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Who Am I ?

 Philip Galanter (http://philipgalanter.com)

 Dept. of Visualization, Texas A&M University

 Coding since the early 70’s + electronic music

 BA in philosophy, MFA School of Visual Arts

 Teach grad studios in generative art & PComp

 Make generative, sound, installation art

 Art theory, complexity science, related curation

Genesis of This Tutorial

Seminar retreat In September 2009 at the Schloss Dagstuhl
Computational Creativity: an interdisciplinary approach
Leibniz-Zentrum fuer Informatik, Germany
(Margaret Boden, Mark D'Inverno, and Jon McCormack)
 
Galanter, P. (2012). Computational Aesthetic Evaluation: Past 
and Future. In J. McCormack & M. d'Inverno (Eds.), Computers 
and Creativity. (39 pages). Berlin: Springer.

Ground Rules

 Broad survey of paths already taken, and 
trailheads worth future exploration.

 Modest depth

 Please hold your questions until the end.

 I’ll be happy to stay after the tutorial.

 Everything shown is also in the tutorial notes.

 Also additional info such as citations.
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Computational Aesthetic Evaluation?
Computer systems capable of making 
normative judgments related to questions of 
beauty and taste in the arts

 Type 1 - Simulate, predict, or cater to human 
notions of beauty and taste.

 Type 2 - Meta-aesthetic exploration of all 
possible emergent machine aesthetics in a way 
disconnected from human experience.

This is not about aesthetics with regard to art, 
nature, and culture, or about higher order 
semantic content or meaning in art.

Computational Creativity?

Artistic creativity combines a generative impulse with a self-
critical capacity that steers the overall process to a productive 
and satisfying end.

In computer art we have any number of generative systems:

 L-systems
 Cellular Automata
 Reaction-diffusion Systems  
 Genetic Algorithms 
 Artificial Life

 Diffusion Limited 
Aggregation

 Randomization
 Simulated Chaos
 Combinatorial Construction
 Data Mapping

Computational Creativity?

But we have essentially no computer methods of 
applying critical evaluation as artists do:

 When they exercise evaluation as they 
experience the work of other artists.
 

 As they execute countless micro-evaluations 
and aesthetic decisions for works-in-progress.

 As they evaluate the final product, gaining new 
insights for the making of the next piece.

Computational Creativity?

 It’s an almost entirely 
unsolved problem.

 How can we build digital 
systems that evaluate art, 
design, music, etc. with 
results consistent with human 
notions of beauty?

 It’s also an exploration of 
meta-aesthetics.  How do 
aesthetic responses to stimuli 
develop in other creatures 
and systems? 
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CAE is really hard!

 Individual aesthetic responses likely form based on:
- Genetic predisposition
- Cultural assimilation
- Individual specific experience and learning when they 

exercise evaluation as they experience the work of other 
artists.
 

 It evokes deep questions regarding:
- Philosophy
- Art Theory
- Artificial Intelligence
- Computability And Computational Complexity
- Psychology, Neurology, Sociology
- And More... 

CAE is really hard!

The Bad News
This will not be a “how to” tutorial. 

The Good News
If you’ve ever dreamed of making fundamental 
discoveries and having your articles cited for 
decades to come...

Here is your opportunity!

Tutorial Outline

 Formulaic, Geometric, and Design 
Aesthetic Theories
- Birkhoff and the Aesthetic Measure
- The Golden Ratio
- Zipf’s Law
- Fractal Dimension
- Gestalt Principles
- The Rule of Thirds  

 Artificial Neural Networks and 
Connectionist Models

Tutorial Outline

 Evolutionary Systems
- Overview Of Generic Operation
- Interactive Evolutionary Computation
- Automated Fitness Functions

• Performance Goals Where Form Follows 
Function

• Error Relative To Exemplars
• Complexity Measures
•  Multi-objective Fitness Functions And 

Pareto Optimization
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Tutorial Outline

 Biologically Inspired Emergent Fitness Functions
- Coevolution
- Curious Agents
- Niche Construction By Agents
- Agent Swarm Behavior

 Complexity Based Models Of Aesthetics
- Information And Computational Complexity
- Effective Complexity

 The Origins Of Art And The Art Instinct
- Psychological Models Of Human Aesthetics
- Arnheim – Gestalt And Aesthetics
- Berlyne – Arousal Potential And Preferences
- Martindale – Prototypicality And Neural Networks

Tutorial Outline

 Findings In Empirical Studies
- Empirical Studies Of Viewers
- Empirical Studies Of Artists
- Empirical Studies Of Objects

 Neuroaesthetics
 Conclusion
 Q&A

A Brief History of CAE
Formulas, Biological Inspiration, and Complexity

Birkhoff’s Aesthetic Measure

M = O / C 
M = aesthetic effectiveness
O = degree of order
C = degree of complexity

Birkhoff’s psycho-neurological hypothesis:

C = as the degree to which unconscious psychological and 
physiological effort must be made in perceiving the object.

O = is the degree of unconscious tension released as the 
perception is realized. This release mostly comes from the 
consonance of perceived features such as “repetition, similarity, 
contrast, equality, symmetry, balance, and sequence.” 
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Birkhoff’s Aesthetic Measure

M = O / C 
M = aesthetic effectiveness
O = degree of order
C = degree of complexity

“The well known aesthetic demand for ‘unity in 
variety’ is evidently closely connected with this 
formula.” G. D. Birkhoff (1933)

Birkhoff’s Aesthetic Measure

      M = O / C 
C = number of extended lines
O = V + E + R + HV - F
V = vertical symmetry
E = equilibrium
R = rotational  symmetry
HV = relation to horizontal / 
         vertical network
F = unsatisfactory form

Birkhoff’s measure relies on subjective judgements as well as 
“cheats” such as his “F” factor.
Empirical studies almost immediately called his work into question.

BIRKHOFF'S AESTHETIC MEASURE 393
Davis's failure to regulate in any way the connotanve associations and offer the
fairest possible opportunity tor Birkhoff's hypothesis to receive empirical support.

A third difference from previous studies was the method of presentation.
The stimuli, copied directly from Birkhoff's plate, in black rather than blue,
were placed two on a card in a manner agreeable to the best requirements of
the paired comparison method Matters of position, temporal contiguity, repeti-
tiveness and so on were carefully controlled These figures were projected
on a screen by means of a reflectoscope for approximately 10 seconds each
Accordingly, the position of the figures—not controlled by Davis, though
demanded by Birkhoff—was in our investigation rendered vertical and constant.

Ninety-five undergraduate students in psychology, unfamiliar with the purposes
of the experiment, acted as subjects. Each subject was provided with a blank
containing at the top the following instructions:

Male . Female . Training in art, other than regular
school curriculum Yes . . No

This experiment consists of a series of judgments between vanous visual stimuli
presented two at a time Judge which one of each pair you believe to be preferable
from the point of view of aesthetic beauty and record your preference opposite the
appropriate number Be sure to vote for one or the other, if thert seems little choice
vote for one and add a question mark in the column provided

Try to assume a passive attitude and record your very first impression Do not stop
to analyse the stimuli. Avoid as much as possible associations or meanings that grow
out of past experience The question before you is, " Which of the two figures seems
more aesthetically beautiful3 "

SERIES A
BIRKHOFF'S SUBJECTS*

ORDER ( M ) f T 7 n ORDER

SERIES B
BIRKHOFF'S SUBJECTS*

ORDER(M) [7771 ORDER

I

10 10-

1.50
1.40

1.30
i.ao

IJOO

. 90

.80
• 7 0

• 6 0

.50
.40

.20
,1 0

OJOO

-10

FIG 2 GRAPHIC REPRESENTATION OF ORDER OF STIMULI ACCORDING TO BIRKHOFF'S
MEASURE "M," AND THAT OF SCALE VALUES OBTAINED FROM CLASS

OF 95 SUBJECTS BY METHOD OF PAIRED COMPARISONS
Note that Birkhoff's values have been corrected by eliminating all minus values

and setting the lowest one at zero

Douglas Wilson (1939)

“The results of this 
investigation do not 
support the hypothesis 
of Birkhoff that his a 
priori measure is a true 
measure of aesthetic 
value as far as polygons 
and geometrical figures 
are concerned.”

