes in Computer Science 2503, 65-78.

Guizzardi G. and G. Wagner. 2010a. Using the Unified Foundational Ontology (UFO) as a Foundation
for General Conceptual Modeling Languages. In Poli R., M . Healy and A. Kameas (Eds.), Theory
and Applications of Ontology: Computer Applications., 175−196. Available from:
http://www.inf.ufes.br/~gguizzardi/TAO-CR.pdf

Guizzardi G. and G. Wagner. 2010b. Towards an Ontological Foundation of Discrete Event Simulation.
In: Johansson B, Jain S, Montoya-Torres J, Hugan J, Yücesan E (Eds.), Proceedings of Winter Simu-
lation Conference, Baltimore (MD), USA, 652−664. Available from: http://www.informs-
sim.org/wsc10papers/059.pdf

Guizzardi G. and G. Wagner. 2011a. Towards an Ontological Foundation of Agent-Based Simulation. In:
S. Jain, R.R. Creasey J. Himmelspach, K. P. White, and M. Fu. Proceedings of Winter Simulation
Conference. Phoenix, Arizona, USA, 284−295. Available from: http://www.informs-
sim.org/wsc11papers/024.pdf

Guizzardi G. and G. Wagner. 2011b. Can BPMN Be Used for Making Simulation Models? In: J. Barjis,
T. Eldabi and A. Gupta (Eds.). Enterprise and Organizational Modeling and Simulation. Springer
Lecture Notes in Business Information Processing, vol. 88.

Guizzardi G. and G. Wagner. 2012. Tutorial: Conceptual Simulation Modeling.
http://oxygen.informatik.tu-cottbus.de/publications/wagner/ConceptualSimulationModeling.html.
Accessed July 27 2012.

Ingalls, R.G. 2008. Introduction to Simulation. In Mason, S.J. Hill, R.R. Mönch, L. Rose, O. Jefferson, T.
Fowler, J.W. (Eds.), Proceedings of the 2008 Winter Simulation Conference, 17–26.

McGinnis L. and V. Ustun. 2009. A Simple Example of SysML-Driven Simulation. In: M. D. Rossetti, R.
R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, (Eds.), Proceedings of Winter Simulation Con-
ference.

MDA (Model-Driven Architecture). 2012. http://www.omg.org/mda/. Accessed May 23, 2012.
Mancarella S. 2011. Business Process Modelling Notation – A Tutorial.

http://www.omg.org/news/meetings/workshops/HC-Australia/Mancarella.pdf. Accessed July 25,
2012.

Onggo B S S and O. Karpat. 2011. Agent-Based Conceptual Model Representation Using BPMN. In: S.
Jain, R.R. Creasey J. Himmelspach, K. P. White, and M. Fu. Proceedings of Winter Simulation Con-
ference. Phoenix, Arizona, USA.

Robinson, S. 2008. Conceptual Modeling for Simulation Part I: Definition and Requirements. Journal of
the Operational Research Society 59 (3): 278-290.

Robinson, S. 2011. Choosing the Right Model: Conceptual Modeling for Simulation. In: S. Jain, R.R.
Creasey J. Himmelspach, K. P. White, and M. Fu. Proceedings of Winter Simulation Conference.
Phoenix, Arizona, USA.

Tako A.A., K. Kotiadis and C. Vasilakis. 2010. A Participative Modeling Framework For Developing
Conceptual Models in Healthcare Simulation Studies. In: Johansson B, Jain S, Montoya-Torres J,
Hugan J, Yücesan E (Eds.), Proceedings of Winter Simulation Conference, Baltimore (MD), USA,
500−512. Available from: http://www.informs-sim.org/wsc10papers/045.pdf

Guizzardi and Wagner

Turnitsa C., J.J.. Padilla and A. Tolk. 2010. Ontology for Modeling and Simulation. In: Johansson B, Jain

S, Montoya-Torres J, Hugan J, Yücesan E (Eds.), Proceedings of Winter Simulation Conference, Bal-
timore (MD), USA, 643−651. Available from: http://www.informs-sim.org/wsc10papers/058.pdf

Simurena Library. 2012. A public library of simulations and games for education and entertainment. Ac-
cessed May 23, 2012. http://portal.simulario.de/public/.

UFO (Unified Foundational Ontology). 2012. http://www.ufo-ontology.info/. Accessed May 23, 2012.
Wagner G., O. Nicolae and J. Werner. 2009. Extending Discrete Event Simulation by Adding an Activity

Concept for Business Process Modeling and Simulation. In: M. D. Rossetti, R. R. Hill, B. Johansson,
A. Dunkin and R. G. Ingalls, (Eds.), Proceedings of Winter Simulation Conference, 2951-2962.

Zee, D.-J. van der, K. Kotiadis, A.A. Tako, M. Pidd, O. Balci, A. Tolk and M. Elder. 2010. Panel Discus-
sion: Education on Conceptual Modeling for Simulation – Challenging the Art. In: Johansson B, Jain
S, Montoya-Torres J, Hugan J, Yücesan E (Eds.), Proceedings of Winter Simulation Conference, Bal-
timore (MD), USA, 290−304. Available from http://www.informs-sim.org/wsc10papers/026.pdf

AUTHOR BIOGRAPHIES

GIANCARLO GUIZZARDI is Associate Professor at the Computer Science Department, Federal Uni-
versity of Espírito Santo (UFES), Brazil, and senior member of the Ontology and Conceptual Modeling
Research Group (NEMO). His work is focused in the development of domain ontologies and foundational
ontologies and their application in computer science and, primarily, in the area of conceptual modeling
and organizational modeling. He has been involved in a number of industrial projects in domains such
as off-shore software development, petroleum and gas, medical informatics, telecommunications and
news information management. His email address is gguizzardi@inf.ufes.br.

GERD WAGNER is Professor of Internet Technology at the Department of Informatics, Brandenburg
University of Technology, Germany. His research interests include agent-oriented modeling and agent-
based simulation, foundational ontologies, (business) rule technologies and the Semantic Web. In recent
years, he has been focusing his research on the development of an agent-based discrete event simulation
framework, called ER/AOR Simulation (see www.AOR-Simulation.org) He can be reached at
http://www.informatik.tu-cottbus.de/~gwagner/.

