
Liger - An Open Source
Integrated Optimization Environment

Ioannis Giagkiozis
Department of Automatic

Control and Systems
Engineering

The University of Sheffield
Sheffield
S1 3JD

i.giagkiozis@sheffield.ac.uk

Robert J. Lygoe
Product Development Europe

Dunton Technical Centre
Ford Motor Co. Ltd

Powertrain Calibration
Calibration CAE &

Optimization Methods
blygoe@ford.com

Peter J. Fleming
Department of Automatic

Control and Systems
Engineering

The University of Sheffield
Sheffield
S1 3JD

p.fleming@sheffield.ac.uk

ABSTRACT

Although there exists a number of optimization frameworks
only commercial and closed source software address, to an
extent, real-world optimization problems and arguably these
software packages are not very easy to use. In this work we
introduce an open source integrated optimization environ-
ment which is designed to be extensible and have a smooth
learning curve so that it can be used by the non-expert in
industry. We call this environment, Liger. Liger is an appli-
cation that is built about a visual programming language,
by which optimization work-flows can be created. Addi-
tionally, Liger provides a communication layer with exter-
nal tools, whose functionality can be directly integrated and
used with native components. This fosters code reuse and
further reduces the required effort on behalf of the prac-
titioner in order to obtain a solution to the optimization
problem. Furthermore, there exists a number of available
algorithms which are fully configurable, however should the
need arise new algorithms can also be created just as eas-
ily by reusing what we call operator nodes. Operator nodes
perform specific tasks on a set, or a single solution. Lastly
as visual exploration of the obtained solutions is essential
for decision makers, we also provide state-of-the art visual-
ization capabilities.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments—
Graphical environments, Integrated environments

Keywords

Multi-objective optimization, industrial optimization, opti-
mization software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

1. INTRODUCTION
Recently Michalewicz [20] presented a paper criticizing

the evolutionary computation (EC) community for ignor-
ing, what he referred to actual real-world problems. His
argument revolved about the fact that EC algorithms for
optimization will usually have some shortcoming that would
make their application in real-world problems infeasible. An
example could be that the method does not scale well to the
number of decision variables or objectives encountered in
practice, or that constraint handling is not as efficient as it
could be and also that there is no clear way of bringing all the
required elements for the solution of a real-world problem by
the practitioner. In our view, this perspective is somewhat
exaggerated, however Michalewicz does present a series of
reasonable arguments that cannot simply be ignored.

We believe that EC optimization algorithms are in fact
applicable in practice, however, it is often the case that an
expert is required to apply such methods with success. This
difficulty is often reflected when practitioners use inappro-
priate methods for their problem simply because they find
that particular method easy to use. This can result in a
number of adverse side effects, from the obvious which is the
use of inferior solutions to more subtle effects like the use
of single objective optimization algorithms when the prob-
lem clearly requires a multi-objective approach. Despite the
problems, we have to acknowledge that practitioners oper-
ate under tight time budgets, hence sub-optimal choices are
some times unavoidable.

In this work, we present an integrated optimization en-
vironment which we refer to as Liger1. Liger is comprised
of several components all of which are orchestrated together
to overcome the issues discussed so far. The main compo-
nent of Liger is a the visual programming language, which
enables the practitioner to create what we call optimization
work-flows. An optimization work-flow is a sequence of op-
erations that are performed in order. This procedure is used
to solve an optimization problem. It should be noted that
decision making, namely the procedure of selecting a solu-
tion output from an optimization algorithm is in fact part
of the solution process. To accommodate this we have em-
ployed a state-of-the-art visualization library, namely D3 [2].
Another important aspect in real-world problems is the fact
that some parts of the code that defines the problem are

1The name is borrowed from the animal which is a cross-
breed between a lion and a tiger.

1089

usually implemented in a language or tool that is different
from the solution platform employed. This can create diffi-
culties and is at best a source of delays. To overcome this
barrier Liger has interfaces for a number of programming
languages and software packages. In essence these can be
used as simply as dragging and dropping the appropriate
node in the optimization work-flow. In summary Liger has
the following features:

• Collection of Evolutionary algorithms

• Collection of Classical optimization algorithms. By
classical we mean mostly convex optimization meth-
ods, e.g. interior point algorithms.

