
An Extension of Hill-climbing with Learning Applied to a
Symbolic Regression of Boolean Functions

Vladimír Kvasnička
Institute of Applied Informatics

Faculty of Informatics and
Information Technologies

Slovak University of Technology
Bratislava, Slovakia

kvasnicka@fiit.stuba.sk

Ladislav Clementis
Institute of Applied Informatics

Faculty of Informatics and
Information Technologies

Slovak University of Technology
Bratislava, Slovakia

clementis@fiit.stuba.sk

Jiří Pospíchal
Institute of Applied Informatics

Faculty of Informatics and
Information Technologies

Slovak University of Technology
Bratislava, Slovakia

pospichal@fiit.stuba.sk

ABSTRACT
In this paper we discuss an application of simple stochastic
optimization algorithm called the hill climbing with learning
(HCwL) for a study of symbolic regression. A fundamental role
in this approach plays the so-called probability
vector  1 2 nw w ,w ,...,w , where an entry 0 1iw  specifies a

probability that an i-th component of solution (e. g. a bit in binary
representation) has a binary 1 value. An integral part of HCwL is
a mutation process, where from a current solution oldx is created

a new solution newx by a stochastic mutation process. The used

probability vector w (considered here as a special type of
collective memory) serves as an auxiliary device for a
construction of new mutated solution newx ; in particular, it

predicts promising directions during its creation that are specified
by the previous history of adaptation process.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods

General Terms
Algorithms

Keywords
Symbolic regression, Boolean functions, Hill-climbing with
learning

1. INTRODUCTION
The aim of this paper is to discuss an extension of simple
stochastic optimization, which is called the hill-climbing with
learning (HCwL) to more complex optimization tasks than an
optimization of standard binary objective functions. We outline

basic principles of the hill climbing with learning, initially
introduced by S. Baluja [1, 2, 3] and then developed in great
details by the present authors and Martin Pelikan [8]. Moreover,
Martin Pelikan [8] has extended HCwL to include pair
correlations of entries of binary vectors. In this paper we will
study an extension of optimization of binary function to a case of
symbolic regression of Boolean functions. Illustrative examples
will demonstrate that a concept of HCwL realized by a learning
of probability vector represents a very serious acceleration
element of simple hill climbing algorithm applied to nontrivial
optimization problems.

2. HILL CLIMBING WITH LEARNING
2.1 An Optimization Of Binary Function By
Simple Hill-climbing Method
Let f be a binary function (mapping)

 : 0,1
n

f R (1)

which assigns to each n-bit vector  1 2 nx x ,x ,...,x a real

number yR, formally y=f(x). Our task is to look for a vector

 0 1 n

opt ,x that corresponds to a global minimum of f over the

domain  0 1
n

, .

 
 

0 1
nopt

,
arg min f




x
x x (2)

 The most simple stochastic optimization method for
solving this task is the so called hill-climbing method [7], which
was extended by Baluja [1, 2, 3] and present authors by an
introduction of the adapted (learned) probability vector, such
extended method is called “hill-climbing with learning” (HCwL).
A prototype of these stochastic optimization methods is the so-
called hill climbing method (algorithmically very simple but
usually not very effective). For our further purposes we outline
this method in a modified form, where a simple adaptation
process for the construction of neighborhood is already
introduced and this adaptation process is controlled by a
probability vector  1 2 nw w ,w ,...,w .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright © 2013 ACM 978-1-4503-1964-5/13/07...$15.00.

1129

Figure 1. Schematic outline of the simplest stochastic
optimization method called “hill-climbing”. For simplicity the
method is applied to a unimodal objective function with a
minimum equal to its global minimum. In the first step, for a
randomly generated solution x1 there is created a
neighborhood U1 specified by (5), and then we determine its
local minimum x2 specified by (6). This new temporary
solution is used in the forthcoming step as a “center” of
neighborhood. Using local minimum as a “center” is
perpetually repeated and the process is finished when in a
current neighborhood a better solution than its “center” does
not exist.

