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ABSTRACT 
In this paper we discuss an application of simple stochastic 
optimization algorithm called the hill climbing with learning 
(HCwL) for a study of symbolic regression. A fundamental role 
in this approach plays the so-called probability 
vector  1 2 nw w ,w ,...,w , where an entry 0 1iw   specifies a 

probability that an i-th component of solution (e. g. a bit in binary 
representation) has a binary 1 value. An integral part of HCwL is 
a mutation process, where from a current solution oldx  is created 

a new solution  newx  by a stochastic mutation process. The used 

probability vector w (considered here as a special type of 
collective memory) serves as an auxiliary device for a 
construction of new mutated solution newx ; in particular, it 

predicts promising directions during its creation that are specified 
by the previous history of adaptation process. 

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods, and Search]: 
Heuristic methods 

General Terms 
Algorithms 

Keywords 
Symbolic regression, Boolean functions, Hill-climbing with 
learning 

1. INTRODUCTION 
The aim of this paper is to discuss an extension of simple 
stochastic optimization, which is called the hill-climbing with 
learning (HCwL) to more complex optimization tasks than an 
optimization of standard binary objective functions. We outline 

basic principles of the hill climbing with learning, initially 
introduced by S. Baluja [1, 2, 3] and then developed in great 
details by the present authors and Martin Pelikan [8]. Moreover, 
Martin Pelikan [8] has extended HCwL to include pair 
correlations of entries of binary vectors. In this paper we will 
study an extension of optimization of binary function to a case of 
symbolic regression of Boolean functions. Illustrative examples 
will demonstrate that a concept of HCwL realized by a learning 
of probability vector represents a very serious acceleration 
element of simple hill climbing algorithm applied to nontrivial 
optimization problems. 

2. HILL CLIMBING WITH LEARNING 
2.1 An Optimization Of Binary Function By 
Simple Hill-climbing Method 
Let f be a binary function (mapping) 

 : 0,1
n

f R                                 (1) 

which assigns to each n-bit vector  1 2 nx x ,x ,...,x   a real 

number yR, formally y=f(x). Our task is to look for a vector 

 0 1 n

opt ,x  that corresponds to a global minimum of  f  over the 

domain  0 1
n

, . 

 
 

0 1
nopt

,
arg min f




x
x x                          (2) 

 The most simple stochastic optimization method for 
solving this task is the so called hill-climbing method [7], which 
was extended by Baluja [1, 2, 3] and present authors by an 
introduction of the adapted (learned) probability vector, such 
extended method is called “hill-climbing with learning” (HCwL). 
A prototype of these stochastic optimization methods is the so-
called hill climbing method (algorithmically very simple but 
usually not very effective). For our further purposes we outline 
this method in a modified form, where a simple adaptation 
process for the construction of neighborhood is already 
introduced and this adaptation process is controlled by a 
probability vector  1 2 nw w ,w ,...,w . 
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Figure 1.  Schematic outline of the simplest stochastic 
optimization method called “hill-climbing”. For simplicity the 
method is applied to a unimodal objective function with a 
minimum equal to its global minimum. In the first step, for a 
randomly generated solution x1 there is created a 
neighborhood U1 specified by (5),  and then we determine its 
local minimum x2 specified by (6). This new temporary 
solution is used in the forthcoming step as a “center” of 
neighborhood. Using local minimum as a “center” is 
perpetually repeated and the process is finished when in a 
current neighborhood a better solution than its “center” does 
not exist. 

 
 First, we introduce the so-called mutation of an n-bit 

vector  0 1
n

,x  onto another vector  0 1
n

,x  with entries 

randomly determined as follows 

 
 

1 i

i

i

mutx if random P
x

x otherwise





 
                  (3) 

(for i=1,2,...,n) where Pmut is a probability of flipping a single bit 
entry and random is a random number with uniform distribution 
from the semiopen interval [0,1). In other words, the mutation of 
x into x' is a sequential operation which changes stochastically 
(specified by the probability Pmut) single bit entries. Formally, 
mutation may be considered as a function Omut  

 mut mutO ;P x x                               (4) 

where the probability Pmut, on the right hand side, is a parameter 
of this function. A neighborhood U(x;Pmut) (specified by the 
probability Pmut) of a vector x is composed of n-bit vectors that 
are created by mutations of x 

    mut mut mutU ;P O ;P  x x x x             (5) 

