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ABSTRACT 

This paper presents a research effort aimed at modeling normal and safety-critical driving behavior in 
traffic under naturalistic driving data using agent based modeling techniques. Neuro-fuzzy reinforcement 
learning was used to train the agents. The developed agents were implemented in the VISSIM simulation 
platform and were evaluated by comparing the behavior of vehicles with and without agent behavior acti-
vation. The results showed very close resemblance of the behavior of agents to driver data. 

1 INTRODUCTION 

In the last 50 years, a considerable amount of research has focused on modeling longitudinal driver be-
havior, producing a large number of car-following models (Treiber et al. 2006), including Gazis-Herman-
Rothery (GHR) models, safety distance models, linear models, and psychophysical or action point mod-
els. Most microscopic models assume that human drivers react to the stimuli from neighboring vehicles 
with the dominant influence originating from the directly leading vehicle. This is known as the “follow-
the-leader” or “car-following” approximation. Other models introduced “safe time headway” and a de-
sired velocity. Calibrating these car-following models required different levels of effort, and the results 
depend on data availability, calibration method, and model structure. The GHR model, for instance, re-
quires the calibration of two parameters, limiting the application of the model. The Gipps model(Gipps 
1981) (a safe-distance model) uses two different transfer functions for reproducing free-flow and car-
following conditions. Psychophysical models, on the other hand, assume that the driver will perform an 
action when a threshold (a function of speed difference and distance) is reached. Estimating distances and 
speed differences among drivers makes it difficult to calibrate the individual threshold associated with 
this model. Linear regression and heuristic algorithms (e.g., genetic algorithms) are two widely used 
methods for model calibration. Despite different mechanisms and software interfaces, when multiple sim-
ulation software applications were compared, the resulting behaviors of the models showed similarities 
(Olstam and Tapani 2004). In addition, it seems that error cannot be eliminated even if more parameters 
are introduced.  
 A significant part of the deviations between measured and simulated trajectories can be attributed to 
the interdriver variability and the intradriver variability (human drivers do not drive constantly over time, 
and their behavioral driving parameters change). The latter accounts for a large part of the deviations be-
tween simulations and empirical observations (Kesting and Treiber 2008). 
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 Table 1 shows the major attributes of the car-following models available in the literature. The multi-
phase column refers to whether the model calculates the position of the subject vehicle in multiple steps. 
The multiregime column refers to whether the model calculates the position of the subject vehicle with 
different equations depending on the regime the subject vehicle falls in.  

 
 Table 1: Major similarities and differences between car-following models. 

Model Multiphase Multiregime Speed Diff Space Diff Reaction 
Time 

Variable 
Acceleration

Pipes Yes No Yes No Yes Yes 
GM No No Yes Yes Yes Yes 
Wiedemann No Yes Yes Yes No No 
Fritzsche No Yes Yes Yes No No 
CA Yes No No Yes No Yes 
SK Yes No No Yes No Yes 
IDM Yes No Yes Yes Yes Yes 
Gipps Yes No Yes Yes Yes Yes 
VDIFF No No Yes No Yes Yes 

2 MODELING VEHICLE TRAJECTORIES 

Several models aim to capture and reconstruct the driver/vehicle driving trajectories. However, little is 
known about the differences in car-following behavior between driver-vehicle combinations (Ossen and 
Hoogendoorn 2004). Microsimulation software packages use a variety of car-following models, including 
Gipps’ (AISUM2, SISTM, and DRACULA), Wiedemann’s (VISSIM), Pipe’s (CORSIM), and Fritzsche’s 
(Paramics). However, parameterization of objective behavior in vehicle trajectory simulation is still in its 
infancy. Ossen et al.(Ossen and Hoogendoorn 2008) studied the car-following behavior of individual 
drivers using vehicle trajectory data extracted from high-resolution digital images collected at a high fre-
quency from a helicopter. The analysis was performed by estimating the parameters of different specifica-
tions of the GHR car-following rule for individual drivers. The results showed that measurement error has 
a larger influence than the component of noise. Their study pointed out that optimal parameters differ, and 
also that the suitability of a car-following model appears to be based on the individual driver data. In ad-
dition, Brackstone et al.(Brackstone 2004) used data from a series of instrumented vehicles driven by two 
groups. The independent variables for this study were age, approximate mileage driven per year, passivi-
ty/aggressiveness (P/A, 1–50), driver externality and internality ratings (DE and DI), and Sensation Seek-
ing Scale V (SSSV). Among the results, the study showed that following behavior may be split in two 
phases (between 30 and 50 miles), and there seems to be an inverse relationship between following dis-
tance and sensation seeking. These past efforts, however, did not account for the occasional deviation 
from normal driving, or the resulting abnormal driving trajectories during safety-critical events. 