Only the order matters, not the quantitative differences
n = 95 student subjects responding to paired tests  
Low correlation measure  Series A = .44  and Series B = .38

Birkhoff’s Aesthetic Measure

 Pythagoras - strings in simple integer ratios create harmonic tones.
( 1:2, 2:3, 3:4, etc.)

 Fibonacci sequences seem to appear in nature such as spiral patterns in 
plants.  ( 1, 1, 2, 3, 5, 8, 13, ...)

Birkhoff’s Aesthetic Measure
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The Golden Ratio

Related to the Fibonacci 
series, the Golden Ratio is 
also uniquely related to its 
own reciprocal.  This results 
in a rectangular shape that 
reappears when a square is 
cut off.

φ =  1 + (1/φ) =                  =  1.618...1 +
p

5

2

The Golden Ratio

Psychologist Gustav Fechner is credited with conducting 
the first empirical studies of human aesthetic response in 
the 1860s. His experiments seemed to show that golden 
rectangles had the greatest appeal relative to other aspect 
ratios. But subsequent studies have cast strong doubt on 
those results.

Some have “discovered” the use of the Golden Ratio 
throughout history, but Livio (2003) has credibly debunked 
supposed Golden Ratio use in works by artists including:

 the Great Pyramids
 Leonardo da Vinci
 the Mona Lisa

 Mozart
 Mondrian
 Seurat

The Golden Ratio

However, based on 
legend the Golden Ratio 
has been intentionally 
used by later artists. It 
has become a 
“self-fulfilling 
proportionality.”

For example Le 
Corbusier based his 
modular, a tool for 
design, on the Golden 
Ratio. 

Zipf’s Law

Describes the relative frequency of types 
in large collections. 
For example, given a large text:

Tally every word counting each occurrence.
 List each word from the most to least frequent.
The frequency P for a given word with rank i is:

Pi
1

ia
≈

where the exponent a is near 1.
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Zipf’s Law
Manaris et al. (2005, 2003) note that this power law 
relationship has not only been verified in various bodies of 
musical composition, but also: 

“colors in images, city sizes, incomes, music, earthquake 
magnitudes, thickness of sediment depositions, extinctions of 
species, traffic jams, and visits of websites, among others.”

Application in CAE has included:
 Manaris et al. (2003) classify specific musical compositions 

as to composer, style, and an aesthetic sense of 
“pleasantness.”

 Machado et al. (2007) have used Zipf’s law in the creation of 
artificial art critics.

 Much earlier (1975) Voss and Clarke suggested using 1/ f 
distributions in generative music.

Fractal Dimension

 Fractals are geometric objects that exhibit self-similarity at all scales.
 The fractal dimension measures the ability of the fractal to fill the 

space it is in.
 An object with a fractal dimension of 1 has the space filling capacity 

of a line.
 An object with a fractal dimension of 2 can fill the planar space it is in.
 An object with a fractal with a dimension of 1.3 would only partially fill 

the plane it is in.

Fractal Dimension
Studies by Taylor (2006) have shown that late period 
“drip” paintings by Jackson Pollock are fractal-like. 

The box counting method used to empirically measure the fractal dimension of 
Pollock paintings. Measured empirically the fractal dimension of his paintings 
increases over time from 1.12 in 1945 to 1.72 in 1952.

Design Principles as 
Informal Formulas
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Unity in Variety

The old definition of beauty in the Roman school of painting 
was  il più nell' uno - multitude in unity; and there is no doubt 
that such is the principle of beauty.

Samuel Taylor Coleridge (Dec. 27, 1831)

The standard of beauty is the entire circuit of natural forms, — 
the totality of nature; which the Italians expressed by defining 
beauty "il più nell' uno." 

Ralph Waldo Emerson (1849)

This idea resonates with various cognitive theories of 
aesthetics where high degrees of stimulation being 
successfully abstracted is experienced as being pleasurable.

Balance in Composition

Weight
–value, filled versus outlined, size, quantity

Placement
– imagine placement relative to a fulcrum

Gestalt

Law of Prägnanz
Perceptual grouping
Grouping impacts balance

Our perceptual cognition seeks to abstract 
simplicity of structure.

Scale, Proportion, Value, & Color Palette

 Proportion - relative size within the image
 Scale - absolute size relative to the body

–Often overlooked by those who work with virtual media
 Color harmony
 Color contributes to weight
 Value can be more important than color

–higher resolution
–broader range of signal strength
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The Rule of Thirds The Rule of Thirds

Artificial Neural Networks

Artificial Neural Networks
Input Layer Hidden Layer Output Layer

 Input nodes are exposed to input data. Each connection has a weight 
representing the strength of the connection. 

 Each hidden node sums each input scaled by its weight.  Each output node 
does the same applying weights.

 With each exposure to data the weights are adjusted either based on 
feedback from a training set or reoccurring input patterns (SOM or self-
organizing map).

 In order to create nonlinear models the input summation commonly uses a 
sigmoid transfer function.
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Artificial Neural Networks

Input Layer Hidden Layer Output Layer
Pixel
Data Result

GOOD !!

BAD

So what if we assign pixels to input nodes and output nodes to possible results? 
If only it was this easy!

Millions of input nodes is computationally unworkable.
ANN use currently requires careful preprocessing & presentation of input data.

Artificial Neural Networks

Input Layer Hidden Layer Output LayerPixel
Data

Result

GOOD !!

BAD

Analyzers

 One possibility is to process the pixel data with various 
analyzers, and then present the results to a neural network.

 This is potentially more robust to complex nonlinear 
relationships than statistical regression methods.

Example - Photography Evaluation

 Datta et al. (2006, 2007) 
 3581 photos from a photography oriented social networking 

site. 
 Each photo was rated by the membership. 
 Image processing extracts 56 simple measures.

– e.g. exposure, color distribution and saturation, adherence to 
the “rule of thirds,” size and aspect ratio, depth of field, etc.

 The ratings and extracted features were then processed 
using both regression analysis and classifier software.

 This resulted in a computational model using 15 key features. 
 A software system was then able to classify photo quality as 

“high” and “low” in a way that correlated well with the human 
ratings.

Artificial Neural Networks

 Among others Todd (1989) created sequential 
networks trained with scores, and then used to 
compose in a similar style.

- Like similar attempts using higher-order Markov 
chains decades earlier, the system showed 
some short term coherence, but no real ability to 
create overall structure.

- This is a generative system not really an 
aesthetic evaluation system.  But it is an attempt 
to capture and model an aesthetic style
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Artificial Neural Networks

 Phon-Amnuaisuk (2007) Used self-organizing 
maps to extract structure from existing music, and 
then act as a critic for an evolutionary composition 
system.

- He found a lack of global structure and with Law 
(2008) created hierarchical SOMs for higher 
level abstraction. This approach shows some 
promise.

