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ABSTRACT
This paper makes the assertion that vehicle routing rearch has pro-
duced increasingly more powerful problem solvers, but has not in-
creased the realism or compexity of typical problem instances. This
paper argues that the time has come of use realistic street network
data to increase the relevence and challenge of our work. A partic-
ular benefit of real world street data is the ability to support vehicle
emissions modeling. Thus allowing emissions to be used as an
optimisation criterion. Two on-line demonstrations are presented
which demonstrate the use of GIS data obtained from Open Street
Map and Google Maps. The demonstrations prove the concept that
Evolutionary Algorithms may be used to solve problem instances
that are based upon GIS derrived data.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic methods, Scheduling

General Terms
Algorithms

Keywords
Optimisation, Vehicle Routing, Low CO2 Routing, Real-World
Problems

1. INTRODUCTION AND MOTIVATION
Vehicle routing problems have traditionally been presented as

problems that require routing within a simplistic 2D space. The
range of such problems includes the simplistic Travelling Sales-
man Problem [3, 9] through to multi-objective logistics based prob-
lems such as the Vehicle Routing Problem with Time Windows
(VRPTW) [20, 20]. Despite the development of complex single
and multi-objective optimisation techniques, it may be argued that
the problem instances themselves have not developed at a similar
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pace. Vehicle routing in the real world requires navigation of a
complex road network, with multiple routes between most points,
delays due to traffic and environmental conditions and factors such
as gradients which can affect the speed of differing vehicles. There
also exists a need to consider environmental objectives when op-
timising routing problems, such objectives may include fuel con-
sumption or emissions.

This paper presents a case for creating more realistic problem
instances based upon readily available geographical data provided
through Graphical Information Systems (GIS).

2. PREVIOUS WORK

2.1 Vehicle Routing Problems
The solving and optimisation of problems associated with Vehi-

cle Routing and Planning has a long history within ECO research.
Within the area of Vehicle Routing, a number of related problem
types exist. The simplest problem is the Travelling Salesman Prob-
lem [4, 6, 5, 17] (TSP) which seeks the shortest tour through a
number of points. The Vehicle Routing Problem (VRP) [7, 23, 27]
requires the construction of a set of tours all commencing from
the same point (often referred to as the depot). A number of vari-
ants of the VRP exist, an overview of which can be found in [28].
For example, the Capacitated Vehicle Routing Problem(CVRP) ac-
counts for limited carrying capacity, whereas the need to deliver
within in a particular time-window is addressed in the VRPTW,
e.g. [26]. Many VRP variants assume a homogeneous fleet of ve-
hicles, but more recent research accounts for heterogeneous fleets,
e.g the Fleet Size and Mix Vehicle Routing Problem [19, 24].

Research to date has mostly concentrated on the use of instances,
such as those described in [26] that are based upon a set of points in
2D space (to represent customers, cities, depots etc) with distances
taken as being the Euclidean distance between two points.

Environmental issues within organisations and legislative changes
are forcing companies to consider the environmental impact of their
activities. Typically, both academic studies and commercial soft-
ware vendors focus on minimising economic costs (in terms of
distance travelled and vehicles utilised), although this has an im-
plicit environmental benefit in reducing total fuel consumption and
thereby emissions. The Time-Dependent Vehicle Routing prob-
lem (TDVR) such as proposed by [18] and later used in [14] also
implicitly leads to reductions in emissions by preferring solutions
which direct vehicles away from congested areas in order to reduce
the time taken for a journey. Although this may lead to increased
journey distances, for examples by directing traffic from congested
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urban areas to less congested motorways, the overall effect is to
minimise fuel consumption as a result of decreased journey times.

3. VEHICLE EMISSIONS MODELS
Within the context of vehicle routing and planning, it is becom-

ming desireable to be able predict the likely enviromental impact
of the solution being proposed. Not only does this inform the or-
ganisation of the environmental cost of the propsed solution, but it
should facilitate the use of environmental impact as an optimisation
criterion.

In order to estimate emissions meaningfully it is necessary to un-
derstand the detail of the journey being undertaken. Within tradi-
tional vehicle routing problem instances where Euclidean distances
are utilised only the distance between points is known, time may
be estimated by multiplying the distance by a factor. In order es-
timate emissions meaningfuly it is necessary to know more about
each journey. Typical information required could include dividing
the journey into separate sections (e.g. individual roads/streets) and
being aware of the individual lengths and average speeds associated
with each section. One often overlooked aspect is that of gradient,
as the rulling gradient of a road will influence the emissions.