 First, we introduce the so-called mutation of an n-bit

vector  0 1
n

,x onto another vector  0 1
n

,x with entries

randomly determined as follows

 
 

1 i

i

i

mutx if random P
x

x otherwise





 
  (3)

(for i=1,2,...,n) where Pmut is a probability of flipping a single bit
entry and random is a random number with uniform distribution
from the semiopen interval [0,1). In other words, the mutation of
x into x' is a sequential operation which changes stochastically
(specified by the probability Pmut) single bit entries. Formally,
mutation may be considered as a function Omut

 mut mutO ;P x x (4)

where the probability Pmut, on the right hand side, is a parameter
of this function. A neighborhood U(x;Pmut) (specified by the
probability Pmut) of a vector x is composed of n-bit vectors that
are created by mutations of x

    mut mut mutU ;P O ;P  x x x x (5)

A size – cardinality of the neighborhood is a very important
parameter of the hill-climbing optimization, the neighborhood is
usually composed of a few hundred elements. Within this
neighborhood we look for a locally optimal solution xloc,opt ,
which is used in the forthcoming step as a center of a new
neighborhood  loc.opt mutU ; Px ; in such a way we get a sequence of

locally optimal solutions

       0 1 2
.n

loc opt loc opt loc optx x x x    (6a)

where

   
  ,

1
.

;

arg min
i

utloc opt

i
loc opt

x U x P

x f x



 (6b)

This iterative local optimization is finished when a few last
solutions offer the same functional values (see Fig. 1). As was

initially demonstrated by Baluja [1, 2], this extreme simple
stochastic optimization algorithm offers in many cases results that
are fully competitive with GA results.

2.2 Hill-Climbing With Learning
An interesting possibility how to introduce learning features to
simple hill climbing algorithm has been considered by Baluja [1,
2, 3] and latterly by Kvasnička, Pelikan, and Pospíchal [7]. They
introduced two concepts that effectively modify the hill climbing
so that it achieves a close resemblance to genetic algorithms:

(1) A probability vector    1 2
0 1

n

n
w ,w ,...,w , w , its entries

0 1iw  determine probabilities of appearance of '1' entries in

given i-th positions. For instance, if wi=0(1), then xi=0(1), for
0<wi<1 the corresponding xi is determined stochastically by

 
 
 

 

1

0

i

mut

i

i

random w
mutation random P

x otherwice

x otherwice

       



 (7)

It means that in this generalized mutation a single entry xi of the
binary vector x is randomly selected by a probability Pmut ; when
this entry is selected, then it’s binary value is set to 1 with a
probability wi. This means that entries of the probability vector w
control a “mutation” process whether the corresponding bits will
be set to one or not. It means that the used “mutation” process
directs the created “mutated” vectors in a direction, which looks
very promising according to the previous history of adaptation
process. Let this random generation of n-bit vectors with respect
to the probability vector w be formally expressed by a function R

 mutR ; ,P x x w (8)

A neighborhood U(x;w,Pmut) is composed of randomly generated
n-bit vectors with respect to a probability vector w is determined
by

    mut mutU ; ,P R ; ,P x w x x w (9)

We shall postulate that its cardinality is always kept fixed,
|U(x;w,Pmut)|=N. When the entries of the probability vector w are
slightly above zero or below one, then a "diameter" of
U(x;w,Pmut) is very small, all its elements are closely related to an
n-bit vector x unambiguously determined by the probability
vector w and the probability Pmut. In the case of simple hill
climbing method this corresponds to a situation when the
mutation probabilities wi are very small. On the other hand, if
probabilities wi are near to 1/2, then n-bit vectors constructed by
(7-8) span relatively large domain with a center (n-bit vector)
roughly deterministically constructed so that xi=0 (if wi<0.5) and
xi=1 (if wi>0.5).

(2) The learning of probability vector w is introduced with
respect to a best solution found in the neighborhood U(x;w,Pmut).

 
 

mut
opt

U ; ,P
arg min f




x x w
x x (10)

 The probability vector w is modified-updated (learned) by the so-
called Hebbian rule (well-known learning rule widely used in
artificial neural networks)

 opt   w w x w (11)

1130

where  is the learning coefficient (a small positive number) The
learning rule (11) has a very simple geometric interpretation, the
right-hand side of (11) is nothing but a convex combination of
two vectors w and x. This means that a resulting vector of the
convex combination should lie on the straight-line connecting
"points" w and x (see Fig. 2) close to the point w ( is a small
positive number, 0<<<1). In other words, it means that learning
rule (11) shifts the probability vector w towards local best

solution optx .

xopt

ww‘

Figure 2. Geometric interpretation of the learning rule (11),
the updated probability vector w' lies inside the region on
straight-line determined by "points" x and w.

