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ABSTRACT 
The effects of dynamic and partially connected 2-dimensional 
topologies on the particle swarm are studied. The particles are 
positioned on 2-dimensional grids of nodes, where they move 
according to a simple rule. The von Neumann neighborhood is 
used to decide which particles influence each individual. 
Structures with growing size are tested on a classical benchmark. 
The partially connected grids with von Neumann neighborhood 
structure perform more consistently than other strategies.    

Categories and Subject Descriptors  
H.4 [Information Systems Applications]: Miscellaneous 

General Terms 
Algorithms, Theory. 

Keywords: Particle Swarm, Population Structure. 

1. INTRODUCTION 
The Particle Swarm Optimization (PSO) algorithm [1] is a 
population-based meta-heuristic for binary and real-valued 
function optimization inspired by the social behavior of bird 
flocks and fish schools. The population consists of a group of 
solutions that travels through the search space according to a set 
of rules that favor their movement towards optimal regions of the 
space. The algorithm is described by a simple set of equations that 
define the velocity and position of each particle. The position 
vector of the i-th particle is given by Ԧܺ = ,,ଵݔ) ,,ଶݔ …  ,(ଵ,ݔ
where ܦ is the dimension of the search space. The velocity is 
given by ሬܸԦ = ,,ଵݒ) ,,ଶݒ …  ଵ,). The particles are evaluated with aݒ

fitness function ݂( Ԧܺ) in each time step and then their positions 
and velocities are updated by: ݒ,ௗ(ݐ) = ߱. ݐ),ௗݒ − 1) + ܿଵݎଵ൫,ௗ − ݐ),ௗݔ − 1)൯+ ܿଶݎଶ൫,ௗ − ݐ),ௗݔ − 1)൯ (1) ݔ,ௗ(ݐ) = ݐ),ௗݔ − 1) +  (2) (ݐ),ௗݒ

were  is the best solution found so far by particle ݅ and  is the 
best solution found so far by the neighborhood. Parameters ݎଵand ݎଶ are random numbers uniformly distributed in the range [0,1] 
and ܿଵand ܿଶ are acceleration coefficients that tune the relative 
influence of each term of the formula.  

PSO has been applied with success to a number of problems and 

motivated several lines of research that investigate its main 
working mechanisms. One of these research lines deals with the 
population topology, which is the structure that defines the 
connections between the particles. In their turn, these connections 
guide the flow of information through the swarm and therefore 
they deeply affect the convergence skills of the algorithm. In 
2002, Kennedy and Mendes [2] published an exhaustive study on 
population structures for PSO. They tested several types of 
structures, including the traditional lbest, gbest and von Neumann 
configuration. They also tested populations arranged in graphs 
that were randomly generated and optimized to meet some 
criteria. Amongst the large set of graphs tested in [2], the von 
Neumann configuration performed more consistently, and in the 
conclusions the authors recommend its use.  

This paper extends the concept of von Neumann configuration and 
investigates the behavior of a partially connected topologies with 
von Neumann neighborhood. The particles are distributed on a 
grid of nodes. The size of the grid is set so that the number of 
nodes is larger than the number of particles. The particles are 
placed randomly on the grid and a simple set of rules guide their 
movements through the nodes during the run. The population 
structure is defined by the von Neumann neighborhood between 
the nodes, which means that the degree of connectivity of each 
particle varies between 1 and 5 during the run. Preliminary tests 
are conducted with local neighborhood random structures, that is, 
the particles move randomly through the grid, choosing between 
free adjacent nodes. The PSO with partially connected 2-
dimensional structures is summarized in Table 1.  

Table 1. Dynamic PSO on a partially connected grid. 

1. For each particle 1 → ݊: 
1.1. Initialize particle ݅ 
1.2. Evaluate particle’s position ݔపሬሬሬԦ: ݂(ݔపሬሬሬԦ)  
1.3. Set (݅) = (݅) =   (పሬሬሬԦݔ)݂

2. Set grid size:  ܺ × ܻ 
3. Place the particles randomly on the grid 
4. For each particle 1 → ݊ 

4.1.  If  the  fitness of  the best position  found so  far   by any of 
the particles ݆ in the von Neumann neighborhood of particle ݅ is 
better than (݅), then (݅) =   
4.2. Choose  randomly  a  free node  in  the Moore neighborhood 
and move the particle to that node. 

5. For each particle 
5.1. Update velocity and position using equations 2 and 3.  
5.2. Evaluate particle’s position ݔపሬሬሬԦ: ݂(ݔపሬሬሬԦ)  
5.2. If ݂(ݔపሬሬሬԦ) < (݅) then ,((݅))݂ =  పሬሬሬԦݔ

5. If stop criterion not met, go to 4 
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Table 2. Best fitness averaged over 50 runs. 

 f1 f2 f3 f4 f5 

VN 
1.05e‐35  1.31e+01  6.99e+01  6.25e‐03 1.94e‐04

±1.06e‐35  ±2.16e+01  ±1.83e+01  ±8.23e‐03 ±1.37e‐03

VN 
(9×9) 