A simplistic approach to modelling CO2 emissions converts dis-
tance travelled to tonnes of CO2 using a multiplier which assumes a
fixed average value of litres of fuel consumed per km and fuel con-
version factor appropriate to the vehicle in use, as shown below:

totalCO2 = disttravelled∗fuelused∗fuelconversionfactor

This makes it straightforward to convert distance travelled into
emissions for use within an optimisation problem. For example,
Harris [13] utilise the above objective measure as one of the objec-
tives in a facility-location problem, where the goal is to minimise
the cost of operating a distribution network.

According to [29], emissions are dependent not only on distance
but on a number of factors, which can be categorised into four
classes:

• travel related (e.g. speed, acceleration, vehicle loading)

• driver behaviour

• physical road characteristics (e.g. class of road)

• vehicle characteristics

Of these factors, they note that speed plays a major role in influ-
encing emissions, and therefore that simply minimising distance is
not equivalent to minimising emissions. A number of models exist
that relate speed to total emissions, generally falling into two broad
categories: those which assume an average speed over each link of
a journey (e.g. [2, 1]) and those which apply a driving cycle to each
link in order to estimate emissions on a second by second basis [8].
The latter category (known as instantaneous models) provide a pre-
cise description of emissions behaviour but tend to be complex and
require precise measurements of vehicle operation and location in
order to be accurate, information which is expensive to collect and
tends to restrict their use to an academic modelling community [8].

The ability to specify a vehicle type is advantageous, especially
if the problem being examined has a heterogeneous fleet, the abil-
ity to specify the journey as a series of stages, each with a differing
average speed, potentially allows for greater accuracy and takes
advantages of GIS systems than can supply specific driving de-
tails. To be used effectively models such as COPERT [10] require
journey and vehicle data, it also may have to be used iteratively

Category Speed (kph)
default 30

secondary 30
residential 30

primary 32
tertiary 32

trunk 32
motorway-link 72.4

motorway 72.4

Table 1: Average speeds allocated to OSM link classes. For
any link class not in the list, the default value (30kph) is used.
Values are obtained from Scottish Government figures

throughout a journey potentially increasing CPU time in applica-
tions such as an EA fitness function that require many executions
of the model.

In the case of the problem instances discussed, the authors utilise
the National Atmospheric Emissions Inventory(NAEI) [12] to cal-
culate emissions as follows:

EF (gCO2/km) = (a+ bv + cv2 + dve + f.ln(v)

+gv3 + h/v + i/v2 + j/v3).x

In this case v is the average speed for a given link parameters and
a to x are coefficients that relate to a specific type of vehicle. NAEI
supplies parameters for a to x for 58 different vehicle classes. A
vehicle class is a combination of type (Car, Truck, Bus , Motorbike
etc), fuel type, engine type and size. NAEI supply their model as a
spreadsheet, in this case the model was implemented in Java. Mod-
els contained within the NAEI registry are used extensively within
the UK to support carbon footprint calculators. The simplicity of
the NAEI model should increase its suitability in situations where
frequent calculations are required.

4. CREATING MORE REALISTIC PROB-
LEM INSTANCES

4.1 Graphical Information Systems
Recent years has seen the increasing availability of on line Graph-

ical Information Systems. The three most commonly used being
Google Maps, Microsoft Bing Maps and the Open Streetmap Project
[22]. All of these systems allow the user access to street network
data. With access to the street network data, additional information
about journeys may be obtained, such as individual roads traversed
and average speeds and distance for each journey segment. Typical
road classes and speeds may be seen in table 1. A realistic time
may also be supplied by the GIS for a journey.

An important property of real-world street networks is the avail-
ability of many multiple routes between points. Routing algorithms
such as A* or Highway Hierarchies may be used to find the optimal
route between points, and each journey may have criterion such as
time, distance and predicted emissions. When multiple routes exist
some routes may have differing criterion. For example there may be
two routes between points A and B, the first route taking less time,
but incurring higher emissions, the other taking longer but having
lower predicted emissions. Depending on the problem objectives
differing routes between the same points may be used. Real-world
road networks are also affected by traffic conjestion, which may re-
sult in increased time and emissions associated with certain routes
at specific times.
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4.2 Incorporating Real World GIS data within
an EA

Acces to GIS data may be via a web service (e.g.Google Maps
API or Bing API) or in some cases the data may be downloaded and
stored in a dedicated local store (Open Steet Map). The amount of
data required to represent a real-word road network as a graph is
considerable. In the case of the City of Edinburgh, UK 80,000
nodes are required to represent the street network as a graph. In
such cases the computational resource required to find routes be-
tween points on the graph is non-trivial. If the GIS is a web service
there is the communications overhead and processing time on the
server to consider, if the data is held locally there is still processing
and database access times to consider.

