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ABSTRACT
Historically, the quality of a solution in Genetic Programming (GP)
was often assessed based on its performance on a given training
sample. However, in Machine Learning, we are more interested in
achieving reliable estimates of the quality of the evolving individu-
als on unseen data. In this paper, we propose to simulate the effect
of unseen data during training without actually using any additional
data. We do this by employing a technique called bootstrapping
that repeatedly re-samples with replacement from the training data
and helps estimate sensitivity of the individual in question to small
variations across these re-sampled data sets. We minimise this sen-
sitivity, as measured by the Bootstrap Standard Error, together with
the training error, in an effort to evolve models that generalise better
to the unseen data.

We evaluate the proposed technique on four binary classifica-
tion problems and compare with a standard GP approach. The re-
sults show that for the problems undertaken, the proposed method
not only generalises significantly better than standard GP while the
training performance improves, but also demonstrates a strong side
effect of containing the tree sizes.

Categories and Subject Descriptors
1.2.2 [Artificial Intelligence]: Automatic Programming - Program
Modification

Keywords
Genetic Programming, Binary Classification, Generalisation

1. INTRODUCTION
In recent years several researchers [7, 15, 24] have expressed the
view that in the past, GP [23] research effort may have placed too
much importance on consistency at the expense of generalisation
ability. Here, consistency means getting predictably repeatable re-
sults that have low variance across different runs, whereas gener-
alisation means the ability of a system to reliably model a phe-
nomenon over unseen data, despite learning only from a training
sample.
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Despite the well established importance of generalisation in the
wider Machine Learning paradigm, the focus of a considerable
amount of GP research has been on achieving consistency in train-
ing results, possibly in the belief that a high level of consistency
would automatically translate to good generalisation. However,
over-emphasis on training performance may lead to over-training
and brittle solutions [24] which do not perform well on unseen data.

Kushchu [24], in a review of generalisation in GP, expressed the
opinion that until such time as GP researchers adopt the notion
of performance evaluation based on generalisation ability, genetic
based learners and GP in particular would be limited in their scope.

More recently, GP researchers have shown a strong interest in
improving the generalisation ability of evolved solutions [3, 5, 10,
28], and to this end many have adopted a strategy of training the
learner on a labelled randomly generated subset of data and then
evaluating its performance on a test set of unlabelled instances.

In this paper, we use a similar experimental model on four binary
classification tasks and propose to evolve solutions that are not only
good on training data but are also not very sensitive to small varia-
tions in the training data. First, we compute the classification error
rate of a solution on the given training set. Next, we ascertain the
statistical confidence in this error rate by using a technique called
bootstrapping, whereby we re-sample with replacement from the
training set multiple times and compute the error rate on each re-
sampled data set. The standard deviation of these re-sampled error
rates, also called the BootStrap Standard Error (BSE), indicates
how sensitive the solution in question is to small changes in the
training set. We hypothesise that the higher this sensitivity, the
lower is the likelihood of the corresponding solution generalising
to completely unseen (test) data. Therefore, in this paper, we min-
imise both the error rate on the original training set as well as the
sensitivity to the training data.

We find that, for the problems studied, applying bootstrapping
improves results on test data, and that in three out of four problems,
the performance on training data reliably indicates the performance
on the test data. The results with bootstrap also compare favourably
with those from several benchmark machine learning algorithms.

Another interesting benefit of the proposed approach is that it
produces smaller individuals than standard GP: the results demon-
strate a stronger negative size fitness correlation with bootstrapping
than that with standard GP. This is surprising because we do not
explicitly penalise individuals for growing in size. We hypothesise
that this side-effect is due to bootstrapping promoting small yet
accurate programs. To support this view we present the size distri-
butions of best of run individuals with bootstrapping and point out
a clear skew towards smaller sized individuals.

Section 2 introduces and describes bootstrapping methods and
related work, section 3 provides a very brief overview of the cur-
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rent state of the art in bloat research as it relates to generalisation,
in section 4 we provide details of our proposed method, section 5
outlines the various experiments undertaken, and in section 6 we
present and discuss the results and outline our conclusions and as-
pirations for future work on the topic.

2. BOOTSTRAPPING
In statistics, bootstrapping [9] or the bootstrap is a non parametric
technique which can provide a confidence interval for some statis-
tic. In general, its purpose is to assist with non-normal or unknown
distributions where the available sample can be used to indirectly
assess some properties of the population from which the sample is
taken.