0 200 400 600 800 1000

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

epoch x 10

p
ro

b
a

ili
tie

s
w

i

B C

-10 -5 5

-0.5

0.5

1.0

-1.0

10

x =0.61288opt

f(x)=-0.966565optA

epoch x 10
0 200 400 600 800 1000

-1,00

-0,95

-0,90

-0,85

-0,80

-0,75

-0,70

-0,65

-0,60

-0,55

f o p
t

HC

HCwL

Figure 3. (A) Diagram of multimodal test function f (x) is
composed of 56 local minima; the global minimum is marked
on the diagram. (B) The progress of the components wi of
probability vector w, which is initialized by 0.5 values for all
components. During the evolution individual components are
asymptotically approaching the binary value 0 or 1. We see
that after about 300 epochs components of the vector w are
always determined by a given component in the correct
solution. This fact may be interpreted as a collective memory
for the evolution of the population replicator, which manages
the reproductive process of mutation on the basis of previous
history of the adaptation process. Diagram C displays a plot
composed of locally optimal solution xopt . After roughly 250
epochs, these locally optimal solutions are equal to the
globally optimal functional value f (xopt) = 0.96657. Of course
it might be expected that this evolution without learning (see
line HC) usually does not converge to the correct global
minimum, but to a local minimum with a higher value.

A few notes about the parallelization of the present method
follow. The parallelization is simply achieved by using a pool of
probability vectors instead of one probability vector. For all
probability vectors independent neighborhoods U(x;w,Pmut) are
randomly generated. Finally, all probability vectors are updated
by (11) with respect to the local optimal solutions assigned to all
probability vectors. In order to introduce an interaction between
parallel running procedures, it is possible to use an analogue of
crossover operator applied for a couple of randomly selected
probability vectors. This introduces an exchange of information
between subproblems so that at the end of the whole procedure all
probability vectors are almost identical. Why the parallel version
of HCwL would outperform its single nonparallel version?
Independent methods may converge to different regions of the
search space, this means that an introduction of
"intercommunication" between probability vectors ensures
increase of search diversity across the whole search space S.
There exists a similar situation for genetic algorithms, where
parallel versions usually outperform nonparallel genetic
algorithms.

The suggested method is illustrated by a simple multimodal

function:      20 01 8 10. xf x e sin x cos x , determined on an

interval 10 10x   . As we may see, in the given interval this
function has 56 minima, from which one is global f(xopt)= -
0.966565, xopt=0.61288 (see diagram A, Fig. 3). Plots of
probabilities wi are outlined in diagram B, there is easy to see that
these single probabilities spontaneously tend either to 1 or to 0. In
the midcourse these probabilities fluctuate around 1/2, but after a
sufficiently great number of epochs, they each tend either to 1 or
0.

2.3 Symbolic Regression of Boolean
Functions
The second illustrative application of HCwL will be presented for
symbolic regression of Boolean functions. For a given training set

 train reqA  x y we look for a model function  G ;x ω , where x

are variables and w are freely adjusted parameters, such that these
model function G perfectly reproduces the training set. Let us
define an objective function

      2

1 2
req

i i
i

E G , n.v. n.e.     ω x ω y (12)

Atrain

G

x

y

x

y

x

yreq

A B

Figure 4. A schematic outline of regression. Diagram B
represents the so-called training set composed of a finite set
composed of couples of argument and required functional
value. Diagram B illustrates a concept of regression, we look
for such a model function G, which predicts for given
arguments the required functional values as well as possible.
In general, the regression may be understood as a special

1131

inductive generalization, we look for such a model function G
(which is simultaneously not only very flexible, but also
simplest as possible). Then we believe that the resulting model
function well predicts the “required” functional values
outside the training set. In an opposite case, when we use
complicated/sophisticated model function with many degrees
of freedom, such a model function is not very well “working”
for points outside the training set, an ability of the model
function to generalize (i.e. predict functional values outside of
training set) is very poor.

where 1 a 2 are small positive numbers – penalization
constants, the first penalization term prefers solutions with a
smaller number of vertices (n.v.), while the second one prefers
solutions with smaller number of edges (n.e.). Then a symbolic
regression consists of a minimization of (12) with respect to
parameters w such that a difference between calculated

 cal G ,y x ω and required output values yreq are minimal. This

is an outline of classical version of regression, which is called the
parametric regression, where a model function is known, we
look only for parameters of this function in such a way that a
required - measured and predicted functional values are as close
as possible. Another type of regression is the so-called symbolic
regression, where we look for a model function G such that it
perfectly reproduces the training set. Many generations of
numerical mathematicians dreamed about symbolic regression,
but only John Koza [6] surmounted all obstacles that should be
solved by applying an evolutionary technique called the genetic
programming. The goal of the present subsection is to show that
HCwL approach is effectively applicable to the solution of the
problem of symbolic regression for Boolean function as well.