The addition of the Distance Matrix service to the Google Maps
API (Version 3) allows the calculation of many routes using only
one API call. This considerably speeds up the creation of an origin
destination matrix between locations being used within a problem
compared to having to make a separate request for each individual
distance.

As well as online GIS, Open Street Map (OSM [22]) supports
the downloading of road network data as XML files. This data may
then be stored localy in a database. A number of API tools are
available that allow the user to construct routes using such local
data stores. Because OSM is open source, there’s no restriction
on the caching of routes constructed, whereas online commercial
GIS systems often specifcly prohibit the caching of results or data
locally.

4.3 Evolutionary Algorithms
Within a population based approach such as an Evolutionary Al-

gorithm (EA) there many be frequent calls to the GIS from within
the evaluation function.

The experience of the authors suggests that using a population
based approach within an EA could result in so many calls to the
data source that the time and financial penalties incurred may po-
tentially outweigh the benefits of using an evolutionary problem
solver. The use of fitness approximation due to a high cost fitness
function has been dealt with previously in evolutionary and non-
evolutionary optimisation methods notably in [11] and [16]. Three
schemes for approximating fitness have been identified [15] which
provides an overview of research in this area. Problem approxima-
tion attempts to replace the problem being solved with a simpler,
yet equivalent problem. The simpler problem is solved and then the
solution translated to the original more complex problem. Such an
approach requires there to be an equivalent problem with a relation-
ship that allows such a transformation to take place. The second
approach identified is that of functional approximation, where an
alternative fitness function is constructed that allows a less complex
evaluation of the original problem. Thirdly evolutionary approxi-
mation may be used within evolutionary algorithms. This is based
on the concept of not evaluating the fitness of each child, instead
the fitness is estimated by basing it on the fitness of the parents [25].
Within the context of vehicle routing problems there are a number
of approaches to dealing with this:

• Make use of an approxamation function (e.g. Euclidean dis-
tance) for some of the evalutions.

• Cache the calculated routes within a local data store

• Store the GIS data locally to reduce communications over-
heads

The first option is explored in section 4.4. The second option
is useful, but the caching of data locally may be prohibited by

Distance Time Emissions
Urban 87.88% 82.25% 37.23%

Capitals 91.15% 83.85% 44.92%

Table 2: The % of journey pairs that are ranked in the same
order as when using Euclidean distance.

GIS providers. Storing the GIS data locally is practical if using
a provider such as OSM, but the amount of infrastructure required
to store data for a large geographical area (e.g. North America or
mainland Europe) makes this a non-trivial exercise.

4.4 Relating Euclidean distances to actual dis-
tances, times and emissions values

It is useful to examine the relationship between Euclidean dis-
tances and what we will term "real" distances, travel times and
emissions calculated using a GIS.

Whe using Evolutionary Algorithms it may be argued that the
relative distance between two journeys, rather than not the actual
distance between two but journeys is the main focus for decision
making when planning. For instance if the distance from a, b, c is
less than a, c, b a different planning decision may be required. It
has been argued that Euclidean distances could be used in place
of actual distances, on the basis that they would allow journeys to
be ranked in the correct distance order, even if the actual distance
values were incorrect.

To test the above theory a simple experiment was carried out us-
ing Google Maps. Two sets of journeys were created, the journeys
being grouped into unique pairs. For each pair of journeys the fol-
lowing values were calculated:

• The Euclidean distance between start and end

• The caluclated journey distance between the start and end
using the Google Maps API

• The caluclated journey time between the start and end using
the Google Maps API

• The estimated emissions between the start and end using the
Google Maps API and the NAEI [12] emissions model

Each journey pair can now be ranked in order to each of the
above values, our interest being the number of instances where the
Euclidean ranking order matches that of the other criterion. Two
sets of journeys were used, the first named Urban consisted of 462
pairs of journeys made within an urban area (the journeys being
between 1.3 and 7.5 km in length). The second dataset named Cap-
itals comprised 306 longer journey pairs that were made between
cities on the European continent (the journeys being between 399
and 3399.1 km in length).