Bootstrapping also estimates the sensitivity of a statistic of in-
terest (such as mean) to the given data. This measure of sensitiv-
ity is called the Bootstrap Standard Error (BSE). For example, to
estimate BSE of the mean of a data set of size m, we randomly re-
sample from the data set with replacement to create n samples, each
sample being of size m. Each of the n re-sampled data sets is called
a bootstrap replicate or a bootstrap sample. Then, for each boot-
strap replicate we compute its mean. The BSE, then, is the standard
deviation of the means obtained thus from these n bootstrap repli-
cates. Much like standard deviation depicts the variability in any
statistic of interest, the lower the BSE, the lower is the variabil-
ity in the mean of the original data set and hence the higher is the
confidence in that mean.

In machine learning bootstrap aggregating (bagging) proposed
by Leo Breiman in 1996 [4] is an ensemble method which may be
used to improve the performance of machine learning algorithms
on regression or statistical classification tasks. Given an initial
training set, bagging generates a number of bootstrap replicates
(also known as bags) by sampling from the initial set uniformly
with replacement. However, then, instead of generating a BSE
of some statistic of interest on these bags, typically, the Machine
learning algorithms produce multiple solutions each trained on a
different bag. These multiple solutions are then pooled: in the case
of regression averaging is used, whereas for classification some
committee voting mechanism is usually employed.

Inspired by the bootstrap, Oakley [26] generated bootstrap repli-
cates of GP programs, creating multiple populations from an initial
base population, and applied these to chaotic time series data. In
1999 Iba [20] developed BagGP which combined bagging with a
co-evolutionary GP approach. Although the performance improve-
ments reported on test data were modest, the results indicated that
the method delivered smaller, more robust solutions than those ob-
tained with standard GP when applied to a real world financial
problem.

Several GP researchers including [22, 30] successfully applied
bagging to a range of problems. In general, the bootstrapping com-
ponent of this work involved applying resampling techniques to
training instances to create ensembles from functions trained on
different bootstrap replicates. Results show that the method was
suitable for both small and very large datasets: it allows effective
use of limited training data as well as facilitating the use of very
large datasets by dividing them into manageable subsets. Simi-
lar work by Gonclaves et al. [17] demonstrated that random sam-
pling of training data could reduce over-fitting. Doucette and Hey-
wood [8] demonstrated that bagging could be used to handle im-
balanced data sets for classification tasks by eliminating the class
imbalance in the bootstrap sampling phase.

This study uses bootstrapping in a very different way. Rather
than working with ensembles, in this paper we propose to produce
reliable individual learners that generalise to unseen data. How-

ever, there is no reason that individuals thus evolved can not then be
combined in ensembles. We defer such work for future. Before we
discuss the proposed method in detail in section 4, we give a brief
account of how generalisation in GP is linked to the phenomenon
of code bloat.

3. GENERALISATION AND BLOAT
Program growth without (significant) return in terms of fitness [27]
is a widely accepted definition of the term bloat as used in the GP
community. The phenomenon of bloat is inconvenient for several
reasons, including computational expense, increased run times, de-
terioration in program comprehensibility and a likely dilution of
program semantics. Naturally, the topic has been an area of intense
and prolific research since the behaviour came to the notice of the
GP research community, see [25], [29] and [1] for reviews of cur-
rent bloat theories and methods of controlling or preventing it.

For some time, the accepted wisdom in the GP community was
that smaller programs may generalise better. This appeared con-
sistent with the general principle of Occam’s razor, and its formal-
isation in the minimum description length (MDL) principle pro-
posed by Grünwald [18] in 1997. However, in the last few years,
the link between bloat and over-fitting has become controversial.
Recent work by Vanneschi et al. [31] which set out to define the
concepts of bloat, over fitting and complexity, and to investigate
relationships that may exist between them, suggests that somewhat
contrary to popular belief, these phenomena may be independent to
some degree. Azad and Ryan [2] explained that a small GP tree is
not necessarily simple: for example, sin(x) is more complex than a
larger GP tree encoding x+ x+ x+ x. Related work [6] tentatively
suggested that functional complexity, or the lack thereof, may play
a more important role in generalisation than bloat does.

While this background suggests that the relationship between
controlling size growth and improving generalisation is not straight-
forward, they are both desirable for GP. This paper reports on a use
of bootstrapping with GP which, given the problems undertaken,
delivers on both these objectives.