• Provides an easy to use interface for creation of algo-
rithms

• No lock down policy. Meaning the user should be free
to use, or reuse, any part of code created in Liger with
little or no additional effort.

• Provision for advanced visualization and data explo-
ration. Data in this context usually refers to the set of
alternative solutions.

• Interactive interface during algorithm execution. This
is required to accommodate progressive preference ar-
ticulation algorithms.

• Extendable architecture. No language/software is ever
complete, hence there must exist a way that it can be
extended naturally and in a straightforward manner.

• Provide a facility for systematic testing of algorithms.
There have been a number of attempts towards this
direction, see PISA for example.

• A broad picture of Liger is that it is, or at least is being
designed to be, an Integrated Optimization Environ-
ment (IOE).

The rest of this paper is organised as follows. In Section 2
we elaborate on fundamental definitions in single and multi-
objective optimization. In Section 3 we comment on related
work and in Section 4 we describe the architecture of Liger.
Subsequently in Section 5 we present a case study on a po-
tential use of Liger. Lastly we summarise and conclude this
work in Section 6.

2. BACKGROUND
A general definition of a single objective optimization prob-

lem is,

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

and, hi(x) = 0, i = 1, . . . , s,

x ∈ S.

(1)

The functions gi(·) are inequality constraints and the func-
tions hi(·) are equality constraints. Depending on how the
functions in (1) are defined the problem described may be
convex or nonconvex. Although a detailed description be-
tween the two is beyond the scope of this work, a relevant
distinction is that convex problems can be solved with rela-
tive ease while nonconvex problems can be extremely diffi-
cult to solve even when considering a small instance. Namely

a problem instance with a small number of inequality and
equality constraints and for decision variable vectors (x) of
low dimension. Evolutionary algorithms (EAs) have been
designed to deal with the latter category, and although there
are interior point methods implemented in Liger, our focus
in this work is in EAs.

Liger has implementations of single objective EAs, how-
ever, we find that often real-world problems have multiple
competing objectives. One issue with such problems is that
there exists no longer a single optimum, rather an entire
set of alternatives that are all optimal. A multi-objective
problem (MOP) is defined as,

min
x

F(x) = (f1(x), f2(x), . . . , fk(x))

subject to gi(x) ≤ 0, i = 1, . . . ,m,

and, hi(x) = 0, i = 1, . . . , s,

x ∈ S.

(2)

The objective function in a multi-objective problem is com-
prised of k scalar objective functions. The set S is the do-
main of definition of the decision variables comprising the
decision vector, x. For problems defined by (2) the opti-
mal solutions are referred to as the Pareto front or the non-
dominated set. Briefly, these solutions are the set of objec-
tive vectors for which there exists no other objective vector
whose elements are all simultaneously better in comparison.
Better in the context of minimization means smaller. For
the sake of brevity we omit any formal definitions of Pareto
optimality, the interested reader is referred to [21] for a com-
prehensive introduction.

3. RELATED WORK
The number of available software libraries for evolution-

ary algorithms is steadily increasing with some libraries be-
ing the result of almost 15 years of research, see Evolving
Objects [13] for example. Currently however, the task of
selecting an appropriate optimization algorithm, even for
experts in the field, can be a rather demanding task. This
issue, in our view, can be to some extent alleviated if there
existed a tool that aggregated and extended already exist-
ing libraries, provided a graphical programming language
and was straightforward to extend. As briefly alluded to
in the introduction, such a tool can be termed as an inte-
grated optimization environment. The application that we
present in this work, although relatively in the early devel-
opment stages, poses the features that can classify it in this
category.

In this section we briefly review a set of available open
source libraries that implement and provide the necessary
tooling to create new optimization algorithms. It should
be noted however, that it is not our intention to provide
a comprehensive comparison of these libraries. Also note
that, although we present the number of implemented algo-
rithms that are available within the library as an indicator
in Table 1, this does not imply that the library in question
cannot be used to create a larger number of optimization
techniques. This feature, in our view, is important for the
end user as it reduces significantly the required time to ap-
ply the particular library on a problem. In other words, the
number of algorithms present in the library can be seen as
an ease of use indicator. Following we provide a commen-

