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ABSTRACT

Most of the literature on inventory management assumes that the demand distribution and the values of its
parameters are known with certainty. In this research we consider the practical situation where this is not the
case and only a limited amount of autocorrelated demand data are available. Assuming an autocorrelated
demand process represented by the highly flexible Autoregressive-To-Anything (ARTA) time series (Cario
and Nelson 1996), we study the problem of estimating inventory targets from limited historical demand
data. By also modeling the marginal demand distribution with the Johnson Translation System (Johnson
1949), we capture a wide variety of distributional shapes and obtain an input demand model generalizing
the linear auto-regressive process, which is widely used in inventory management despite implying a normal
marginal demand distribution – an assumption often violated by real-world demand data sets.

We consider a single-period newsvendor inventory problem, but under the assumption that the parameters
of the input demand model are unknown. The optimal number of units to keep in inventory is well known with
complete knowledge of the demand distribution. However, the implementation of the optimal solution by
treating the estimates of the unknown input parameters (obtained from limited amount of historical demand
data) as if they were the true values is not necessarily optimal. Hayes (1969) pioneers the quantification
expected cost of parameter uncertainty in inventory management by assuming that the demand distribution is
either exponential or normal. Akcay, Biller, and Tayur (2011) extend this approach by modeling the demand
with Johnson Translation System to account for the impact of distributional shape on the expected cost of
parameter uncertainty under an independent and identically distributed demand setting. In this research,
however, we use a sampling algorithm based on Monte Carlo simulation, and quantify the expected cost of
parameter uncertainty as a function of not only the length of the historical demand data, the inventory holding
and shortage costs, the parameters of the Johnson demand distribution, but also the autocorrelation of the
demand process. We study the impact of the demand autocorrelation on the inventory-target estimation
and discuss when the autocorrelation in the demand process can be ignored, despite its existence, in the
presence of limited demand data. We determine the improved inventory-target estimate accounting for
this parameter uncertainty via sample-path optimization. Our procedures can be easily implemented in
practical settings with reduced expected total operating cost which not only captures the stochastic demand
uncertainty but also the demand parameter uncertainty. For example, an inventory manager who builds the
inventory target by simply using the estimates of the demand parameters as if they were the true values
may end up with 81% greater expected cost than the optimal inventory target when the autocorrelation is
0.9. In this particular case, we further see that the use of improved inventory-target estimate eliminates
56% of the expected cost due to parameter uncertainty.
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