Table 1: GP Parameters

Parameter Value

Strategy Steady State
Initialisation Ramped

half-and-half
Selection Tournament
Tournament Size 5
Crossover 90
Mutation 10
Initial Min Depth 1
Initial Max Depth 8
Max Depth 20
Function Set + - * /
ERC -5 to +5
Population 2000
Max Gen 200
Bootstrap Replicates 50

4. DETAILS OF PROPOSED TECHNIQUE
In this paper, we propose to use bootstrapping to estimate the sensi-
tivity of the evolved models to the training data set. We use this sen-
sitivity as a measure of predictive ability of the evolving solutions
on the unseen test data. The proposed approach is different from
previous approaches discussed in section 2 that formed ensembles
from the GP individuals trained over different bootstrap replicates
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derived out of a given training set. Thus, in those approaches dif-
ferent GP runs were treated to different subsets of the training set.
In contrast, in this paper, we use the entire training set for every in-
dividual in each run. However, after we score an individual on the
training set, we also score the individual under consideration on n
bootstrap replicates, each derived from the original training set by
random resampling with replacement. Note, that the size of each
bootstrap replicate is the same as that of the original training set;
hence, some data points may repeat in a bootstrap replicate while
others may not appear at all. The Bootstrap Standard Error (BSE)
then is the standard deviation of these n scores which gives an es-
timate of the confidence in the original score on the entire training
data set. The lower the BSE, the less sensitive is the evolved model
to slight variations in the training set; such a model is more likely
to generalise to unseen data.

We propose to minimise BSE along with the percentage error
rate on the training data for each individual in the population. To
achieve this we compute the fitness of an individual as a product of
the corresponding percentage error rate and BSE. The percentage
error rate is the percentage classification error of the individual on
the overall training set, whereas the BSE is the standard deviation
of percentage classification errors on n bootstrap replicates. For this
preliminary study we have chosen to use 50 bootstrap replicates to
get a reliable estimate of BSE [9].

5. EXPERIMENTS
GP and dataset parameters used for the experiments are detailed in
tables 1 and 2 respectively. We have used four well known datasets
obtained from the UCI Machine Learning database [12] and we
undertook two hundred runs for each configuration and used iden-
tical random seeds for each set of experiments. For each task, at
every generation, we record percentage error rate for both training
and test data for reporting and comparison purposes. In addition,
during each run, details of the performance of the best-so-far in-
dividual were captured. We used the Open Beagle Evolutionary
Framework [14] for this study.

Table 2: Data Sets [12]

Data Set Features Instances

Blood Transfusion (BT) 5 768
Bupa Liver Disorders (BUPA) 7 345
Habermans Survival (HS) 4 306
Wisconsin Brest Cancer (WBC) 10 699

5.1 Bootstrap Configurations
For this preliminary investigation, we have experimented with three
different bootstrap configurations in addition to a standard GP set-
up. Details of the fitness function for each are outlined in table 3.
For the standard GP configuration, the fitness measure used to drive
the evolutionary process was simply the percentage of misclassified
instances, called error rate from now on, whereas for the proposed
Bootstrap method the fitness of each individual was calculated by
multiplying the error rate by the bootstrap standard error (BSE) of
the bootstrap estimates for that individual. After noting the results
from standard GP and for GP with bootstrap (BS), we conducted
two additional experiments to further investigate the efficacy of in-
corporating standard error inside the fitness function. The first set-
up, termed BootRandom (BSR), generates a random value from the
entire range of BSE values observed with original bootstrap based
runs. Thus, we introduce a noise within the range of the previously

observed BSE, but apply it randomly, and investigate whether this
noise also has an effect similar to BSE.

Table 3: Fitness Configurations

Acronym Description Fitness Function

GP Standard GP Error %
BS BootStrap Error % * BSE
BSR BootRandom Error % * random value: range 0.01-0.061
BSRT BootTight Error % * random value: range 0.01-BSE

Next, in the final set-up called BootTight(BSRT), we generate
the BSE for each individual in the same way as for the BS config-
uration, but then we select a random value between 0.01 and the
generated BSE to use in the fitness function, instead of the BSE
itself, thus generating a tighter BSE value which will on average be
smaller than the actual BSE. Using these two methods we verify if
the original, true Bootstrap approach offers benefit over and above
just introducing carefully crafted noise.

