
Extending the Growing Point Language to Self-Organise
Patterns in Three Dimensions

Alyssa Morgan
University of the West Indies (Mona)

Kingston, Jamaica
amorgan.edu@gmail.com

Daniel Coore
University of the West Indies (Mona)

Kingston, Jamaica
daniel.coore@uwimona.edu.jm

ABSTRACT
The Growing Point Language (GPL) is used to engineer the
emergent behaviour of an amorphous computer. GPL pat-
terns are topologically one-dimensional objects, regardless
of the dimension of the space in which the system exists. A
crude length measure in GPL means that GPL patterns also
have a geometric character to them. One of the constructs
defined in GPL (diatropisim), directs a growing point to
propagate tangentially to the level curve of a spatial distri-
bution called a pheromone. In 2-dimensions, tangent spaces
are 1-dimensional and therefore diatropism is reasonably
well defined. However, in 3-dimensions (and higher) dia-
tropismis no longer confined to 1-dimension, which means
that some programs whose behaviour was well understood in
2-dimensional systems, become less so in higher dimensions.
We argue that the predictability of the geometric proper-
ties of a GPL program in 3-dimensions can be completely
recovered. We support this argument with the presentation
of a program that given a centre point, a direction, and a
radius will generate a circular path in the plane containing
the centre, that is normal to the given direction. We provide
quantitative data from a single run to illustrate how well the
geometric objectives can be achieved.

Categories and Subject Descriptors
C.2.4 [Distributed systems]: Distributed applications

General Terms
Algorithms, Design, Experimentation, Languages

Keywords
Amorphous computing; programming languages; self-organising;
spatial computing; swarm intelligence

1. INTRODUCTION
An amorphous computer consists of myriad nodes, which

are identically programmed, operate asynchronously and are
irregularly located within a distributed network. Each node
is able to communicate with its neighbour, store some local
state and do simple calculations[1]. Many tools have been
developed to engineer an amorphous computer [2, 3, 5]. One
such tool is the Growing Point Language (GPL) [4]. Work

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

done with GPL has, so far, been in two-dimensions; we dis-
cuss in this paper one method for extending the language to
controlling behaviour in 3-space.

Central to GPL, is the growing point: a locus of compu-
tation that changes the local state of a processor and moves
from one node to the next in response to virtual stimuli in
the amorphous system. These virtual stimuli (pheromones)
are secreted by the same or other growing point(s). Com-
putationally, they are results of diffusions that produce ra-
dially symmetric, monotonically decreasing values around
the source. The growing point’s movement relative to a
pheromone’s level curve is defined by a tropism. The speci-
fied tropism can cause the growing point’s movement to be
orthogonal (ortho), tangential (dia) or oblique (plagio) to
the level curves of pheromones.

A growing point resides in one node at a given time, as
it moves from one node to another, its trajectory forms a
pattern. As such, GPL programs produce patterns made
up of one-dimensional paths. When translating GPL to 3-
D, the ortho tropism maintains its definition as it produces
one-dimensional structures regardless of what dimension the
system runs in. However, growing points using tropisms that
are tangential to a level curve (dia and plagio) propagate to
neighbours that are constrained to a dimension one less than
that in which the sytem runs, and lose the determinism they
had in 2-space.

As such, our problem is to regain control in drawing circu-
lar structures in 3-dimensions. We present a GPL program
that self-organises a circular path that is specified by its cen-
tre, c (provided as a node), its radius, r, and the plane in
which it lies, specified by a normal, n (provided as a node,
whose direction is interpreted relative to the point repre-
senting the centre).

2. IMPLEMENTATION
We derive two spheres whose centres are co-linear with

the intended centre of the circle Figure 1. Pheromones se-
creted from each centre, define a pair of spherically sym-
metric concentration gradients, whose plane of intersection
contains the desired circle we desire to construct. We then
measure the required radius from the given centre within
this plane to find a point on the circumference of the re-
quired circle. Finally, a growing point moves tangentially
to the pheromone levels of both spheres at the same time,
which causes it to outline the desired circle.