1090

Name Language License GA ES DE PSO EDA MO NA GUI Reference

ECJ Java AFLv3 X X X X × X 8 X [22]
Opt4J Java LGPL X × X X × X 5 X [17]
JGAP Java GPL X × × × × × 2 X [19]
EvA2 Java LGPL X X X X × × 8 × [14]
jMetal Java LGPL X X X X × X 15 X [5]
EO C++ LGPL X X X X X × 4 X [13]
MOMH Lib++ C++ LGPL X × × × × X 9 X [12]
Open Beagle C++ LGPL X X × × × X 11 × [9]
ParadisEO C++ CeCILL X X X X X X 12 × [16]
Shark C++ GPL × X × × × X 15 × [11]
PISA C Mixed X × × × × X 13 × [1]
Heuristic Lab C# GPL X X × X × X 14 X [24]

Table 1: Software libraries for population-based optimization methods. Licensing is not discussed in the text
as it is beyond the scope of this work. However, the licenses under which the libraries are distributed are listed
for convenience. The labels have the following meaning: GA, genetic algorithms, ES, evolution strategies,
DE, differential evolution, PSO, particle swarm optimization, EDA, estimation of distribution algorithms,
MO, multi-objective, NA, number of algorithms and GUI, graphical user interface. A, X, signifies that the
library supports the corresponding feature and a, ×, that this functionality has not been implemented.

tary on the libraries listed in Table 1 and elaborate on the
reasons that led us to include some of them in Liger.
Although every library listed in Table 1 has its merits,

jMetal [5], PISA [1] and ParadisEO [16] seem to be most
widely employed by the community. In particular, arguably
due to its popularity, a small subset of jMetal has also been
ported to C++ and .NET, however these forks are not so
actively maintained as the Java version hence their features
are somewhat limited in comparison. ParadisEO, is an ex-
tension of the so called evolving objects (EO) library [13].
EO is a C++ template library, which as their authors men-
tion is better suited for an advanced user. However, the
capabilities of the library are extensive and it has no other
dependencies apart from the standard template library in
C++. A potential issue with EO and in extension with Par-
adisEO could be the way memory is managed, namely there
exists an object which is granted ownership of every created
operator. Once this object becomes out of scope, due to the
method or function where it is contained has returned for
example, all the operators and results are lost. This however
could be overcome in a number of ways whose enumeration
is beyond the scope of this work.
PISA [1] is a modular framework which has been primarily

written in C. The architecture of PISA is modular and com-
munication between different modules is accomplished using
text files. In extension this means that the various mod-
ules can be written in any language, at least in principle.
This feature can also be seen as a weakness for PISA since
hard disk input output (IO) operations are relatively slower
to operations performed using the free store (RAM). Con-
sequently, the benefit of language independence is gained
at the cost of slower execution times as polling is used for
synchronizing the various modules.
Another very interesting software is Heuristic Lab [24].

Heuristic Lab (HL) is at a higher level compared to the rest
of the libraries seen in Table 1 in terms of its implementa-
tion. Namely, HL has a modular architecture build about a
plugin-based system, which allows for extensions to be added
to the tool. Although the ideas and philosophy upon which

HL is based are sound in terms of software engineering, HL
appears to be rarely used in practice2. A problem with HL
is that the selected language is C#. C# is a language cre-
ated by Microsoft and in extension well supported only on
Windows operating systems. Also, C# has an intermediate
step (bytecode) in its compilation phase which often has a
significant negative impact on performance. Our argument
is that HL is non-portable and arguably many practitioners
in industry employ Linux for their experiments that require
high performance computing, for example clusters.

It can be seen (Table 1) that a number of libraries have
been implemented in Java. Arguably the authors of ECJ
[22], Opt4J [17], JGAP [19], EVA2 [14] and jMetal [5] aim
at cross-platform code. It is true that Java is one of the most
employed languages with an array of devices having a Java
virtual machine implementation. Nevertheless, it is difficult
to argue that Java is the best language for computationally
intensive tasks. In comparison it is much easier, in terms of
development expertise, to produce code that executes faster
in C++, however there is a perception, and to some extent
rightly so, that C++ code is relatively less portable. This
however is not true for the C++ based libraries seen in Ta-
ble 1, which can be used on all of the 3 major platforms,
namely MAC OS, Linux and Windows, and perhaps others.