It may be informative to also compare with methods such as an
ensemble based GP or multi-objective GP. However, in this prelim-
inary, proof-of-concept, investigation we restrict ourselves to the
methods described above.

6. RESULTS AND DISCUSSION
Figures 1 to 4 illustrate average percentage error rate on training
and test data for each of the problems studied. Looking at these
we can see that although overall on training data, standard GP per-
formed better than the various BS methods, on the all important test
data the BS method performs as least as well. Observing the graphs
for average training and test fitness side by side, we can see that in
the case of standard GP, the gap between training and test fitness
is larger than with the BS configuration, and this gap is tending
to widen as evolution progresses. This suggests that there is some
over-fitting occurring with the standard approach and a stronger
correlation in training and test set performances with BS methods.

In addition to the population average test scores, we also exam-
ined the test performance of the best-of-run trained individuals as
shown in table 4. Here, we see that the BS method consistently
outperformed GP on each of the four datasets. Tests for statistical
significance revealed that the results were significant in all cases
using a ninety-five percent confidence interval using a paired Stu-
dent t-test and a non-parametric paired Wilcoxon signed rank test.
Differences between the three different bootstrap methods were not
statistically significant. In all cases, the size of the programs gener-
ated with standard GP was larger than that of those generated with
other methods. Also, note that the best trained individual was on
average discovered earlier in the evolutionary process using one of
the bootstrap configurations.

Perhaps the most interesting (and unexpected) aspect of the re-
sults was a dramatic difference in average tree size, as illustrated
in Fig. 5. Even though the experiments were constructed with-
out any explicit growth constraining mechanism, the average tree
size obtained when various bootstrap configurations were used was
significantly smaller than that with standard GP. In particular, the
BSR and BSRT configurations generated very small trees. Without
losing accuracy, the generation of smaller program trees is a very
desirable outcome, offering substantial savings in run times and
significant improvements in comprehensibility, particularly when a
simple function set is used, as is the case here.

In many standard GP implementations, without explicit bloat
curtailment measures, it is often the case that when the system
stops learning before evolution ceases, the tree structures continue
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Figure 1: BT Average Training and Test Error Rates
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Figure 2: Bupa Average Training and Test Error Rates
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Figure 3: HS Average Training and Test Error Rates
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Figure 4: WBC Average Training and Test Error Rates
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Table 4: Best of Run Individuals: All values are averaged over 200 Best-of-run
trained Individuals for each task, for each configuration.
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BT
GP 941.82 14.38 23.21 19.50 173.18
BS 342.05 18.42 22.18 19.21 98.20
BSRT 136.32 18.63 22.00 19.31 73.47
BSR 132.46 19.72 22.02 19.31 65.46

BUPA
GP 917.42 9.97 37.63 27.33 176.76
BS 435.38 19.35 33.95 24.42 119.90
BSRT 49.56 25.60 33.86 25.00 101.94
BSR 99.83 24.91 35.49 26.75 129.84

HS
GP 1083.53 11.02 28.48 21.06 156.78
BS 462.91 17.47 25.16 20.39 115.42
BSRT 164.45 20.32 25.88 19.74 81.53
BSR 205.40 20.23 25.35 19.74 97.99

WBC
GP 699.18 0.49 5.28 2.65 103.9
BS 384.66 0.78 3.72 1.47 102.69
BSRT 269.95 2.14 4.03 2.06 83.86
BSR 237.46 2.14 4.26 2.06 120.73

to grow. Using bootstrap, we see that for the BS configuration,
learning tails off somewhere between generations 40 and 60 and
that this is matched by a corresponding dramatic slowdown in pro-
gram growth.

In the case of standard GP, the significant extra program growth
does not translate into better test accuracy. Without a detailed
knowledge of the reasons for the greatly curtailed program size
associated with the BS approach, we cannot be sure if there is a
causal relationship between program size and learning outcomes or
vice versa. A deeper understanding of the mechanisms involved is
necessary, but one possible explanation of the reduced tree size is
that the bootstrap standard error is likely to be small when an indi-
vidual has either very high or very low classification accuracy, as
it is consistently classifying or misclassifying. Note, that when the
classification threshold is 0, the individual with a very low accuracy
is quite good at separating the classes: simply inverting the polarity
of outputs makes it an excellent solution [11].

if it were to be the case that both highly fit and highly unfit in-
dividuals would tend to have smaller programs, this may have the
effect of disproportionately rewarding small programs at the ex-
pense of middle of the road performers that have larger programs,
so that larger programs may be eliminated from the population over
time.