Growing points working to complete a task can be grouped
into networks. Networks take as inputs places where growing
points can be invoked, and produce the desired termination

109



Figure 1: We specify a circle of centre, c, radius,
r and be in the plane normal to n created by the
intersection of two spheres (p1 and p2)

locations that need to be used outside of the network. To
construct a curve in 3D we cascaded two networks. The first
to locate the two centres of the spheres and the second to
draw the circumference.

2.1 Locating the two centres of spheres

Figure 2: User provides centre, c, and normal, n.
Candidates are produced and one is chosen if it
passes through c and near n

The first network, accepts, c and n. We then construct
two points co-linear with c and n, located a user defined d
hops on either side of them Figure 1). To do this, we produce
a ray from the c through n, and for the opposite direction
from n through c. Figure 2 shows this for one side.

Rays are produced by self-repelling growing points, which
meander rather than produce straight lines (blue lines in
Figure 2). To ensure that a candidate, at the end of a ray, is
in the correct direction, we start a growing point that moves
from the candidate to the centre in a straight line, (red lines
in Figure 2). If the growing point intersects the normal or
any nodes in its territory on its way back to the centre point,
we know the candidate is in the correct otherwise a search
for a new candidate is done (try 1 and 2 in Figure 2). Once
two co-linear points are found, they are passed as inputs to
the second network for drawing the circumference.

2.2 Drawing the circumference
The two centres, each secrete for at least, (r+d) hops, so

their intersection will be large enough to accommodate a
circle of radius, r. To draw the circle, we first locate a point
on the circumference. From the center, a growing point,
which propagates ortho- to both sphere pheromones for r
hops is produced. This yields a point, s, on the circum-
ference. The desired circumference is defined by the set of
nodes whose pheromone concentrations are the same as the
starting point, s. The growing point responsible for drawing
the circle is diatropic to both sphere pheromones.

3. RESULTS
A node has a diameter of 1 unit.The simulation run has

approximately 45,000 nodes in a volume of 100x100x100
units. The radius of communication used was 6 units.

Figure 3: The graph shows the angle that a point
(of index i) makes with the first generated point

The angles that each point created with s are shown in
the graph above. We see a steady increase and then decrease
during the trace. Table 1 shows some statistics of the run.
In particular the points are approximately equi-distant from
the centre (standard deviation of 0.5) therefore indicating a
circular shape.

Table 1: Analysis data for run
Best fit Normal (nb) (1.6, -0.4, -1)
Given Normal (nu) (65.8, 51.4, 50.2)
p1 − p2 = nv (-29.53, 5.22, 11.47)
nb · nu 0.195861958
nb · nv -0.982245164
Standard deviation of radii 0.5

4. CONCLUSIONS
Using this method, a user can draw one-dimensional struc-

tures using dia or plagio by combining the geometrical prop-
erties of secretions, in a way that restricts the space.

5. REFERENCES
[1] Harold Abelson et al. Amorphous computing.

Communications of the ACM, 43(5):74–82, 2000.

[2] Jonathan Bachrach and Jacob Beal. Programming a
sensor network as an amorphous medium.
MIT-CSAIL-TR-2006-069, 2006.

[3] Arnab Bhattacharyya. Morphogenesis as an amorphous
computation. In Proceedings of the 3rd Conference on
Computing Frontiers, pages 53–64. ACM, 2006.

[4] Daniel N Coore. Botanical computing: a developmental
approach to generating interconnect topologies on an
amorphous computer. PhD thesis, Massachusetts
Institute of Technology, 1999.

[5] Radhika Nagpal. Programmable self-assembly using
biologically-inspired multiagent control. In Proceedings
of the first international joint conference on
Autonomous agents and multiagent systems: part 1,
pages 418–425. ACM, 2002.

110