Artificial Neural Networks

 Gedeon (2008) created an experimental system 
that created “Mondrian-like” images and based on 
learning from a training set (of 1000!) was capable 
of predicting a single viewer’s preferences for new 
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Evolutionary Systems
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Generative Art Systems & Evolution

There are many generative art systems:
 L-systems
 cellular automata
 reaction-diffusion 

systems
 artificial life
 diffusion limited 

aggregation

 randomization
 simulated chaos
 combinatorial 

construction
 data mapping
 tiling and symmetry
 fractals

These can be parameterized as a genotype.
Evolutionary techniques can then be used to 
explore all of these generative systems and more.

Evolutionary Art Systems

Typical applications have objective fitness functions:
 automotive and aeronautic 

design
 circuit design
 routing optimization
 modeling markets for 

investment

 computer aided molecular 
modeling

 encryption and code 
breaking

 chemical process 
optimization

But what kind of fitness function can measure aesthetic 
fitness? There are two approaches:

Interactive Evolutionary Computing (IEC)
manual selection with small populations & few generations

Automated fitness function
requires Computational Aesthetic Evaluation (CAE)

IEC Example - William Latham

At each iteration the artist/
operator selects phenotypes 
corresponding to recently 
mutated genotypes.

William Latham and Stephen 
Todd (1992) developed the 
Mutator system for evolving 
biomorphic forms. 
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IEC Example - William Latham IEC Example - Karl Sims

Karl Sims (1991) published a 
SIGGRAPH paper explaining 
his IEC system using evolving 
expressions.

(round (log (+ y (color-grad 
(round (+ (abs (round (log (+ 
y (color-grad (round (+ y (log 
(invert y) 15.5)) x) 3.1 1.86 
#(0.95 0.7 0.59) 1.35)) 0.19) 
x)) (log (invert y) 15.5)) x) 
3.1 1.9 #(0.95 0.7 0.35) 
1.35)) 0.19) x)

The Fitness Bottleneck

From the earliest efforts interactive assignment of 
fitness scores has dominated evolutionary art 
practice. 

There was also early recognition that the human 
artist/operator creates what Todd and Werner 
(1998) called a “fitness bottleneck.” IEC systems 
typically allow only dozens of generations rather 
than hundreds or thousands, and are restricted to 
much smaller gene pools.

Crowd Sourced Evaluation

In Galapagos Karl Sims (1997) allows the audience to 
express a preference via sense pads where they stand.
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Crowd Sourced Evaluation

Scott Draves’ (2005) Electric Sheep system allows his genetic screen saver 
users around the world to approve or disapprove of phenotypes via the Internet. 

Crowd Sourced Evaluation
Komar and Melamid’s “America’s Most Wanted” (1997)

Crowd Sourced Evaluation
Komar and Melamid’s “America’s Most Wanted” (1997)

Corresponding to the public’s like for historical figures and 
exotic animals they included these features.  But also the 
popular blue lake, family, moderate vegetation, game animals.

Automated Fitness Functions

Performance Goals 
- Form Follows Function

Error Relative to Exemplars
Complexity Measures
Weighted Multi-Objective Fitness
Pareto Optimality
Emergent Aesthetics

- Coevolution
- Curious Agents
- Agent Swarms
- Niche Construction
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Performance Goals

Karl Sims (1994) was able to evolve 
and animate virtual creatures based on 
performance goals.

The genotype describes a system of 
sensors, neurons, effectors, and  .

A fitness function rewarding walking, 
jumping, swimming, and game playing 
is used.

tors, and the connections define the flow of signals between
these nodes. These graphs can also be recurrent, and as a
result the final control system can have feedback loops and
cycles.

However, most of these neural elements exist within a
specific part of the creature. Thus the genotype for the ner-
vous system is a nested graph: the morphological nodes each
contain graphs of the neural nodes and connections. Figure 5
shows an example of an evolved nested graph which
describes a simple three-part creature as shown in figure 6.

When a creature is synthesized from its genetic descrip-
tion, the neural components described within each part are
generated along with the morphological structure. This
causes blocks of neural control circuitry to be replicated
along with each instanced part, so each duplicated segment
or appendage of a creature can have a similar but indepen-
dent local control system.

These local control systems can be connected to enable
the possibility of coordinated control. Connections are
allowed between adjacent parts in the hierarchy. The neurons
and effectors within a part can receive signals from sensors
or neurons in their parent part or in their child parts.

Creatures are also allowed a set of neurons that are not
associated with a specific part, and are copied only once into
the phenotype. This gives the opportunity for the develop-
ment of global synchronization or centralized control. These
neurons can receive signals from each other or from sensors
or neurons in specific instances of any of the creature’s parts,
and the neurons and effectors within the parts can optionally
receive signals from these unassociated-neuron outputs.

In this way the genetic language for morphology and
control is merged. A local control system is described for
each type of part, and these are copied and connected into
the hierarchy of the creature’s body to make a complete dis-
tributed nervous system. Figure 6a shows the creature mor-
phology resulting from the genotype in figure 5. Again,
parameters describing shapes and weight values are not
shown for the genotype even though they affect the pheno-

Figure 5: Example evolved nested graph genotype. The
outer graph in bold describes a creature’s morphology. The
inner graph describes its neural circuitry. C0, P0, P1, and
Q0 are contact and photosensors, E0 and E1 are effector
outputs, and those labeled “*” and “s+?” are neural nodes
that perform product and sum-threshold functions.
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Figure 6a: The phenotype morphology generated from
the evolved genotype shown in figure 5.

Figure 6b: The phenotype “brain” generated from the
evolved genotype shown in figure 5. The effector outputs
of this control system cause the morphology above to roll
forward in tumbling motions.

Sensors Neurons Effectors

33

Performance Goals

Driessens and Verstappen (2007) created an 
evolutionary subtractive sculpture system. Each 
sculpture is started as a single cube or cell. Cells are 
iteratively subdivided into 8 smaller sub-cells. The 
genotype is cellular automata-like rule sets determining 
whether or not a given subcell is removed. The fitness 
function is the number of pieces produced. The goal is 
a result yielding one large single piece.

Performance Goals Error Relative to Exemplars

With the invention of photography pure 
representation became of diminishing 
importance in visual art.

A difference or error measure comparing a 
phenotype to a real-world example is not 
typically useful as an aesthetic fitness function.

However, intermediate results as an evolved 
image approaches an exemplar can be of 
interest as a kind of abstract art.
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Error Relative to Exemplars
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Fig. 10. Progression of an evolution of Walter Benjamin.  The generation 
number is given in parentheses. 

5.3  Evolved Paintings Physical Results 
A painting was physically executed of an evolution similar to Figure 10.  The input 
image, the simulated result and the physical result are shown in Figure 11.   

 
(a) (b) (c) 

Fig. 11. A physically painted evolved painting.  (a) shows the input image, (b) 
shows the simulated evolved painting and (c) physical painting 23 x 30cm robotic painted 
acrylic on canvas. 
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A robotic system for interpreting images into 
painted artwork 

Carlos Aguilar, Hod Lipson 
Cornell Computational Synthesis Lab, Cornell University, Ithaca,NY, USA 

http://ccsl.mae.cornell.edu 

e-mail: cga9@cornell.edu, hod.lipson@cornell.edu 

Abstract 
We report on a robotic system that can physically produce paintings with a wide 
range of artistic media such as acrylic paint on canvas. The system is composed of 
an articulated painting arm and a machine-learning algorithm aimed at determining a 
series of brushstrokes that will transfer a given electronic image onto canvas. An 
artist controlling the system is able to influence the resulting art piece through choice 
of various parameters, such as the palette, brush types and brushstroke parameters. 
Alternatively, an artist is able to influence the outcome through varying the 
algorithmic parameters and feedback of the learning algorithm itself. In these results, 
a genetic algorithm used a painting simulation to optimize similarity between the 
target and the source images. 