This explanation is also possible for the very small trees pro-
duced by the BootTight configuration, as the noise value applied
instead of the BSE will tend to be smaller than the corresponding
BSE, and will thus lead to an even greater disparity in relative fit-
nesses.

Figure 7 illustrates the frequency distribution of program sizes
for the 200 best-of-run individuals on each of the four problems,
for the standard GP and the BS respectively. Here, we see that for
the standard GP configuration, the distributions have roughly "nor-
mal" shape, whereas for the BS configuration, the general trend is
skewed towards the left, with a higher frequency of programs in the
lower range, with the exception of the WBC data. Therefore, not
only the BS programs are smaller than GP programs on average but
also a greater proportion of BS programs are clustered around the

lower end of the distribution, showing a strong bias of BS towards
small solutions.

If the suggested explanation for the smaller trees produced with
bootstrap were accurate, we would expect to see a reduction in di-
versity over time as programs with average fitness are squeezed out
of the population. Accordingly we captured various information
on population diversity during evolution. We recorded measures
of genotypic , phenotypic and functional diversity, roughly corre-
sponding to the notions of structural, behavioural and fitness di-
versity outlined by Jackson in [21].

In measuring genotypic diversity, we compared the individual
tree structures and recorded the number of unique trees in each
generation. For phenotypic diversity, as each individual was eval-
uated on training instances, program output for each instance was
concatenated in a string. At the end of each generation, the in-
dividual strings were compared for uniqueness and the number of
unique strings was recorded. The measure of functional diversity
captured is simply the number of unique fitness values in each gen-
eration. While each measure taken in isolation provides a coarse
and not very insightful indication of population diversity, taken to-
gether they provide a useful guideline.

For both genotypic and functional diversity, similar values were
achieved across the various configurations for all of the problems
undertaken: genotypic diversity of between 90 and 100% was main-
tained throughout evolution, whereas values between 40 and 60%
were typical for functional diversity. There was a greater variety
in phenotypic diversity when the different configurations were em-
ployed. The percentage of unique phenotypes in the population
during evolution is captured in Fig. 6.

It is usually recommended that a high level of diversity is main-
tained in the population, or at least, that potentially catastrophic
losses in diversity are avoided [27]. For our experiments, stan-
dard GP maintained a high level of phenotypic diversity through-
out, whereas the diversity of the BS populations fell off steadily but
to differing degrees depending on the problem undertaken. How-
ever, this loss in diversity is clearly not a disadvantage for the BS
method as it seems that this method quickly converges to solutions
that generalise better.

Table 5: Average training, test error correlated with
average tree size, GP and BootStrap configurations.

Data GPTrain BSTrain GPTest BSTest

BT -0.75 -0.83 -0.51 -0.74
BUPA -0.94 -0.99 -0.56 -0.83
HS -0.84 -0.84 -0.28 -0.74
WBC -0.53 -0.75 -0.42 -0.68

6.1 Size Fitness Correlation
Looking at the plots for program growth and fitness in figures 1
to 5 we see that both of these level off at approximately the same
point in evolution with the BS set-up. Accordingly, we carried out
some statistical tests with the GP and BS run data to investigate
if there was a difference in correlation between program growth
and fitness. We measured Pearson’s product moment correlation
between the average fitness (train and test) and average tree size at
each generation across all 200 runs. The results shown in Table 5
indicate that for training fitness, in three out of four cases there was
a stronger correlation when the BS method was used, and for two
of these it was appreciably stronger. The correlation for test fitness
was much stronger for all of the datasets.

As program growth is seen to taper off at approximately the same
time as accuracy on test data when using BS, there may be a possi-
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Figure 5: Average Tree Size in Nodes
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bility that a consistent reduction in the rate of growth could be used
as an effective early stopping measure, leading to significant time
savings, potentially reducing over-fitting, and mitigating the need
to guess an appropriate terminating generation.