The basic concepts of the present approach are Boolean functions
that are represented by acyclic syntactic (derivation) trees

   : 0,1 0 1
m n

f , (12a)

or

   1 1n my ,..., y f x ,...,x (12b)

An assumption of acyclic syntactic tree ensures their simple
recursive calculation of functional values; going successive from
input vertices (representing input variables) through inner vertices
to output vertices (representing functional variables), we may
unambiguously and successively calculate the output variables.

In graph theory [5] a fundamental property of acyclic oriented
graph is proved: an oriented graph G=(V,E) is acyclic if its
vertices may be indexed such that

     :v,v' E v v'     (13)

An indexing, which satisfies the above simple condition is called
the canonical indexing. Following this theorem each oriented
acyclic graph may be canonically indexed. Vertices of
canonically indexed graph may be divided into the following
three disjoint subsets: (1) input vertices, these vertices are
adjacent only to outgoing edges, (2) inner vertices, these vertices
are adjacent simultaneously to incoming and outgoing edges, and
(3) output vertices, these vertices are adjacent only to incoming
edges.

1

3

2

4

5

6

7

8 109

0

m

n

0

A B

Figure 4. An illustrative example of indexing of acyclic
oriented graph such that the above theorem (13) is fulfilled.
An acyclic oriented graph (A) is canonically indexed, where
output vertices are  1 2 3outV , , , inner vertices are

 4 5 6 7transV , , , and input vertices are  8 9 10inV , , . Since

output as well as input vertices are not mutually interacting,
this implies that the left-upper and right-bottom parts of
adjacency matrix (B) are empty, the ´1´ may appear only in
middle unshaded part.

In order to specify Boolean function by a lower-triangle

adjacency matrix  ijA A , we have to specify single output and

inner vertices as single Boolean connectives, see Fig. 5. In
general, these vertices have at least one outgoing edge and one or
more incoming edges. We use binary and ternary connectives of
disjunction, conjunction and exclusive disjunction (since an
application of this last connective is usually very effective in
simplifying syntactic trees of Boolean function). The diagonal
elements of this matrix can be used for specification Boolean
connectives of individual vertices. In our approach to symbolic
regression we use this simple coding, unfortunately it is not
binary and therefore it involves some additional effort how to
properly code Boolean connectives in a binary way. Applying
simple recurrent calculation in a bottom-up style, we may simply
construct binary variables assigned to all vertices in syntactic tree
(see Fig., 5).

Figure 5. Diagram A represents an adjacency matrix assigned
to the Boolean function specified by syntactic tree from
diagram B. Lower-triangle adjacency matrix (with binary
nondiagonal elements) may be generated randomly in such a
way that for each column we randomly generate one, two or
three unit nondiagonal elements ´1´ (this number specifies an
in-valence of the given vertex). Empty diagonal elements are
used for a specification of Boolean connectives that are
assigned to single (inner of output) vertices. A mutation of
syntactic trees coded by lower-triangle adjacency matrix
consists in a simple process when a vertex is randomly

1132

selected and then randomly changed its type (i. e. Boolean
connectivity assigned to this vertex is randomly selected, this
should be accompanied also by a changed type of Boolean
connectivity), see Fig. 6.

1 2 3

6

7

8 9 10

4

5

x1x3 x2















()input()input ()input

1 2 3

6

7

8 9 10

4

5

x1x3 x2

 









()input()input ()input



A B

Figure 6. Illustrative example of mutation process of a
syntactic tree. In diagram A an output or internal vertex is
randomly selected and then in diagram B connective is
mutated together with its input edges.

The present approach for symbolic regression will be illustrated
by a Boolean function of the so-called full adder summator

1

2

3

1 2

x
x
x

y y

 (14)

where xi and yj are binary input/output variables. Applying simple
Boolean-algebra symbolic considerations we get for (14) a
Boolean function    1 2 1 2 3y ,y f x ,x ,x , its output variables as

specified as follows

 1 1 2 3 1 2y x x x x x   (15a)

and

 2 1 2 3y x x x   (15b)

We note that the Boolean function of full adder summator is
specified by its simple table of its functional values. In Fig. 7 are
displayed basic results for symbolic regression performed by
HCwL; diagram B shows a plot of objective function, it is
monotonously decreasing, starting from 125 epochs it
corresponds to a global minimum 0.55 (for penalization constants
1=0.1 and 2=0.01, the resulting syntactic tree is composed of
three internal vertices and ten edges, see diagram C). Diagram B
displays plots of probabilities wij in the course of adaptation
process, in a similar way as in the previous illustrative example;
probabilities asymptotically converge either to 1 or to 0.
Summarizing this illustrative example of symbolic regression of
Boolean functions that are represented by acyclic syntactic trees,
we see that also for this relatively complicated optimization task
we are able to formulate an effective version of HCwL.