A size – cardinality of the neighborhood is a very important 
parameter of the hill-climbing optimization, the neighborhood is 
usually composed of a few hundred elements. Within this 
neighborhood we look for a locally optimal solution xloc,opt , 
which is used in the forthcoming step as a center of a new 
neighborhood  loc.opt mutU ; Px ; in such a way we get a sequence of 

locally optimal solutions 

       0 1 2
. . ..... ...n

loc opt loc opt loc optx x x x          (6a) 

where 

   
  ,

1
.

;

arg min
i

utloc opt

i
loc opt

x U x P

x f x



                  (6b) 

This iterative local optimization is finished when a few last 
solutions offer the same functional values (see Fig. 1). As was 

initially demonstrated by Baluja [1, 2], this extreme simple 
stochastic optimization algorithm offers in many cases results that 
are fully competitive with GA results. 

2.2 Hill-Climbing With Learning 
An interesting possibility how to introduce learning features to 
simple hill climbing algorithm has been considered by Baluja [1, 
2, 3] and latterly by Kvasnička, Pelikan, and Pospíchal [7]. They 
introduced two concepts that effectively modify the hill climbing 
so that it achieves a close resemblance to genetic algorithms: 

(1) A probability vector    1 2
0 1

n

n
w ,w ,...,w , w , its entries 

0 1iw   determine probabilities of appearance of  '1' entries in 

given i-th positions. For instance, if wi=0(1), then xi=0(1), for 
0<wi<1 the corresponding xi is determined stochastically by 

 
 
 

 

1

0

i

mut

i

i

random w
mutation random P

x otherwice

x otherwice

       



           (7) 

It means that in this generalized mutation a single entry xi of the 
binary vector x is randomly selected by a probability Pmut ; when 
this entry is selected, then it’s binary value is set to 1 with a 
probability wi. This means that entries of the probability vector w 
control a “mutation” process whether the corresponding bits will 
be set to one or not. It means that the used “mutation” process 
directs the created “mutated” vectors in a direction, which looks 
very promising according to the previous history of adaptation 
process. Let this random generation of n-bit vectors with respect 
to the probability vector w be formally expressed by a function R 

 mutR ; ,P x x w                               (8) 

A neighborhood U(x;w,Pmut) is composed of randomly generated 
n-bit vectors with respect to a probability vector w is determined 
by 

    mut mutU ; ,P R ; ,P x w x x w                    (9) 

We shall postulate that its cardinality is always kept fixed, 
|U(x;w,Pmut)|=N. When the entries of the probability vector w are 
slightly above zero or below one, then a "diameter" of 
U(x;w,Pmut) is very small, all its elements are closely related to an 
n-bit vector x unambiguously determined by the probability 
vector w and the probability Pmut. In the case of simple hill 
climbing method this corresponds to a situation when the 
mutation probabilities wi are very small. On the other hand, if 
probabilities wi are near to 1/2, then n-bit vectors constructed by 
(7-8) span relatively large domain with a center (n-bit vector) 
roughly deterministically constructed so that xi=0 (if wi<0.5) and 
xi=1 (if wi>0.5).  

 

(2) The learning of probability vector w is introduced with 
respect to a best solution found in the neighborhood U(x;w,Pmut). 

 
 

mut
opt

U ; ,P
arg min f




x x w
x x                     (10) 

 The probability vector w is modified-updated (learned) by the so-
called Hebbian rule (well-known learning rule widely used in 
artificial neural networks) 

 opt   w w x w                         (11) 
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where  is the learning coefficient (a small positive number) The 
learning rule (11) has a very simple geometric interpretation, the 
right-hand side of (11) is nothing but a convex combination of 
two vectors w and x. This means that a resulting vector of the 
convex combination should lie on the straight-line connecting 
"points" w and x (see Fig. 2) close to the point w ( is a small 
positive number, 0<<<1). In other words, it means that learning 
rule (11) shifts the probability vector w towards local best 

solution optx . 