9.13e‐37  9.72e+00  6.89e+01  7.68e‐03 1.94e‐04

±2.10e‐36  ±1.88e+01  ±1.71e+01  ±9.56e‐03 ±1.37e‐03

lbest 
2.61e‐25  1.40e+01  1.07e+02  4.93e‐04 3.89e‐04

±4.33e‐25  ±3.53e+01  ±2.23e+01  ±1.99e‐03 ±1.92e‐03

gbest 
4.00e+03  4.91e+00  1.05e+02  5.42e+01 2.33e‐03

±6.06e+03  ±1.26e+01  ±2.89e+01  ±6.82e+01 ±4.19e‐03

2. RESULTS AND CONCLUSIONS 
Five benchmark functions were used for testing the algorithm: 
Sphere ( ଵ݂), Rosenbrock ( ଶ݂), Rastrigin ( ଷ݂), Griewank ( ସ݂) and 
Schaffer ( ହ݂). The optimum of all functions is located in the origin 
with fitness 0. The dimension of the search space is set to ܦ = 30 
(except Schaffer, with 2 dimensions). The population size ݊ is set 
to 40. The acceleration coefficients were set to 1.494 and the 
inertia weight is 0.729. ܺ݉ܽݔ is defined as usual by the domain’s 
upper limit and ܸ݉ܽݔ	 =  A total of 50 runs for each .ݔܽ݉ܺ	
experiment are conducted. Asymmetrical initialization is used. 

Two types of experiments were conducted. In the first one, the 
algorithms were run for a limited amount of iterations (3000 for ଵ݂ and ହ݂, 10000 for ଶ݂, ଷ݂ and ସ݂) and the fitness of the best 
solution found was averaged over the 50 runs. In the second set of 
experiments the algorithms were all run for 20000 iterations or 
until reaching a stop criterion. The criteria were taken from [2]. 
The number of iterations required to meet the criteria was 
recorded and averaged over the 50 runs. A success measure was 
defined as the number of runs in which an algorithm attains the 
fitness value established as the stop criterion. PSOs with lbest, 
gbest and standard von Neumann configurations were tested on 
the five benchmark problems. Partially connected structures with 
size 7 × 7, 8 × 8,	9 × 9 and	10 × 10 were also tested.  

 

Table 2 (averaged best fitness) and Table 3 (averaged number of 
iterations to meet the criterion and number of runs in which the 
criterion is met) compare the PSOs with lbest, gbest, standard von 
Neumann configuration and partially connected von Neumann 
structure with size 9 × 9.  

Table 3. Iterations to a solution averaged over 50 runs and 
number of successful runs. 

 f1 f2 f3 f4 f5 

Stand. 
VN 

489.86  1443.24  748.98  458.36  454.56 
±18.55 
(50) 

±1547.11 
(50) 

±1706.20 
(49) 

±29.10
(50) 

±659.27
(50) 

VN 
(9×9) 

474.96  1589.56  314.43  450.56  264.80 
±22.60 
(50) 

±2137.00 
(50) 

±81.37 
(49) 

±54.45
(50) 

±395.90
(49) 

lbest 
662.30  1800.69  2014.77  618.22  708.08 
±21.81 
(50) 

±1650.07 
(49) 

±2331.92 
(22) 

±31.87
(50) 

±849.52
(50) 

gbest 
489.86  891.42  211.13  315.08  395.05 
±18.55 
(50) 

±1066.82 
(50) 

±77.46 
(23) 

±56.67
(24) 

±795.04
(40) 

The von Neumann structure with size 9 × 9, improves the 
standard configuration fitness in functions ଵ݂, ଶ݂, ଷ݂. In ସ݂ the 
standard structure is better, while in ହ݂ the result is the same. As 
for the average iterations to a solution, the 9×9 structure is faster 
in every function except ଶ݂.  

Non-parametric Mann–Whitney U statistical tests (with 0.05 level 
of significance) comparing the fitness values attained by each 
configuration in each function return the following results: the 9 × 9 structure is significantly better than the standard 
configuration on function ଵ݂; in the remaining problems the two 
configurations are statistically equivalent. Applying the Mann–
Whitney U tests to the iterations metrics, the conclusions are that 
the 9 × 9 structure is statistically better on ଵ݂, ଷ݂, ସ݂ and ହ݂. The 
algorithms are statistically equivalent in ଶ݂. Therefore, the 
partially connected structure significantly improves the 
performance of the standard Von Neumann configuration in every 
function except ଶ݂ (in which the algorithms were found to be 
statistically equivalent in both fitness and convergence speed).The 
proposed topology is able to improve lbest fitness values in ଵ݂, ଶ݂, ଷ݂ and ହ݂; in ଵ݂ and ଷ݂ the differences are statistically significant. 
The differences in ସ݂ are also significant but in this case lbest is 
better. As for the average iterations for a solution, the partially 
structured von Neumann structure improves lbest in every 
function, with statistical differences between the results.  

The differences between the best fitness values attained by gbest 
and 9 × 9 structure are statistically different for every function. 
Von Neumann 9 × 9  is better in ଵ݂, ଷ݂, ସ݂ and ହ݂, while gbest is 
better in ଶ݂. Comparing the proposed structure with gbest is not 
trivial because gbest fails very often in meeting the stop criteria. It 
is faster in three functions ( ଶ݂, ଷ݂, ସ݂) but in ଷ݂ and ସ݂ the topology 
fails to meet the criteria in more 50% of the runs. Therefore, we 
may conclude that the von Neumann 9 × 9 performs more 
consistently than gbest throughout the test set. 

A general evaluation of the four topologies according to fitness, 
speed and success results in the following ranking: 9 × 9 von 
Neumann (1.7), standard von Neumann (2.1), lbest (3.0) and 
gbest (3.2). The proposed structure ranks first.  
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