(a) 

 

(c) 
 

(b) 

Fig. 1. The robotic painting system: (a) An articulated 6DOF arm holding a 
paintbrush to a 23 x 30cm canvas; (b) A close-up view of the brush holder; (c) 

sample painting of a portrait 
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a genetic algorithm used a painting simulation to optimize similarity between the 
target and the source images. 

(a) 

 

(c) 
 

(b) 

Fig. 1. The robotic painting system: (a) An articulated 6DOF arm holding a 
paintbrush to a 23 x 30cm canvas; (b) A close-up view of the brush holder; (c) 

sample painting of a portrait 

 Aguilar and Lipson (2008) constructed a physical painting 
machine driven by an evolutionary system.

 The fitness function compared simulated brush strokes 
against a photograph.

Error Relative to Exemplars

Alsing (2008) helped to popularize the error 
minimization approach to mimetic rendering with a 
project that evolved a version of the “Mona Lisa” using 
50 overlapping semi-transparent polygons.

Error Relative to Exemplars

 The use of relative error can work well when programming 
music synthesizers to mimic other sounds. 

 Comparisons with recordings of traditional acoustic 
instruments can be used as a fitness function. 

 And while the evolutionary system converges on an optimal 
mimesis interesting timbres can be discovered along the way

 Magnus (2006) and Fornari (2007) independently 
recombining short sound files using an existent sound file as 
a target, but using evolving intermediate results.

 Hazan et al. (2006) used evolutionary methods to develop 
regression trees for expressive musical performance. Using 
jazz standards as a training set, the resulting regression 
trees could transform arbitrary flat performances into 
expressive ones.

Complexity Measures

Machado and Cardoso’s 
(2002, 2003) NEvAr system 
uses computational a 
evaluation methods with 
Sims-like evolving 
expressions. Their fitness 
function is related to 
Birkhoff’s aesthetic 
measure: 

“...the aesthetic value is, to some 
extent, linked with the complexity of 
the image and with the mental work 
necessary to its perception.”

Figure 3. Example of the recombination operation. The code of the individuals A and B is recombined by
exchanging the sub-trees implicitly defined by 2 randomly chosen points PA and PB, giving rise to the individuals
A’ and B’.

2.3 Assessment

Working with NEvAr is an iterative process, as the number of populations increases the average quality of
the images also tends to increase, giving rise to new, interesting, and aesthetically sound images (at least to
the eye of the user conducting the program). Like any other tool, NEvAr requires a learning period. To
explore all the potential of a tool, the user must know it in detail and develop or learn an appropriate work
methodology. The results, and user satisfaction, depend not only on the tool but also on its mastering. In
Figure 3 we present some examples of images generated with NEvAr. Additional images can be found at:
http://www.dei.uc.pt/~machado/NEvAr/

   

Figure 3. Some examples of images created with NEvAr.

3. Recent Developments

As stated before, the ultimate goal of this project is to build an Artificial Artist. In its current form the
automatic fitness assignment procedure [3] only takes into account the lightness information of the images,
discarding the hue and saturation information. Therefore, in this mode of execution, we are limited to
greyscale images. Figure 4 shows several images generated by NEvAr without any kind of human
intervention.

 Unity in Variety
 According to the authors “...pleasure experienced when 

finding a compact percept (i.e., internal representation) of a 
complex visual stimulus...”.
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Complexity Measures

 Resistance to jpeg compression is a proxy for the “complexity 
of the visual stimulus” (CV). 

 Resistance to fractal compression is a proxy for the 
“complexity of the percept” (CP), i.e. perceptual effort.

316 Juan Romero, Penousal Machado, Adrian Carballal, and João Correia

Machado and Cardoso neither suggested that the employed JPEG complexity was
able to fully capture the concept of image complexity, nor that the fractal image
compression was able to capture the complexity of visual perception. They posited
that JPEG was closer to visual complexity than fractal compression, and that fractal
compression was closer to processing complexity than JPEG, subsequently testing
the possibility of using these measures as rough estimates for these concepts in the
context of a specific, and limited, aesthetic theory.

The following formula was proposed as a way to capture the previously-mentioned
notions (Machado and Cardoso; 1998):

aesthetic value =
CV a

(CP(t1)⇥CP(t0))b ⇥

1

(CP(t1)�CP(t0)
CP(t1) )c

(11.1)

where a, b and c, are parameters used to tune the relevance given to each of the
components. The left side of the formula rewards those images which have high CV
and low CP estimates at the same time, while the right side rewards those images
with a stable CP across time. The division by CP(t1) is a normalisation operation.
The formula can be expanded in order to encompass further instants in time, but
the limitations of the computational implementation led the authors to use only two
instants in their tests.

The images of the DJT were digitalised, converted to greyscale, and resized to a
standard dimension of 512 ⇥ 512 pixels, which may involve changes in the aspect
ratio. The estimates for CV , CP(t1) and CP(t0) were computed for the resulting
images. Using these estimates, the outcome of formula (1) was calculated for each
of the images. For each of the 90 pairs or triads of images comprising the DJT, the
system chose the image that yielded a higher value according to formula (1).

The percentage of correct answers obtained by the AJS depends on the values of
the parameters a, b and c. Considering all combinations of values for these param-
eters ranging in the [0.5,2] interval with 0.1 increments, the maximum percentage
of correct answers was 73.3% and the minimum 54.4%. The average success rate of
the system over the considered parametric interval was 64.9%.

As previously mentioned, the highest average percentage of correct answers in
human tests in the DJT reported by Eysenck and Castle (1971) is 64.4%, and was
obtained by subjects that were final year fine art graduates, a value that is surpris-
ingly similar to the average success rate of our system (64.9%).

Although comparing the performance of the system to the performance of hu-
mans is tempting, one should not jump to conclusions! A similar result cannot be
interpreted as a similar ability to perform aesthetic judgments. As previously men-
tioned, humans may follow principles that are not exclusively in aesthetic order to
choose images. Moreover, since the test aims at differentiating between humans,
it may take for granted principles that are consensual between them, and the AJS
would be unable to identify. Finally, the results say nothing regarding the validity of
the test itself (a question that is outside the scope of our research). Thus, what can
be concluded is that the considered formulae and estimates are able to capture some
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“The left side of the formula rewards those images which have 
high CV and low CP estimates at the same time, while the right 
side rewards those images with a stable CP across time.”

Multi-Objective Fitness

Aesthetic judgments are typically multidimensional. For 
example, evaluating a traditional painting might generate a 
set of scores regarding color, balance, value, and so on.  
A typical multi-objective fitness function might involve a 
weighted sum of factors.

Fitness = (w0 ⇤ color) + (w1 ⇤ balance) + (w2 ⇤ value)

Can each score in the set be independently measured?
How are the weights determined?
Why assume there are no non-linear relationships?
Preservation in the gene pool of otherwise weak individuals with 
a particular strength in one aspect?

Pareto Optimality

 Pareto Optimality is a method of comparing score sets 
without a weighted summation.

 Set A is said to dominate set B if 
–each score in A is at least as good as in B, and
–at least one score in A is better than B

 A set of scores is said to be rank 1 or Pareto Optimal 
if it isn’t dominated by any other set.

 The sets of scores that are rank 1 constitute the 
Pareto Set or the Pareto Front.