4. LIGER - ARCHITECTURE
Liger is based on a small set of open source libraries and

applications. The general architecture, namely the underly-
ing framework used to extend Liger is based on a subset of
QtCreator, the integrated development environment created
by Nokia in support of the Qt library. The main reason for
this choice has been expediency, as a large number of low
level utilities are already in place in QtCreator, and, have al-
ready undergone several debugging iterations. For this rea-
son the Liger shares several features with the architecture
of QtCreator. The main plugin, upon which all other exten-
sions depend on, is the UI Core, see Fig. (1). The Core plu-
gin provides the necessary interfaces for fundamental tasks

2To the authors’ best knowledge.

1091

Figure 1: Liger architecture.

such as communication, file input-output operations, han-
dling of settings as well as classes implementing parts of the
user interface and also a manager for the Liger designer, see
Fig. (2). Note that the designer in Liger shares only the
name of the designer in QtCreator. The main plugins that
comprise Liger are:

• Designer

• Liger engine

• External interfaces library

• Visualization.

These 4 plugins are further discussed in the following sec-
tions. The QMetal plugin, is a wrapper for an extended ver-
sion of the jMetalCpp library which is a port of the jMetal
library to C++. Although the jMetalCpp library is fairly
minimal, its design principles are in line with the design
patterns used in Liger. Nevertheless, as the number of fea-
tures provided by jMetalCpp are only a few and focused
towards evolutionary computation, Liger could not rely on
the provided version by the authors (see Table 1). In what
follows we further elaborate on the main plugins that com-
prise Liger.

4.1 Designer
A part of the Designer structure is seen in the class dia-

gram in Fig. (4). The fundamental computational unit in
Liger is the process node. Every process node extends and
the IProcessNode class. This interface class provides the
necessary functionality for communication with the Liger
engine. A process node is comprised of zero or more in-
put ports, zero or more output ports, a set of connections
to the Liger engine and a virtual computation method. The
computationally intensive part of a process node which is in-
voked by the evaluate() method can be executed in a thread,
out of process or even in a cluster. At present, execution of
the aforementioned method is restricted to a different thread
from the main user interface. In single threaded CPUs the

main thread is reused. In contrast with simulink and XCos
in Scilab [3], Liger propagates a rich data structure. This
is to simplify the configuration of every node. This is not
limiting to the least and is also efficient as the data struc-
ture, namely the IData class, contains only pointers to the
process nodes that own the data.

4.2 Liger Engine
The Liger engine is the part that coordinates the order

of execution within an optimization work-flow. This plu-
gin bears some resemblance to the Simulink engine. The
optimization work-flow in Liger starts at the Master Start
Node (MSN) and ends at the Master End Node (MEN).
These two nodes are unique per design and simply provide
a frame of reference for the start and end of an optimiza-
tion loop. When initialised, the engine passes control to the
MSN which in turn signals the nodes to which it is con-
nected. This process is reactive in the sense that once a
node receives all input signals it notifies the engine that it
is ready to proceed to the evaluation stage. Subsequently,
the engine invokes the evaluate() method of the node and
once complete the node emits the result to the node or nodes
connected to its output ports. This process is repeated un-
til the termination condition, which is implemented in the
MEN node, is reached. A problem with this paradigm is
that for a node to become ready for evaluation, it must re-
ceive all inputs, which may never happen if an input is an
output of a node that has not yet been evaluated. This sce-
nario describes what is commonly referred to as feedback
loop. A solution to this is the implementation of an internal
loop mechanism using a Start Node and an End Node, which
can emulate, to a degree, a feedback loop.

Another mechanism that is implemented in the Liger en-
gine is the identification of the external tools necessary to
execute the optimization flow. For example, if the practi-
tioner has added a MATLAB node in Liger, then this will
require access to the MATLAB engine. Liger opens a con-
nection with the corresponding engine once it detects that
there exists a node that will require such a connection and,
naturally, this connection is closed when all nodes that ne-
cessitated this connection are deleted from the optimization
work-flow.

4.3 External Tools
To foster code reuse we have setup a mechanism to allow

for external tools to be connected with Liger. This of course
is subject to an available API3 on behalf of the application
in question. For instance, MATLAB provides an API that
allows access to its interpreter and Simulink. At this stage
we have created a plugin named, MATLAB, which provides
the necessary tooling to execute .m files in their native en-
vironment, query the results and use these directly in Liger.
The ease of use for the industrial non-expert user is illus-
trated in Section 5.