3 RESEARCH OBJECTIVES 

The goal of this research was to characterize driver behavior related to driving during normal and critical 
events, including target speed selection, accelerations, lane changing behavior, car-following distance, re-
sponse times, and emergency stopping behavior for representative conditions. Of special interest to this 
research was the integrated modeling of both normal and safety-critical driving beyond existing models’ 
capabilities. Agents were developed to encapsulate individual drivers’ decisions in response to various 
traffic situations as conceptually illustrated in Figure 1. The developed agents were designed and trained 
to learn individual drivers’ actions for any given traffic state. State and action combinations for each indi-
vidual driver were retrieved from the Virginia Tech Transportation Institute’s (VTTI) database of natural-
istic driving data. Naturalistic data was collected in a real-world environment, where vehicle speed, accel-
eration, range, range rate, headway, time to collision (TTC), brake pedal input, were continuously 
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recorded over several months for each driver. The resulting large naturalistic database contained both 
normal and safety-critical events. 
  

 

Figure 1: Agent learning process. 

4 TRAINING DATA 

The developed agents were trained using neuro-fuzzy actor-critic reinforcement learning (NFACRL). 
NFACRL was chosen due to its capability to translate high-traffic state input variables into discrete fuzzy 
sets and generate continuous action using a weighted average of discrete actions. NFACRL consist of an 
actor-critic reinforcement learning mechanism that performs a reinforcement learning training through 
two parts: (1) an actor that is responsible for producing an action corresponding to each state and (2) a 
critic that is responsible for calculating the long-term reward for the produced action and use the reward 
to reinforce good actions. The neuro part of the NFACRL mechanism uses a neural network approach to 
update all the weights responsible for mapping states to actions based on the actor’s calculated reward. 
The fuzzy part of the NFACRL is responsible for transforming the continuous state space into single val-
ues representing degrees of membership in predefined discrete fuzzy sets, allowing the algorithm to han-
dle high-dimensional state space (Abbas et al. 2012). All the safety-critical events available from the nat-
uralistic database, and their subsequent normal driving episodes, were used to train 20 agents. The safety-
critical events selected in this study are rear-end crash and near-crash conflict, especially when a follow-
ing vehicle reacts to sudden braking or a sudden merge of the leading vehicle from the adjacent lane. 
When an event happens, the driver of the following vehicle brakes or swerves to avoid the incoming con-
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flict. Using naturalistic traffic states and driving actions during crash and near-crash events, this approach 
was able to reproduce actual driver behavior during normal and safety-critical events with R-squared val-
ues as high as 0.98 (Abbas et al. 2011). Cross-validation was performed by applying the training for one 
agent (driver) to another driver’s situation (Figure 2 and Figure 3). The statistical performance of the 20 
agents along is shown in Table 2 and Table3. 
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Figure 2: Acceleration of one agent. 

Longitudinal Action Estimation
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Figure 3: Yaw angle of one agent. 

Table 2: R-squared values of the truck agents. 

Event Agent Longi-
tudinal Ac-
celeration 

Agent 
Lateral 
Accel-
eration 

Cross Validation
with Agent A 

Longitudinal Ac-
celeration 

Cross Val-
idation 

with Agent 
A Lateral 
Accelera-

tion 
Driver A 0.97 0.97 0.98 0.97 
Driver B 0.97 0.94 0.82 0.60 
Driver C 0.98 0.96 0.93 0.86 
Driver D 0.99 0.92 0.86 0.64 
Driver E 0.88 0.96 0.47 0.76 
Driver F 0.98 0.96 0.83 0.43 
Driver G 0.86 0.98 0.86 0.62 
Driver H 0.96 0.99 0.63 0.98 
Driver I 0.95 0.98 0.48 0.75 

Driver J 0.85 0.98 0.66 0.32 
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Table 3: R-squared values of the car agents. 