 For crossover, selecting rank 1 genotypes or ignoring 
dominated genotypes can help to combine differing 
strengths of parents into a single individual.

Emergent Aesthetics

Dorin (2005) 

“the ‘eco-systemic’ approach permits 
simultaneous, multidirectional and automatic 
exploration of a space of virtual agent traits 
without any need for a pre-specified fitness 
function. Instead, the fitness function is implicit in 
the design of the agents, their virtual 
environment, and its physics and chemistry.” 
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Emergent Aesthetics - Coevolution

 In evolution there is no absolute “correct answer.”
 An adaptation’s value is relative to its environment.
 Part of that environment is other living things.
 Coevolution is a sort of “arms race” of adaptation.
 But it can also be a process of ongoing. 

Todd and Werner (1998)
 (Virtual) composers produce songs.
 Female critics judge the songs for mate selection based on 

a probability table of note transitions.
 Males are rewarded for surprising females.
 Transition tables coevolve and slowly vary with each new 

generation of females.

Emergent Aesthetics - Coevolution

“One of the biggest problems with our 
coevolutionary approach is that, by removing the 
human influence from the critics (aside from those 
in the initial generation of folk-song derived 
transition tables), the system can rapidly evolve its 
own unconstrained aesthetics. After a few 
generations of coevolving songs and preferences, 
the female critics may be pleased only by musical 
sequences that the human user would find 
worthless.”

Emergent Aesthetics - Curious Agents
Saunders & Gero (2004)

of overcrowding at large public gatherings like football
stadiums and train stations when an individual’s ability to
take independent action is diminished by the lack of avail-
able space.
Unfortunately, purely reactive agents do not permit the

simulation of individual behavior in many, more common,
situations that would be desirable when analyzing the design
of buildings for public use such as train stations, museums,
and galleries where the support of problem solving, learn-
ing, and exploration are key functions of the building. The
remainder of this paper presents a possible future direction
for agent-based simulation using more complex agents that
can learn from experience and report their individual eval-
uations. Adding learning to the agent model permits the
simulation of potentially important agent behavior, for exam-
ple, curiosity. The agents can then report evaluations of a
design that are situated in their individual experience, such
as their level of interest as they explore.

2. SIMULATING CROWDS

Reynolds ~1987! demonstrated that realistic simulations of
groups of animals could be produced using simple reactive
agents executing a small number of carefully chosen rules.

2.1. Flocks, herds, and schools

Reynolds ~1987! proposed a set of four simple rules, that,
when executed together, within simulated agents, also known
as boids, resulted in realistic group behavior similar to a
flock of birds, a herd of cattle, or a school of fish. The rules
executed by each agent are the following:

1. separation: steer to avoid local flock-mates.
2. alignment: steer toward the average heading of local
flock-mates.

3. cohesion: steer to move toward the average position
of local flock-mates.

4. avoidance: steer to avoid running into local obstacles
or nonflock-mates.

Separation prevents agents from overcrowding under nor-
mal conditions. Alignment aligns each agent with its imme-
diate neighbors so that they move forward as a group.
Cohesion maintains a “natural-looking” closeness to a neigh-
borhood of agents. Finally, avoidance allows an agent to go
around obstacles and avoid potential predators.
The four rules described above are used to implement

steering behaviors using a very simple model of locomo-
tion that applies a force to the body of the agent that is
calculated to achieve the desired consequence of applying a
rule. Examples of the kinds of forces applied during a flock-
ing simulation are illustrated in Figure 1. During a simula-
tion the forces produced for each rule are combined into a

single force applied to the body of the agent; often this is
achieved simply by summing the forces.
The flocking algorithm has been extended to simulate

the motion of crowds of people in simulations and games
~Woodcock, 1999!. Flocking is used in these instances as a
way for crowds to follow paths determined using by path-
finding routines. Because the original flocking model does
not contain any notion of moving toward a goal, the appli-
cations of flocking in game environments often require the
addition of a rule to move agents toward waypoints along a
path to a goal location. In this way the extended flocking
algorithm maintains a group’s formation and local obstacle
avoidance, leading to the natural-lookingmovement of agents
between goals.

2.2. The social force model

The social force model is a microscopic model of pedes-
trian behavior that has been used to model self-organizing
phenomena observed in crowds of people ~Helbing & Mol-
nár, 1995!. Helbing and Molnár developed the social force
model to simulate crowd behavior to gain a better under-
standing of empirical results. The social forces in the model
do not represent physical forces exerted upon a pedestrian;
rather, they are an approximation of the internal motiva-
tions of the individuals to move in certain directions. The
social forces modeled by each agent follow.

1. Pedestrians are motivated to move as efficiently as
possible to a destination.

2. Pedestrians wish to maintain a comfortable distance
from other pedestrians.

3. Pedestrians wish to maintain a comfortable distance
from obstacles.

4. Pedestrians may be attracted to other pedestrians or
objects ~e.g., posters!.

Fig. 1. The steering behaviors used in Reynolds’ model of flocking.
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 Reynolds established flocking via local behavior of agents.
 Helbing and Molnár developed the related social force model 

to simulate crowd behavior and compare with empirical 
results.

 Saunders and Gero add a new force they call “curiosity.” 
Agents move towards potentially interesting (novel) areas.

Obviously, the forces implemented in the social force
model are very similar to the rules devised by Reynolds for
flocking; the social forces 2, 3, and 4 are very similar to
separation, avoidance, and cohesion. The social force model
does not include a force to maintain alignment among pedes-
trians as with flocking, but it does add a force to model the
movement between locations as used in gaming environ-
ments. Detailed mathematical descriptions of these forces
can be found in Helbing and Molnár ~1995!.
Despite its simplicity, computer simulations have shown

that the social force model is capable of realistically describ-
ing several interesting aspects of observed crowd behav-
iors. In one instance, predictions based on simulations of
crowd behavior at junctions prompted new empirical research
into human crowd behavior that confirmed the emergence
of transient round-about motions ~Helbing &Molnár, 1997!.

2.2.1. Agent-centric evaluations
In their experiments with emergent crowd behavior around

doors, Helbing and Molnár used some simple agent-centric
measures to evaluate the efficiency and discomfort for each
pedestrian ~Helbing & Molnár, 1997!. Efficiency is mea-
sured for a pedestrian as the average difference between the
speed it is walking toward its goal and its desired walking
speed. Discomfort is calculated as a function of the number
of direction changes during a simulation that a pedestrian
must perform to negotiate the built environment and other
pedestrians.
Using agent-centric evaluations allowed Helbing andMol-

nár to evaluate the performance of simulated spaces using
nonhomogenous crowds of pedestrian agents, for example,
the agents used in crowd simulations varied in their desired

walking speed to simulate younger and older pedestrians
within the same crowd. This conveys an improvement in
the nature of the evaluation: a simpler measure of effi-
ciency, for example, number of pedestrians to pass a given
point per minute, would not adapt to crowds consisting of
pedestrians with differing preferences.

3. CURIOUS AGENTS FOR DESIGN
EVALUATION

The agent model presented in this paper adds a model of
curiosity based on learning to the social force model to
support the evaluation of environments that are designed to
stimulate exploration. This curious social force model
extends Helbing and Molnár’s model with the addition of a
single rule, “Pedestrians are motivated to move toward
potentially interesting areas.”