4.4 QMetal
From the libraries listed in Table 1 we have singled out,

EO [13], ParadisEO [16] and the C++ version of jMetal [5].
We selected EO and ParadisEO because, in our view, these
libraries provide an unrivaled number of features. However,
as mentioned in Section 3, the memory management model
employed in EO and ParadisEO is posing difficulties as the

3Application Programming Interface

1092

Figure 2: A view of the Designer environment in Liger. Note that the leftmost node (green disk) and the
rightmost node (red disk) represent the Master Start and Master End nodes respectively.

Figure 3: Parallel coordinates plot node in Liger. An approximation of the Pareto front obtained in Liger
using NSGAII [4] for the DTLZ2 test problem [10] (see Fig. (2)). The plot to the left depicts the set of all
alternatives produced by the algorithm while the plot on the right depicts the selected set of solutions by the
decision maker.

1093

Figure 4: Liger architecture.

process nodes in Liger have ownership of the memory they
allocate when creating new operators, algorithms, visual-
ization elements or any other task. The reason behind this
choice is to allow for scalability and minimize memory leaks.
However, ParadisEO, which inherits this feature from EO,
has a state object which manages every object created by
the library. This clash has almost been resolved to some ex-
tent and modifications are to be submitted to the ParadisEO
developers.
The second library of choice, namely the C++ version of

jMetal, was selected on the basis that it is build on sound
principles using design patterns [7] extensively. These choices
enhance code readability and reuse to a significant degree.
However, as the C++ version of jMetal is somewhat out-
dated, we have simply used a modified version for low level
interfaces. Nevertheless the architecture of this plugin is
based on jMetal hence the name has been selected to reflect
this choice.

Presently this plugin provides nodes for theWFG1-9, DTLZ1-
7, ZDT1-6 and LZ09 1 to 9 test problems. In addition the
following algorithms are available:

• Differential Evolution [23]

• Generalized Differential Evolution 3 [15]

• NSGA-II [4]

• Particle Swarm Optimization [6]

Although this list is not large, it should be noted that all
the operators that the above mentioned algorithms employ
are also available as independent nodes, which can be used
for algorithm creation within Liger. Nevertheless, this list
will be extended to at least include MOEA/D [25], RM-
MEDA [26], by the alpha release of Liger, see Section 6.

1094

4.5 Visualization
The presentation and exploration of results is arguably

very important. For instance, we find that the time spent
on refining quality plots is a significant portion of time spent
preparing a report. Although this time cannot always be
eliminated, part of this process can be streamlined by the un-
derlying software. Additionally, there are algorithm frame-
works that require user interaction during the optimization
process, for example [8]. Although such interaction can be
accomplished using other tools, if this functionality is not
present in Liger, this would pose difficulties in using our
IOE. Another problem is that a high level library for visual-
ization is not available in C++4, an issue that would lead to
excessive development time for the implementation of such
a functionality in Liger.
These issues are resolved using a combination of the QWe-

bkit class, which is a port of the Webkit library to Qt and
D3 which is a javascript based visualization library [2]. D3
creates SVG (Scalable Vector Graphics) and allows for user
interaction. Additionally there is ample documentation and
examples for this library, and its performance exceptional
as well [2]. Naturally, in terms of performance it cannot
be compared to a native implementation in C++, however
the achieved savings in development time the wealth of doc-
umentation for the D3 library and the support of the Qt
library to render SVGs to many alternative formats, out-
weigh the performance degradation.
The visualization elements in Liger are implemented sim-

ply as another node, hence they also inherit from the IPro-
cessNode class, and follow the same rules of evaluation as
other nodes. The difference is only in the output which is
visual. To implement a visualization node, there are mainly
3 options:

• Send the data to an external software. This is subject
to availability of such interface within Liger. For exam-
ple this capability exists for MATLAB and we intend
to extend this to other software packages. Nevertheless
this may not always be an option.

• Implement a plot using a C++ library, however this
has the shortcomings portrayed above.

• Alternatively, create a plot using javascript and D3 [2]
and then use the interface provided in Liger to es-
tablish a communication path so that data can be
transmitted back and forth from the C++ code and
javascript.

Of course these options may not be necessary as there is
an increasing library of available visualization nodes with
scatter plots, parallel coordinate plots (see Fig. (3)), bar
charts and histograms.