Figure 7. Illustrative examples of symbolic regression of full
adder Boolean function (15). Diagram A is a plot of objective
function (11) with penalization constant κ1=0.1 and κ2=0.01,
its asymptotic value (achieved after 125 epochs) is 0.55. It
corresponds to a syntactic tree displayed in diagram C.
Diagram B shows plots of probabilities wij, , we see that these
plots converge either to 1 or to 0.

3. CONCLUSION
In this work we have shown that the concept of collective
memory, which was introduced more than half a century ago by
French sociologist M. Halbwachs [4], as a fundamental
specification of social groups, might be simulated by HCwL. In
particular, probability vector represents a special type of
collective memory, which is based on the course of adaptation
process. We have demonstrated that this concept of collective
memory can be used as an effective accelerator element of an
adaptive system. The collective memory generalizes experiences
and knowledge of agents in the history of this adaptive process.
This was illustrated by simple examples of symbolic regression,
where collective memory is constructed incrementally and
gradually introduces some determinism to mutations in the
reproductive process based on previous experience of the
adaptation process.

To conclude, we emphasize our belief that the concept of
Halbwachs collective memory provides effective theoretical
approach for accelerating adaptations processes of HCwL, this
approach allows to bridge the intergenerational transmission of
the information barrier to future generations by making use
cultural mechanisms. Moreover, we believe that similar
approaches may be derived also for more complex system of
distributed artificial intelligence (e. g. for multiagent systems
composed of quasi-independent elementary units with adaptive
control devices, which systems may be understood as prototypes
of social systems).

The suggested enlargement of HCwL method may be understood
as an acceleration mode of its adaptation process based on the
history of adaptation process. In social sciences there is now very
popular Halbwachs´ concept of „collective memory“, which is
based on a central idea that the collective memory increases a
cohesiveness of a given social group. If we compare on the one
side the use of concept of collective memory in social sciences,
with its use in artificial intelligence on the other side, we may
observe that there exist many common properties that
substantially simplify a discussion of their common interaction
and interpretation. One of the main goals of this paper is to apply
the general formalism of HCwL to support a novel alternative
look at a meaning of concept of collective memory in social
sciences, where it makes possible to overcome intergeneration
“knowledge barriers” and provides an ability to predict future
states of system from its history.

1133

4. ACKNOWLEDGMENTS
This contribution was supported by the VEGA (Slovak Scientific
Grant Agency) of the Ministry of Education of the Slovak
Republic (ME SR) and of the Slovak Academy of Sciences (SAS)
under the contract No. VEGA 1/0458/13 and VEGA 1/0553/12.

5. REFERENCES
[1] Baluja S., Caruana R.: Removing the Genetics from the

Standard Genetic Algorithm. Technical report, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
CMU-CS-95-141.

[2] Baluja S.: Population-Based Incremental Learning: A
Method for Integrating Genetic Search Based Function
Optimization and Competitive Learning. Technical report,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, CMU-CS-94-163.

[3] Baluja, S. :Using a priori Knowledge to Create Probabilistic
Models for Optimization, International Journal of
Approximate Reasoning, Volume 31 (2002), Issue 3, pp 193-
220. IJAR

[4] Halbwachs, M.: On collective memory, The University of
Chicago Press, Chicago, IL,1992.

[5] Harary, F.: Graph Theory, Addison-Wesley, Boston, 1969.

[6] Koza, J.: On the programming of computers by means of
natural selection. A Bradford book, MIT Press, Cambridge
(1992)

[7] Kvasnička, V., Pelikán, M., Pospíchal, J.: Hill Climbing with
Learning. An abstraction of Genetic Algorithm, Neural
Network World, 5 (1996), 773-796.

[8] Pelikan, M., Goldberg, D.E., Lobo, F.G.: A survey of
optimization by building and using probabilistic models.
Computational optimization and applications, 21(2002), 5-20.

1134