3.1. Curious agent architecture

The architecture of the curious agents used to evaluate
designs is illustrated in Figure 2. The curious agent com-
prises six primary functions: sense, learn, detect novelty,
calculate interest, plan, and act. In addition, each agent
requires a long-term memory to store category prototypes.
Sensing samples the world to produce a stimulus pattern

that characterizes its environment according to the abilities
of the agent. Learning updates prototypes stored in long-
term memory to better reflect the agent’s experiences as
new types of stimulus pattern are produced. The differences
between a new stimulus pattern and the closest matching
category prototype are used to calculate a measure of the

Fig. 2. The architecture of a curious agent.
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Curious agents in a gallery of monochrome paintings

gallery with new ones while they are in the open space
below the gallery.
Figure 11~a! shows crowd behavior similar to that illus-

trated in Figure 9 above, where agents become congested
around the early works in the gallery but stream past the
latter works because the gallery has been poorly arranged.
Figure 11~b! shows crowd behavior similar to that illus-
trated in Figure 10 above, where agents become evenly
spread out in the gallery because they find each room equally
interesting.
Curious agents have complex behavior that changes over

time with exposure to new experiences. The example prob-
lem given in this paper of designing an interesting gallery is
further compounded if one assumes that agents will visit
the same gallery more than once. Figure 11~c! shows the
behavior of agents when they are allowed to visit the gal-
lery multiple times in succession and retain the memory of
their previous visits. It shows how the gallery eventually
becomes “boring” for all of the agents, indicated by the
tight formation that the majority of agents have taken while
streaming past all of the works because they are no longer
of any interest. The question of how a curator maintains the
interest of visitors that have already experienced many of
the works in previous visits is one that may be explored
in future research using curious agents and situated design
evaluations.
The example problem of curating a gallery illustrates

how the use of curious agents in a simulated environment
allows a designer to experiment with different layouts to
maximize the interestingness reported by visitors. The use
of situated design evaluations opens up new possibilities
for using optimization techniques, such as genetic algo-
rithms, to explore the space of possible gallery layouts sys-
tematically. Given the complex nature of the group behavior
displayed by groups of people, and modeled by curious
agents, the use of intelligent design tools that can assist in
the planning process would be of great benefit to designers.
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Fig. 11. Screenshots of the curious gallery system running different simulations of gallery arrangements and agent visit strategies.
~a!Apoorly arranged gallery populated by agents on single visits, ~b! a well-arranged gallery populated by agents on single visits, and
~c! a well-arranged gallery populated by agents on multiple visits.
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 (a) Poorly arranged gallery for single visit agents
 (b) Well arranged gallery for single visit agents
 (c) Well arranged gallery for multiple visit agents
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Emergent Aesthetics - Agent Swarms

Urbano (2006)

 Various artists have applied fixed aesthetics using flocking 
agents (a la Reynolds) that lay down virtual paint. 

 Urbano’s “Gaugants” have one-to-one transactions.

 Each forms consent or dissidence regarding paint color.

 The dynamics are somewhat reminiscent of scenarios studied 
in game theory (e.g. the Prisoner’s Dilemma).

 Although there is no overt evaluation there is an emergent 
aesthetic based on negotiations among the agents.

Emergent Aesthetics - Agent Swarms

630 P. Urbano 

same position and orientation, but different colours and Rots. The Gaugants only 
imitate the colours of the others (Rot is fixed since the beginning). In this experiment 
we consider that each painter may communicate with any other. The non-interactive 
individual behaviour consists only in rotating Rot degrees and going forward a num-
ber of steps (speed). Speed is a global parameter and also not subject of imitation. The 
dissident only changes his colour (mutation). 

Fig. 2 shows three snapshots of a painting evolution along time (population of 
2000 painters divide in groups of 20 groups 100 elements. 

   

Fig. 2. Evolution of a painting. 2000 micro-painters divided in 20 groups of 100 elements, dp = 
0,001. MaxRot is 20 and any agent can imitate another (global communication). 

We can see that initially every group element is in the same patch but because they 
do different rotations, the one-colour spots get larger and larger, and after a while, 
every agent is dispersed in the tableau creating a confused background that highlights 
the initial spots. The fact that any micro-painter can choose any other as a partner is 
the responsible for having similar forms and colours in different parts of the tableau. 
We can see also different consensual areas, implying different consensus durations—
this is due to the change of the equals-threshold during dissidence. 

 

Fig. 3. Gallery of 3 Gaugant paintings 

In figure 3 we show 3 paintings that were made by different population dimen-
sions, initial group divisions, speed and MaxRot. For every one we have a population 
of 2000 agents and dp=0,001. These and other pictures can be seen in 
http://www.di.fc.ul.pt/~pub/gaugants. 
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5.4   Experiment 2 

In the second experiment Gaugants will imitate both colour and orientation. The dis-
sident will change colour and orientation. Moving is just going forward a number of 
speed units (global parameter) and rotating to the right a random number of units 
(between 0 and Rot). MaxRot is 6 and each group imposes to theirs elements the same 
position and orientation. Each element begins with a random colour and Rot is ran-
domly chosen between 0 and MaxRot. 

In figure 4 we show the evolution of a painting made by a population of 2000 ele-
ments divided in 30 groups where everybody can choose any other as a partner to 
interact. We can see clearly the sequence of consensus (specially due to colour, the 
change of orientation was very light). 

Looking at figure 5, showing a painting that we call The Swans we can see clearly 
that orientation is changed during dissident behaviour. 

   

Fig. 4. Three snapshots of a painting by 2000 agents that imitate both colour and orientation 

 

Fig. 5. The swans. Four initial groups of 500 agents each. 
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2000 agents globally negotiating color and direction

2000 agents mutating and globally negotiating color

Emergent Aesthetics - Niche Construction

 Niche construction as agent / environment 
coevolution. 

 Agents have a preferred environment.
 Agents can alter their environment to preference.
 As a more preferred environment is created those 

with the strongest preference are most 
encouraged.

 This creates a feedback loop creating an ever 
deepening evolutionary niche.

Emergent Aesthetics - Niche Construction

McCormack and Bown (2009)

 Drawing agents move leaving marks and spawning offspring.
 They stop when they intersect already existing marks.
 They sense the local density of already existing marks.
 Each agent also has a genetic density preference.
 Initially agents that prefer low density will succeed.
 Agents will then encounter higher densities of marks.
 High density agents will draw more and reproduce.
 This reinforcing feedback deepens the niche and preference.
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Emergent Aesthetics - Niche Construction

McCormack and Bown (2009)532 J. McCormack and O. Bown

Fig. 3. Two example drawings produced by the agent system (no niche construction)

While the drawings are interesting, they are largely homogeneous, both in
terms of the style and overall tonal density observed in the images produced. By
adding a niche construction process the images become much more heterogeneous
and exhibit greater aesthetic variation.

The Drawing Niche Construction Model. To add niche construction to
the drawing model, each agent is given an additional allele in its genome: a
local density preference δi (a normalised floating point number). This defines
the agent’s preference for the density of lines already drawn on the canvas in
the immediate area of its current position, i.e. its niche (Fig. 4). In a preferred
niche, an agent is more likely to give birth to offspring and has a better chance of
survival. As children inherit their parent’s genes they are more likely to survive
as they have a similar density preference. So in a sense, parents may construct
a niche and pass on a heritable environment well-suited to their offspring.

For each agent, i, δi defines it’s preferred niche. Local density (the ratio of
inked to blank canvas per unit area) is measured over a small area surrounding
the agent at each time step. Proximity to the preferred niche determines the
probability of reproduction of new agents, given by: Pr(reproduction) = fi ·
cos(clip(2π(∆pi − δi)),−π

2 , π
2 ), where ∆pi is the local density around the point

pi, the agent’s location. fi is the agent’s fecundity and ‘clip’ is a function that
limits the first argument to the range specified by the next two. Being in a
non-preferred niche also increases the chances of death.