5. CASE STUDY
In this section we demonstrate an optimization work-flow

using Liger. The selected problem is a 6-objective instance
of the DTLZ2 test problem. In a future work we plan to
demonstrate a work-flow on a 6-objective diesel engine cali-
bration problem [18].
Let us assume that the decision maker has an optimiza-

tion problem whose objective function is implemented in

4To our knowledge.

MATLAB. The only requirement that an objective function
implemented in MATLAB has to fulfill so that it can be used
directly in Liger is that when invoked with no arguments it
returns the number of decision variables and the number of
objectives. When the function is called with a single ar-
gument, namely the population of candidate solutions, the
only output must be an array whose rows are the different
objective vectors. If the function in question does not sat-
isfy these criteria, it is straightforward to create a wrapper
using no more than 4 lines of code.

At this stage the practitioner would like to explore the so-
lutions obtained by an optimization algorithm and compare
the results with a latin hypercube sampling search approach.
These alternative methods have been implemented and can
be seen in Fig. (2). The top flow is using the NSGA-II [4] al-
gorithm, while the bottom is using a grid of points which has
been generated by the LQS node subsequently these points
are evaluated and then displayed. Subsequently the deci-
sion maker can activate the parallel coordinate nodes and
explore the solutions, Fig. (3). Note that we present only
the solutions obtained by the top optimization work-flow
due to space limitations.

During the entire procedure described above the practi-
tioner was only required to write 4 lines of code, which in
fact are available as a template in Liger for convenience.
The same simplicity governs nodes that handle constraints,
which can be bound constraints, equality constraints or in-
equality constraints.

6. CONCLUSIONS AND FUTURE

RESEARCH
Building software that is useful to its creator as well as

to a wider community of users is mostly an art and most
likely will remain so for the foreseeable future. Liger is an
integrated optimization environment whose main focus is to
enable non-expert practitioners in industry to use state-of-
the-art optimization algorithms. In the case that no avail-
able algorithm matches perfectly the problem, then there
exists the option of creating customised algorithms tailored
for the problem simply with a few mouse clicks. Further-
more, as new optimization algorithms become available the
architecture of Liger is perfectly suited to accommodate such
additions in an equally straightforward fashion.

As mentioned in the introduction, no software is ever com-
plete and Liger is no exception to this rule. We continuously
improve Liger and have several features planned for imple-
mentation, some of which are a plugin for the Liger engine
so that it can execute process nodes on the Cloud and on a
grid. Furthermore we consider code generation for Liger, ini-
tially in C++. The idea is to output the optimization work-
flow created, that potentially implements some algorithm or
experiment and produce code that has as few as possible de-
pendencies to external libraries. Although we have already
some simple algorithms that can be produced in such a way,
this is a massive undertaking and would require extensions
for several libraries used within Liger.

Liger is made available as an open source software under
the LGPLv3 software license and an unstable release is due
at the end of June 2013 and an alpha version of the software
will be released on September 2013.

1095

7. ACKNOWLEDGMENTS
The authors would like to acknowledge the financial sup-

port of Ford and The University of Sheffield and collabora-
tors in the Technology Strategy Board Programme: CO2 Re-
duction through Emissions Optimisation (CREO Project).

8. REFERENCES

[1] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler.
PISA — A platform and programming language
independent interface for search algorithms. In
Evolutionary Multi-Criterion Optimization (EMO
2003), Lecture Notes in Computer Science, pages 494
– 508, Berlin, 2003. Springer.

[2] M. Bostock, V. Ogievetsky, and J. Heer. D3:
Data-driven documents. IEEE Transactions on
Visualization and Computer Graphics,
17(12):2301–2309, 2011.

[3] S. L. V. Campbell, J.-P. Chancelier, and
R. Nikoukhah. Modeling and simulation in
Scilab/Scicos. Springer Science+ Business Media,
2006.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[5] J. J. Durillo and A. J. Nebro. jMetal: A Java
framework for multi-objective optimization. Advances
in Engineering Software, 42(10):760 – 771, 2011.

[6] R. Eberhart and J. Kennedy. A New Optimizer Using
Particle Swarm Theory. In International Symposium
on Micro Machine and Human Science, pages 39–43.
IEEE, 1995.

[7] G. Erich, H. Richard, J. Ralph, and V. John. Design
patterns: elements of reusable object-oriented
software. Reading: Addison Wesley Publishing
Company, 1995.