 

xopt

ww‘

 

Figure 2. Geometric interpretation of the learning rule (11), 
the updated probability vector  w' lies inside the region on 
straight-line determined by "points" x and w. 
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Figure 3. (A) Diagram of multimodal test function f (x) is 
composed of 56 local minima; the global minimum is marked 
on the diagram. (B)  The progress of the components wi of 
probability vector w, which is initialized by 0.5 values for all 
components. During the evolution individual components are 
asymptotically approaching the binary value 0 or 1. We see 
that after about 300 epochs components of the vector w are 
always determined by a given component in the correct 
solution. This fact may be interpreted as a collective memory 
for the evolution of the population replicator, which manages 
the reproductive process of mutation on the basis of previous 
history of the adaptation process. Diagram C displays a plot 
composed of locally optimal solution xopt . After roughly 250 
epochs, these locally optimal solutions are equal to the 
globally optimal functional value f (xopt) = 0.96657. Of course 
it might be expected that this evolution without learning (see 
line HC) usually does not converge to the correct global 
minimum, but to a local minimum with a higher value. 

 

A few notes about the parallelization of the present method 
follow. The parallelization is simply achieved by using a pool of 
probability vectors instead of one probability vector. For all 
probability vectors independent neighborhoods U(x;w,Pmut) are 
randomly generated. Finally, all probability vectors are updated 
by (11) with respect to the local optimal solutions assigned to all 
probability vectors. In order to introduce an interaction between 
parallel running procedures, it is possible to use an analogue of 
crossover operator applied for a couple of randomly selected 
probability vectors. This introduces an exchange of information 
between subproblems so that at the end of the whole procedure all 
probability vectors are almost identical. Why the parallel version 
of HCwL would outperform its single nonparallel version? 
Independent methods may converge to different regions of the 
search space, this means that an introduction of 
"intercommunication" between probability vectors ensures 
increase of search diversity across the whole search space S. 
There exists a similar situation for genetic algorithms, where 
parallel versions usually outperform nonparallel genetic 
algorithms.  

The suggested method is illustrated by a simple multimodal 

function:      20 01 8 10. xf x e sin x cos x , determined on an 

interval 10 10x   . As we may see, in the given interval this 
function has 56 minima, from which one is global f(xopt)= - 
0.966565, xopt=0.61288 (see diagram A, Fig. 3). Plots of 
probabilities wi are outlined in diagram B, there is easy to see that 
these single probabilities spontaneously tend either to 1 or to 0. In 
the midcourse these probabilities fluctuate around 1/2, but after a 
sufficiently great number of epochs, they each tend either to 1 or 
0. 

2.3 Symbolic Regression of Boolean 
Functions 
The second illustrative application of HCwL will be presented for 
symbolic regression of Boolean functions. For a given training set 

 train reqA  x y  we look for a model function  G ;x ω , where x 

are variables and w are freely adjusted parameters, such that these 
model function G  perfectly reproduces the training set. Let us 
define an objective function 

      2

1 2
req

i i
i

E G , n.v. n.e.     ω x ω y      (12) 

 

Atrain

G

x

y

x

y

x

yreq

A B  

Figure 4. A schematic outline of regression. Diagram B 
represents the so-called training set composed of a finite set 
composed of couples of argument and required functional 
value. Diagram B illustrates a concept of regression, we look 
for such a model function G, which predicts for given 
arguments the required functional values as well as possible. 
In general, the regression may be understood as a special 
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inductive generalization, we look for such a model function G 
(which is simultaneously not only very flexible, but also 
simplest as possible). Then we believe that the resulting model 
function well predicts the “required” functional values 
outside the training set. In an opposite case, when we use 
complicated/sophisticated model function with many degrees 
of freedom, such a model function is not very well “working” 
for points outside the training set, an ability of the model 
function to generalize (i.e. predict functional values outside of 
training set) is very poor. 