Agents begin with a low density preference, uniformly distributed over [0, 0.25].
Beginning the drawing on a blank canvas means that only those agents that prefer
low density will survive. As the drawing progresses however, more ink is added to
the canvas and agents who prefer higher densities will prosper. At each birth the
agents genome is subject to the possibility of random mutation (proportional to
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Fig. 4. The niche construction mechanism for drawing agents, who try to construct a
niche of local density that satisfies their genetic preference

the inverse of the genome length), allowing offspring to adapt their density prefer-
ence and drawing style as the drawing progresses. Eventually the population be-
comes extinct, since high density favouring agents don’t have much room to move,
and the drawing finishes. Some example drawings are shown in Fig. 5. Notice the
greater stylistic variation and heterogeneity over the images shown in Fig. 3.

Fig. 5. Two example drawings produced with the addition of niche construction

2.2 Musical Niche Construction

The RiverWave model is a sonic ecosystem in which agents contribute to the
construction of an evolving additive synthesis soundscape. The agents inhabit a
sonic environment which they contribute to and this environment in turn defines
selection pressures for the agents. The model explores the long term evolution-
ary dynamics of a system in which environmental conditions and genetically
determined behaviours coevolve, and demonstrates the efficacy with which an

Emergent Aesthetics

Galanter (2012) 

Results to date lead to a conclusion regarding
 Type 2 computational aesthetic evaluation:

“If the goal is the creation of robust systems for 
meta-aesthetic exploration these evolutionary 
system extensions seem to be quite beneficial.

However, if the goal is to evolve results that appeal 
to our human sense of aesthetics there is no 
reason to think that will happen.”

Complexity-based Models of Aesthetics

Complexity Measures

Bense (1965) and Moles (1966)
Information Aesthetics after
Shannon’s Information Theory

C
om
pl
ex
ity

Disorder
Incompressibility

Order
Compressibility

Information and
Algorithmic Complexity

 Shannon’s information theory describes the information capacity of a 
channel.

 The more disordered the signal, the less compressible it is, the more 
information it carries.

 Bense and Moles adapted these ideas in Information Aesthetics.
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Complexity Measures

Kolmogorov’s (1965) 
Algorithmic Information Content
adapted by Schmidhuber’s 
(2012) Formal Theory of 
Creativity
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Disorder
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Order
Compressibility

Information and
Algorithmic Complexity

 Kolmogorov has a similar notion of algorithmic complexity.  Again 
relative incompressibility (this time of the code used to implement the 
algorithm in question) is equated with complexity.

 This is adapted in Schmidhuber’s Formal Theory of Creativity.

Complexity Measures

Gell-Mann and Lloyd’s (1996)
Effective Complexity offers
a notion of complexity more
consistent with our 
experience.

 According to Gell-Mann and Lloyd complexity is a balance of order 
and disorder.

E!ective Complexity
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Complexity Measures

E!ective Complexity

C
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ity

Disorder
Incompressibility

Order
Compressibility

biological life

crystals atmospheric gas

We find the balance of order and disorder in biological life more 
complex than either highly ordered or disordered systems.

Complexity Measures

Effective complexity gives us a way to order our generative art systems, and 
it may be a more effective way to apply notions of complexity in aesthetic 
evaluation.

E!ective Complexity

C
om
pl
ex
ity

Disorder
Incompressibility

Order
Compressibility

evolutionary systems
and a-life

symmetry
and tiling randomization

chaotic systemsfractals and
L-systems
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The Future of CAE
Psychological Models, Empirical Studies, 

and Neuroaesthetics

Emergent Aesthetics

Greenfield (2008) 

“...it was difficult to find an evaluation scheme that 
made artistic sense. Much of the problem with the 
latter arises as a consequence of the fact that 
there is very little data available to suggest 
algorithms for evaluating aesthetic fitness. ...It 
would be desirable to have better cognitive science 
arguments for justifying measurements of aesthetic 
content.”

Brain Complexity

 The human brain has about 1015 connections.
 Individual neurons are informationally more complex than bits 

(analog, nonlinear summation, irregular synapses, etc.)
 Glial cells make up 90% of the brain and new studies 

suggest they actively participate in processing
 Digital circuits have a 107 advantage in switching speed, but 

that isn’t enough to compensate.
 But much simpler brains exercise a kind of aesthetic 

judgement in mate selection.
 Watanabe (2009) demonstrated that pigeons could be 

trained to reliably categorize paintings made by children as 
“good” and “bad.”

 His prior studies (2001) had demonstrated that pigeons could 
learn to discriminate between artists, e.g. Monet vs. Picasso.

The Origins of Art and the Art Instinct
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The Art Instinct

 Stephen Jay Gould claimed that art is a “spandrel,” a 
nonadaptive side effect leveraging excess cognitive 
resources.

 Steven Pinker (1994) has put forward the theory there is a 
“language instinct”, and that it developed when fluency 
became a mate selection marker.

 Dutton (2009) speculates there is an “art instinct” that 
similarly developed when the creation of aesthetic objects 
became a mate selection marker. 

 Such a behavior provides evidence of an excess of material 
means.

The Art Instinct

 often requires rare or expensive materials.
 requires time for learning and making.
 requires intelligence and creativity.
 typically has a lack of utility.
 sometimes has an ephemeral nature.

Note that art:

 open green spaces with trees. 
 ample bodies of water near by.
 an unimpeded view of the horizon.
 animal life.
 a diversity of flowering and fruiting plants.

Dutton also speculates about the near universal preference 
for landscape pictures rich with survival cues from the 
African savannah:

The Art Instinct

Alexander Melamid 

“...this blue landscape is more serious than we 
first believed...almost everyone you talk to...and 
we’ve already talked to hundreds of people...they 
have this blue landscape in their head...maybe 
the blue landscape is genetically imprinted in us, 
that it’s the paradise within, that we came from 
the blue landscape and we want it... China, 
Kenya, Iceland, and so on...the results are 
strikingly similar” 

Psychological Models of Human Aesthetics
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Rudolf Arnheim “Art and Visual Perception”

 Established Gestalt principles in 
aesthetics

 Perception is active cognition, not 
passive

 Law of Prägnanz - The brain 
orders experience into wholes that 
maximize clarity of structure

 Vague on the neurological 
specifics, but embraced the 
physical nature of his 
“forces and fields” in the brain

Gestalt - Grouping

Creating sets of objects based on location, orientation, shape, etc.

Gestalt - Grouping

Creating sets of objects based on location, orientation, shape, etc.

Gestalt - Grouping

Creating sets of objects based on location, orientation, shape, etc.
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Gestalt - Containment

Creating sets of objects based on borders

Gestalt - Containment

Creating sets of objects based on borders

Gestalt - Repetition

Creating sets of objects based on serial instantiation of a concept

Gestalt - Proximity and Fusion

The red and blue ovals group together, the yellow circles fuse
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Gestalt - Closure

The creation of apparent shapes despite missing information

Gestalt - Repetition

Implied motion guides the eye and fuses objects

Daniel Berlyne “Arousal Potential” 

 Arousal potential is the capacity a 
stimulus has to arouse the nervous 
system. Berlyne noted three types:

- Psychophysical properties (e.g. 
loud sounds)

- Ecological (e.g. pain or predator 
sightings)

- Collative (e.g. surprise, 
complexity, ambiguity)

Daniel Berlyne “Arousal Potential” 
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Daniel Berlyne “Arousal Potential” 
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Daniel Berlyne “Arousal Potential” 

E!ective Complexity
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Colin Martindale “Prototypicality”

 Conducted a series of confirmatory 
experiments that, in fact, produced 
data contradicting Berlyne’s model.