[8] C. Fonseca and P. Fleming. Genetic Algorithms for
Multiobjective Optimization: Formulation, Discussion
and Generalization. In Conference on Genetic
Algorithms, volume 423, pages 416–423, 1993.

[9] C. Gagné and M. Parizeau. Genericity in evolutionary
computation software tools: Principles and case study.
International Journal on Artificial Intelligence Tools,
15(2):173–194, 2006.

[10] S. Huband, P. Hingston, L. Barone, and L. While. A
Review of Multiobjective Test Problems and A
Scalable Test Problem Toolkit. IEEE Transactions on
Evolutionary Computation, 10(5):477–506, 2006.

[11] C. Igel, V. Heidrich-Meisner, and T. Glasmachers.
Shark. Journal of Machine Learning Research,
9:993–996, 2008.

[12] A. Jaszkiewicz and G. Dabrowski. Momh
multiple-objective metaheuristics.
http://home.gna.org/momh/index.html, 2012.

[13] M. Keijzer, J. Merelo, G. Romero, and M. Schoenauer.
Evolving Objects: A General Purpose Evolutionary
Computation Library. In Artificial Evolution, volume
2310 of Lecture Notes in Computer Science, pages
231–242. Springer Berlin Heidelberg, 2002.

[14] M. Kronfeld, H. Planatscher, and A. Zell. The EvA2
Optimization Framework. In C. Blum and R. Battiti,

editors, Learning and Intelligent Optimization
Conference, Special Session on Software for
Optimization (LION-SWOP), number 6073 in Lecture
Notes in Computer Science, LNCS, pages 247–250,
Venice, Italy, Jan. 2010. Springer Verlag.

[15] S. Kukkonen and J. Lampinen. GDE3: The Third
Evolution Step of Generalized Differential Evolution.
In IEEE Congress on Evolutionary Computation,
volume 1, pages 443–450. IEEE, 2005.

[16] A. Liefooghe, M. Basseur, L. Jourdan, and E.-G.
Talbi. Paradiseo-moeo: A framework for evolutionary
multi-objective optimization. In Evolutionary
multi-criterion optimization, pages 386–400. Springer,
2007.

[17] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich.
Opt4j: a modular framework for meta-heuristic
optimization. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation,
pages 1723–1730. ACM, 2011.

[18] R. J. Lygoe, M. Cary, and P. J. Fleming. A
many-objective optimisation decision-making process
applied to automotive diesel engine calibration. In
Simulated Evolution and Learning, pages 638–646.
Springer, 2010.

[19] K. Meffert and N. Rotstan. JGAP: Java genetic
algorithms package, 2010.

[20] Z. Michalewicz. Quo vadis, evolutionary computation?
Advances in Computational Intelligence, pages 98–121,
2012.

[21] K. Miettinen. Nonlinear Multiobjective Optimization,
volume 12. Springer, 1999.

[22] L. Panait, G. Balan, S. Paus, Z. Skolicki, E. Popovici,
K. Sullivan, J. Harrison, J. Bassett, R. Hubley,
A. Chircop, et al. ECJ: A java-based evolutionary
computation research system. 2010.

[23] R. Storn and K. Price. Differential Evolution - A
Simple and Efficient Adaptive Scheme for Global
Optimization Over Continuous Spaces. International
Computer Science Institute-Publications TR, 1995.

[24] S. Wagner, A. Beham, G. Kronberger, M. Kommenda,
E. Pitzer, M. Kofler, S. Vonolfen, S. Winkler,
V. Dorfer, and M. Affenzeller. Heuristiclab 3.3: A
unified approach to metaheuristic optimization. In
Actas del séptimo congreso español sobre
Metaheuŕısticas, Algoritmos Evolutivos y
Bioinspirados (MAEB’2010), page 8, 2010.

[25] Q. Zhang and H. Li. MOEA/D: A Multiobjective
Evolutionary Algorithm Based on Decomposition.
IEEE Transactions on Evolutionary Computation,
11(6):712–731, 2007.

[26] Q. Zhang, A. Zhou, and Y. Jin. RM-MEDA: A
Regularity Model-Based Multiobjective Estimation of
Distribution Algorithm. IEEE Transactions on
Evolutionary Computation, 12(1):41–63, 2008.

1096