In the context of our earlier stated goal in Section 3 of devel-
oping classifiers whose training performance could provide a more
accurate indication of behaviour on unseen data: it seems that (for
the problems undertaken), training scores achieved using the BS
method provide a better indication of the generalisation ability of
the programs, as the difference between these outcomes is smaller
than when standard GP is used. For the latter experiments, there
is clear over-training on both the BUPA and HS datasets, each
of which produce test scores significantly worse than the average
training scores, whereas for the BS experiments the average best
test scores are at least as good as the average training scores for all
of the datasets except BUPA.

If we accept the earlier definition of bloat in [27] as program
growth without (significant) return in terms of fitness, we would
argue the harmonious tapering off of growth and fitness, strong
negative size/fitness correlation and dramatically smaller trees, is
evidence that the BS method produces less bloated solutions than
standard GP, without any compromise on test accuracy, and that
these solutions may also be less likely to over-fit to the same de-
gree.

6.2 Comparison with other Methods
In this section we detail results obtained using a variety of machine
learning algorithms to classify the four datasets with the Weka Ma-
chine learning tool [19]. The algorithms that we have tested are
detailed in Table 6.

Table 6: Machine Learning Algorithms

Method Acronym Description

J48 J48 Implementation of C4.5 decision tree algorithm
Random Forest RF Ensemble decision tree classifier
libSVM SV Support vector machine
Multi Layer Perceptron ML Feed-forward ANN
Naive Bayes NB Probabilistic classifier using Bayes’ theorem
Logistic LG Multinomial Logistic Regression
AdaBoostM1 AB AdaBoost with base classifier REPTree
Bagging BG Bagging with base classifier fast REPTree

The performance of these algorithms on test data, is compared
with that of the BS and GP test scores of best-of-run individuals
averaged over two hundred runs. For compatibility the results are
displayed as % Classification Accuracy, that is, 100 - classification
error%. Where different results may be achieved for independent
runs of the Weka algorithms, we averaged results over 200 runs.

The comparative results can be seen in Table 7 and demonstrate
that results obtained using BS are very competitive on all of the
problems. To gain a clearer insight as to which method performed
best overall we carried out the non parametric Friedman test [13]
which is regarded as a suitable test for the empirical comparison of
the performance of different algorithms [16]. Results indicated that
the best performing algorithm in terms of test accuracy was Bag-
ging closely followed by LG and BS. The relatively good results of
the bagging approaches are likely to have been strongly influenced
by the underlying base classifier, which was the Weka REPTree al-
gorithm. This was the best performing of the available tree based
methods when combined with either the AdaBoostM1 or bagging
algorithms.

Table 7: Performance comparison of BS and GP with
Machine Learning algorithms in Table 6

Method BT Bupa HS WBC

BS 77.82 66.05 74.84 96.28
GP 76.79 62.96 71.52 94.72
J48 75.70 63.95 74.36 95.15
RF 73.89 65.33 65.40 96.40
SVM 74.09 64.01 71.50 96.86
MLP 77.66 64.19 74.26 95.81
NB 71.50 59.30 77.89 91.02
AB 57.41 66.48 72.68 95.54
BG 78.46 67.86 76.23 96.15
LG 77.29 66.88 77.41 96.03

6.3 Conclusions and Future Work
In this paper we use Bootstrap standard error as a measure of sensi-
tivity of evolving classifiers to the training data. We minimise both
the standard error and training classification error and find that this
approach improves generalisation to unseen data. Rather surpris-
ingly, with this approach we get trees that are much smaller in size
than those with standard GP. We find that when using bootstrap,
there is a strong negative correlation between fitness and sizes of
the individual. This surprising discovery shows that using boot-
strap can consistently produce small and reliable programs which
is a desirable quality in any machine learning algorithm.

The current work is a preliminary investigation dealing solely
with Binary Classification problems and comparison with a basic
GP configuration. As such it is not possible to draw general con-
clusions regarding the success of the technique in terms of general-
ization and bloat in GP beyond this scope. In the future we would
like to evaluate the BS approach on some new and more difficult
problems: of particular interest would be tasks which can readily
be shown to over-fit using a standard approach.
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Figure 6: Phenotypic Diversity
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Further experiments and analysis are required in order to gain a
deeper understanding on the reasons for the observed constrained
program growth and to learn more about the structure and evolution
of the evolved programs. Finally, we propose to investigate the pos-
sibility of using the deceleration of program growth associated with
our application of bootstrapping as an early stopping mechanism.
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Figure 7: Size Frequency Distribution of Best of Run Individuals GP and BS Configurations
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