Event Agent Lon-
gitudinal 
Acceleration 

Agent Lat-
eral Accel-
eration 

Cross Vali-
dation with 
Agent D 
Longitudinal 
Acceleration

Cross Vali-
dation with 
Agent D 
Lateral Ac-
celeration 

Driver a 0.94 0.94 0.90 0.50 
Driver b 0.97 0.94 0.82 0.30 
Driver c 0.93 0.97 0.93 0.77 
Driver d 0.97 0.93 0.97 0.93 
Driver e 0.95 0.98 0.68 0.95 
Driver f 0.97 0.92 0.92 0.86 
Driver g 0.98 0.93 0.98 0.79 
Driver h 0.98 0.93 0.98 0.90 
Driver i 0.97 0.95 0.90 0.85 
Driver j 0.95 0.92 0.98 0.65 

 

5 VISSIM IMPLEMENTATION 

The developed agents were implemented into VISSIM simulation platform to allow a combined car-
following/crash-related trajectory simulation of real life situation. The rationale behind this implementa-
tion is shown in Figure 4. The characteristic driving rules of the agents were coded in a microscopic simu-
lation environment (VISSIM) to test and study their effects on agents’ behavior in different conditions 
and scenarios. Snapshots of agent activation parameters are shown in Figure 5 and Figure 6.  
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Figure 4: Illustration. System representation of driver’s response to encountered traffic situation. 
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In addition to the model parameters, threshold values are used to define when the driving behavior 
switches from standard VISSIM (i.e., Wiedemann model) to agent-based behavior and vice versa.  
The graphical user interface (GUI) gives access to all user-definable parameters of the agent, as well as to 
a global threshold value that determines in what situations the agent model should be used instead of the 
standard VISSIM driving behavior. 
 To parameterize the agent, the GUI provides tabs for the different model weights and thresholds, as 
well as a text field for the global thresholds. 

 
 

 

Figure 5: Screen shot. Agent parameter GUI—action discrete sets. 

 

Figure 6: Screen shot. Agent parameter GUI—acceleration weights. 

 
Table 4 shows a description of the parameter file format. The parameter file is a comma-separated text 
file, and all numbers are double precision format.  
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Table 4: Parameter file description. 

Description Values (in blocks, separated by commas); see APC documentation  
Fuzzy Set Layer Thresh-
olds 

Fuzzy Set Layer Thresholds 

thresholdSpeed: lowerthresholdSpeed, upperthresholdSpeed 
thresholdRange: lowerthresholdRange, upperthresholdRange 
thresholdRangeRate: lowerthresholdRangeRate, upperthresholdRangeRate 
thresholdAcceleration: lowerthresholdAcceleration, upperthresholdAcceleration 
thresholdLaneAngle: lower thresholdLaneAngle, upper thresholdLaneAngle 
thresholdOffset: lower thresholdLaneAngle, upper thresholdLaneAngle 
AccelerationDiscreteSet: a1,a2,a3,a4,a5 
LaneAngleDiscreteSet: la2,la2,la3,la4,la5 
Weights W1(i,j): W1(1,1), ..., W1(1,5), W1(2,1), ..., W1(i,j),....,W1(32,5) 
Weights W2(1,j): W2(1,1), ..., W2(1,5), W2(2,1), ..., W2(i,j),....,W2(32,5) 
Switch Conditions There will be one (or more) threshold value that determines if the agent 

model is switched on or off. At the moment, this is Time to Collision. It 
can, of course, be changed to other values. 

 
Finally, Figure 7 shows an example VISSIM simulation/animation of a safety-critical behavior that repre-
sents a run-off-the-road incident where a vehicle is simulated to divert from the road network. The simu-
lation of this behavior in VISSIM environment would have not been possible without this approach.  

 

 

Figure 7: A simulation of a run-off-the-road incident. 

6 CONCLUSIONS 

One of the major contributions of this research is the developed integrated framework for safety and oper-
ation analysis. An artificial intelligence machine-learning technique was developed and used to model 
driving behavior during normal and safety-critical events. Naturalistic driving database was used to train 
and validate driver agents. The proposed methodology also simulated events from different drivers and 

Simulation Time (Seconds)
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proved behavior heterogeneities. The developed agents were implemented in the VISSIM simulation plat-
form and were evaluated by comparing the behavior of vehicles with and without agent activation. The 
results showed very close resemblance of the behavior of agents and driver data. This research is expected 
to provide the simulation and modeling industry with methods for developing more accurate and more 
sensitive traffic models. It could also enable future research to develop new traffic simulation models that 
accurately model driver behavior during incidents and other complex traffic situations. 
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