The results of the experiment are shown in table 2. From the re-
sults we can note that in 90% of cases the journey rankings arrived
at by Euclidean Distance are the same are those using the actual dis-
tance. This drops to 82% when considering time and to less than
50% when considering emissions. This simple experiment suggests
that the solutions to a routing problem will change when the fitness
criterion is altered from Euclidean distance to actual distance, time
or emissions.

In [30] it was proposed to reduce the calls to the real distance
function within the GIS, is to commence the evolutionary process
using a Euclidean distance based fitness function and to switch to
real distances. In [30] a car pooling problem was investigated, this
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problem required the construction of routes for groups of employ-
ees taking part in car sharing. The problem was solved using an
evolutionary algorithm, which began by using Euclidean distances
and at a given point changed to a fitnes function that calculated
the actual routes through the street network and based its distance
values on that. As might be expected, the best quality solutions
are produced when using a higher number of real distance based
evaluations. The findings of [30] suggested that the more use was
made of actual distance calculations the more optimal the final re-
sult. Using Euclidean estimation has a negative effect on the final
result. The results in table 2 suggest that this approach [30] will be
ineffective when time and emissions are being taking into account.

5. DEMONSTRATION APPLICATIONS
Two demonstrations of the Vehicle Routing Problem with Time

Windows (VRPTW) with real-world data have been constructed
and may be viewed at http://vrptwemissions.appspot.com/ (exam-
ple 1) and http://www.soc.napier.ac.uk/ cs88/vrptw.html (example
2). Both of these applications solve instances of the VRPW prob-
lem based upon the road network of the City of Edinburgh. The
problem instances are solved using three criterion, distance, vehi-
cles and emissions using a Multi Objective GA (MOGA) base upon
that described in [21].

In example 1, (see figure 1) the underlying underlying GIS data
is sourced from Open Street Map [22], and is stored in a MYSQL
database. A Java implmentation of The A* algorithm is used to find
paths through the data. The application is hosted upon Google App
Engine, to speed up runtimes, distances, times and emissions val-
ues for journeys are cached, to minimise the number of calls to the
database and the A* algorithm. The EA is implemented in Java and
runs on Google App Engine, the client calls the EA service, passing
problem parameters to it, the EA then runs for a number of genera-
tions and returns the solution found. In this problem, the customers
to be visited are pre-set, cached values for distances, emissions and
times between customers are stored on the server. This approach
looses flexibility as customers have be enetered off-line and added
to the caches, but has the advantage that relatively large instances
(up to 100 customers) can be solved.

Example 2, uses the Google Maps API as its GIS provider, unlike
example 1 the customers may be entered at run-time. The Google
Maps Distance Matrix API, allows distances times and between
multiple points to be obtained using just one API call, this allows
the construction of origin-destination matrixes for distances, times
and emissions. Having constructed the matrixes the EA is then
executed locally (within the client browser). The Java based EA is
translated into JavaScript using Google Web Toolkit.

Example 2 has the obvious advantage of allowing the user to
enter customer details at runtime, but given restrictions on the fre-
quency of calls to the Distance Matrix API, it is not feasible (at
present) to work with problem instances of larger than 25 cus-
tomers. The approach of cross-compiling the EA to Javascript for
client-side execution simplifies the implementation, but does po-
tentially impose limits on the processing power available.

6. CONCLUSIONS
The availability of GIS data both online and downloadable via

OSM means that any researcher can now access realistic street net-
work data. The use of such data can add extra challenges to solving
the problem, such as the ability to specificy predicted emissions as
an optimisation criterion.

The use of such data should also increase the adoption of ve-
hicle routing techniques by industry. Increasing developments in

the speed of API response makes their incorporation within EAs
(and other nature inspired methods) more realistic. The two on-line
demonstrations prove the concept that accessing real-world GIS
data from within an EA is feasible and technically simple. Given
recent improvements the author would recommend the use of the
Google Maps API over Open Streetmap, given the amount that the
API will do (e.g. finding routes and allowing the visualisation of
results).

Given that individual routes used within a solution may be op-
timised towards different criterion e.g. minimise distance or min-
imise CO2. It may no longer be sufficient for a fitnes function to
simply request a route between x and y, but for the fitness function
to request a route between x and y using a specific routing criterion.
The criterion could either be specified within the representation or
else decided on by a heuristic within the evaluation function.
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