 

where 1 a  2 are small positive numbers – penalization 
constants, the first penalization term prefers solutions with a 
smaller number of vertices (n.v.), while the second one prefers 
solutions with smaller number of edges (n.e.). Then a symbolic 
regression consists of a minimization of (12) with respect to 
parameters w such that a difference between calculated 

 cal G ,y x ω  and required output values yreq are minimal. This 

is an outline of classical version of regression, which is called the 
parametric regression, where a model function is known, we 
look only for parameters of this function in such a way that a 
required - measured and predicted functional values are as close 
as possible. Another type of regression is the so-called symbolic 
regression, where we look for a model function G such that it 
perfectly reproduces the training set. Many generations of 
numerical mathematicians dreamed about symbolic regression, 
but only John Koza [6] surmounted all obstacles that should be 
solved by applying an evolutionary technique called the genetic 
programming. The goal of the present subsection is to show that 
HCwL approach is effectively applicable to the solution of the 
problem of symbolic regression for Boolean function as well. 

The basic concepts of the present approach are Boolean functions 
that are represented by acyclic syntactic (derivation) trees 

   : 0,1 0 1
m n

f ,                     (12a) 

or 

   1 1n my ,..., y f x ,...,x                  (12b) 

An assumption of acyclic syntactic tree ensures their simple 
recursive calculation of functional values; going successive from 
input vertices (representing input variables) through inner vertices 
to output vertices (representing functional variables), we may 
unambiguously and successively calculate the output variables.  

In graph theory [5] a fundamental property of acyclic oriented 
graph is proved: an oriented graph G=(V,E) is acyclic if its 
vertices may be indexed such that 

     :v,v' E v v'                  (13) 

An indexing, which satisfies the above simple condition is called 
the canonical indexing. Following this theorem each oriented 
acyclic graph may be canonically indexed. Vertices of 
canonically indexed graph may be divided into the following 
three disjoint subsets: (1) input vertices, these vertices are 
adjacent only to outgoing edges, (2) inner vertices, these vertices 
are adjacent simultaneously to incoming and outgoing edges, and 
(3) output vertices, these vertices are adjacent only to incoming 
edges. 

 

 

1

3

2

4

5

6

7

8 109

0

m

n

0

A B  

 

Figure 4. An illustrative example of indexing of acyclic 
oriented graph such that the above theorem (13) is fulfilled. 
An acyclic oriented graph (A) is canonically indexed, where 
output vertices are  1 2 3outV , , , inner vertices are 

 4 5 6 7transV , , ,  and input vertices are  8 9 10inV , , . Since 

output as well as input vertices are not mutually interacting, 
this implies that the left-upper and right-bottom parts of 
adjacency matrix (B) are empty, the ´1´ may appear only in 
middle unshaded part. 

 

In order to specify Boolean function by a lower-triangle 

adjacency matrix  ijA A , we have to specify single output and 

inner vertices as single Boolean connectives, see Fig. 5. In 
general, these vertices have at least one outgoing edge and one or 
more incoming edges. We use binary and ternary connectives of 
disjunction, conjunction and exclusive disjunction (since an 
application of this last connective is usually very effective in 
simplifying syntactic trees of Boolean function). The diagonal 
elements of this matrix can be used for specification Boolean 
connectives of individual vertices. In our approach to symbolic 
regression we use this simple coding, unfortunately it is not 
binary and therefore it involves some additional effort how to 
properly code Boolean connectives in a binary way. Applying 
simple recurrent calculation in a bottom-up style, we may simply 
construct binary variables assigned to all vertices in syntactic tree 
(see Fig., 5). 

 

 
 

Figure 5. Diagram A represents an adjacency matrix assigned 
to the Boolean function specified by syntactic tree from 
diagram B. Lower-triangle adjacency matrix (with binary 
nondiagonal elements) may be generated randomly in such a 
way that for each column we randomly generate one, two or 
three unit nondiagonal elements ´1´ (this number specifies an 
in-valence of the given vertex). Empty diagonal elements are 
used for a specification of Boolean connectives that are 
assigned to single (inner of output) vertices. A mutation of 
syntactic trees coded by lower-triangle adjacency matrix 
consists in a simple process when a vertex is randomly 
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selected and then randomly changed its type (i. e. Boolean 
connectivity assigned to this vertex is randomly selected, this 
should be accompanied also by a changed type of Boolean 
connectivity), see Fig. 6. 
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Figure 6. Illustrative example of mutation process of a 
syntactic tree. In diagram A an output or internal vertex is 
randomly selected and then in diagram B connective is 
mutated together with its input edges.  