 Developed a neural network theory 
that better predicted and explained 
the experimental data.

 Tends to speak about aesthetic 
preferences more than aesthetic 
pleasure.

Colin Martindale “Prototypicality”

 The nervous system is arranged hierarchically.
 Low level neural processing tends to be ignored.
 Higher levels of cognition, deeper semantic nodes, dominate.
 Nodes are excitatory upward and inhibitory laterally.
 So similar nodes are physically closer than others.
 This creates semantic fields that exhibit prototypicality.  

The nervous system is more strongly activated when 
presented with a stimulus that is typical of its class.
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Colin Martindale “Prototypicality”

 It doesn’t seem to fully address our attraction to 
novelty.  (Meaning novelty other than incremental 
peak-shift phenomena).

 More generally it seems to ignore the careful 
balance of order and disorder, of expectation and 
surprise, in the arts.

 The linkage to aesthetic pleasure seems tenuous.

Problems with prototypicality:

Empirical Studies of Human Aesthetics

Empirical Studies of Human Aesthetics

Ernest Rutherford (likely paraphrased):

“In science there is only physics.
Everything else is stamp collecting.”

Studies of Viewers and Settings

 Subjects first asked to think about the distant 
future are more likely to accept unconventional 
works as art than those who first think about their 
near future.

 The same music will be evaluated more positively 
if preceded by bad music, and less positively if 
preceded by good music. 

 The presence or lack of title labels has no effect 
on the aesthetic evaluation of paintings. Similarly 
the amount of viewing time has no effect.
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Studies of Viewers and Emotions

 Not all emotions lend themselves to musical 
expression. Those that do tend to be general, 
mood based, and don’t require causal 
understanding.

 Subjects with high scores when evaluated for 
right-wing authoritarianism are more likely to be 
angered and disgusted by controversial art 
photography. 

 The most genuine musically induced emotions are 
thrills, a sense of being moved, and especially 
aesthetic awe.

Studies of Viewers and Neurology

 It was concluded that descriptive symmetry 
judgment and evaluative aesthetic judgment 
processes differ dramatically and recruit, at least 
in part, different neural machinery.

 The right visual field preference was found to 
apply only to abstract art.

 A model where the perceived color of an area is 
influenced by the surrounding colors is proposed. 
It is based on double opponent cells responding 
preferentially to one of the opponent colors, blue, 
yellow, red, and green.

Studies of Viewers and Types

 Open participants prefer more forms of art. This 
difference increases as the art became more 
abstract. Those with attitudes more tolerant of 
political liberalism and drug use prefer abstract art 
the most.

 Altruists reject aggressive images, and there is 
attraction for such images in aggressive types. 
The latter, however, have a greater liking for 
incongruous images that more indirectly and 
symbolically correspond to destructive drives.

Studies of Artists

 Artists and non-artists were presented with 22 
work-in-process images leading to Matisse’s 1935 
painting Large Reclining Nude. Non-artists judged 
the painting as getting worse over time with 
increasing abstraction. Art students showed a 
jagged trajectory with several peaks suggesting 
an interactive hypothesis-testing process 

 Balance influences the way adults trained in the 
visual arts create visual displays.

 Image making is consistent with personality test 
results.
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Studies of Objects

 The selection of a color palette, and the spatial control 
of color within a composition, results in the colorimetric 
barycenter of a painting being close to the geometric 
center in both representational and abstract paintings.

 Stimuli like horizontal and vertical lines, which are 
preferentially processed by the visual system, are also 
aesthetically more powerful.

 Removing color from portraits increased pleasantness 
and beauty and reduced tension. Removing color from 
landscapes reduced their perceived beauty.

Studies of Objects

 In film awards winning best song has no relation to film 
success, but winning best score is positively associated 
with the film success as measured by best-picture 
nominations and awards.

 There is some support for the idea that meaning 
attributed to single musical intervals may be a universal 
human trait. Specifically, Norwegian participants 
reported emotions that were remarkably consistent with 
the emotions reported for the very different musical 
tradition of medieval classical Indian raga music.

Neuroaesthetics and 
Connectionist Computing

Neuroaesthetics

 Neuroaesthetics is a nascent bottom up scientific study 
of aesthetic perception that begins at the level of the 
neuron and neurology.

 It is made possible in part thanks to brain imaging 
technologies such as:
- fMRI (functional magnetic resonance imaging)
- PET (positron emission tomography scanning)
- fNIR (functional near-infrared imaging)
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Neuroaesthetics example

Peak Shift
for a given stimulus a 
“super-stimulus” will generate 
an exaggerated response.

In the Herring Gull the red spot on the beak of the parent acts 
as a stimulus causing the chicks to peck at it, and that in turn 
stimulates feeding behavior by the adult.

Oddly, the herring gull chicks will also peck at any red dots, 
such as those painted on a stick, and a greater number of red 
dots will stimulate a stronger pecking response.

Neuroaesthetics example

Habituation
repeated exposure to the 
same stimulus, especially 
without recovery time, lessens 
the perceived intensity.

The combined effects of peak 
shift and habituation have 
been suggested as a 
neurological engine behind 
the tendency in art to move to 
increasingly extreme styles 
over time.

Heirarchical Temporal Memory

 HTM is essentially a neural network design invented by 
Jeff Hawkins inspired by his model of neocortex function.

 The model suggests a hierarchical associative memory 
system that exploits the passage of time by creating local 
prediction feedback loops for constant training.

 It’s a single mechanism for all manner of higher brain 
function including perception, language, creativity.

 Lower levels aggregate inputs and pass the results up to 
higher levels of abstraction.

 Neurologists know that the neocortex consists of a 
repeating structure of six layers of cells.

Evolvable Hardware

 Evolvable hardware exploits firmware as genotype using 
devices such as field programmable gate arrays 
(FPGAs).

 The system behavior is the phenotype, and given an 
appropriate fitness function such a system can exhibit 
emergent learning. 

 Glette et al (2007) described a proposed evolvable 
hardware system simulated in software. Used as a 
pattern recognition system for facial recognition it 
achieved an experimental accuracy of 96.25%.
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Conclusion

Concluding Summary

 To build truly creative systems we not only need 
generative systems, we also need systems 
capable of critical judgement.

 We don't know yet how to build robust CAE 
systems although there have been some notable 
niche applications of merit.

 Emergent machine aesthetics are interesting in 
their own right, but to date emergent aesthetics 
have not been effective in simulating predicting or 
catering to human notions of beauty and taste.

Concluding Summary

 It seems unlikely that simple formulaic or 
geometric theories will yield robust CAE.

 Traditional design theory might be of help if we 
can build computer vision systems capable of 
high level semantic abstraction.

 Would-be creative evolutionary systems suffer 
from the lack of CAE as a lack of automated 
fitness functions.

Concluding Summary

 CAE systems that seem to be mathematical or 
algorithmic are typically built on a foundation of 
neurological assumptions or models. We need 
better cognitive models of aesthetics.

 While "complexity" is often cited as an important 
variable in CAE, there are differing views as to 
how complexity should be conceptualized, 
defined, and operationally measured.
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Concluding Summary

 Solving the CAE puzzle seems to be a long way 
off, but the solution may turn out to be the result 
of breakthroughs in cognitive science, 
connectionist computing, and hardware design.
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