 

The present approach for symbolic regression will be illustrated 
by a Boolean function of the so-called full adder summator 

1

2

3

1 2

x
x
x

y y

                                        (14) 

where xi and yj are binary input/output variables. Applying simple 
Boolean-algebra symbolic considerations we get for (14) a 
Boolean function    1 2 1 2 3y ,y f x ,x ,x , its output variables as 

specified as follows 

 1 1 2 3 1 2y x x x x x                          (15a) 

and 

 2 1 2 3y x x x                            (15b) 

We note that the Boolean function of full adder summator is 
specified by its simple table of its functional values. In Fig. 7 are 
displayed basic results for symbolic regression performed by 
HCwL; diagram B shows a plot of objective function, it is 
monotonously decreasing, starting from 125 epochs it 
corresponds to a global minimum 0.55 (for penalization constants 
1=0.1 and 2=0.01, the resulting syntactic tree is composed of 
three internal vertices and ten edges, see diagram C). Diagram B 
displays plots of probabilities wij in the course of adaptation 
process, in a similar way as in the previous illustrative example; 
probabilities asymptotically converge either to 1 or to 0. 
Summarizing this illustrative example of symbolic regression of 
Boolean functions that are represented by acyclic syntactic trees, 
we see that also for this relatively complicated optimization task 
we are able to formulate an effective version of HCwL. 

 

 

Figure 7. Illustrative examples of symbolic regression of full 
adder Boolean function (15). Diagram A is a plot of objective 
function (11) with penalization constant κ1=0.1 and κ2=0.01, 
its asymptotic value (achieved after 125 epochs) is 0.55. It 
corresponds to a syntactic tree displayed in diagram C. 
Diagram B shows plots of probabilities wij, , we see that these 
plots converge either to 1 or to 0. 

3. CONCLUSION 
In this work we have shown that the concept of collective 
memory, which was introduced more than half a century ago by 
French sociologist M. Halbwachs [4], as a fundamental 
specification of social groups, might be simulated by HCwL. In 
particular, probability vector represents a special type of 
collective memory, which is based on the course of adaptation 
process. We have demonstrated that this concept of collective 
memory can be used as an effective accelerator element of an 
adaptive system. The collective memory generalizes experiences 
and knowledge of agents in the history of this adaptive process. 
This was illustrated by simple examples of symbolic regression, 
where collective memory is constructed incrementally and 
gradually introduces some determinism to mutations in the 
reproductive process based on previous experience of the 
adaptation process. 

To conclude, we emphasize our belief that the concept of 
Halbwachs collective memory provides effective theoretical 
approach for accelerating adaptations processes of HCwL, this 
approach allows to bridge the intergenerational transmission of 
the information barrier to future generations by making use 
cultural mechanisms. Moreover, we believe that similar 
approaches may be derived also for more complex system of 
distributed artificial intelligence (e. g. for multiagent systems 
composed of quasi-independent elementary units with adaptive 
control devices, which systems may be understood as prototypes 
of social systems).     

The suggested enlargement of HCwL method may be understood 
as an acceleration mode of its adaptation process based on the 
history of adaptation process. In social sciences there is now very 
popular Halbwachs´ concept of „collective memory“, which is 
based on a central idea that the collective memory increases a 
cohesiveness of a given social group. If we compare on the one 
side the use of concept of collective memory in social sciences, 
with its use in artificial intelligence on the other side, we may 
observe that there exist many common properties that 
substantially simplify a discussion of their common interaction 
and interpretation. One of the main goals of this paper is to apply 
the general formalism of HCwL to support a novel alternative 
look at a meaning of concept of collective memory in social 
sciences, where it makes possible to overcome intergeneration 
“knowledge barriers” and provides an ability to predict future 
states of system from its history. 
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