
An Efficien Constraint Handling Approach for
Optimization Problems with Limited Feasibility and
Computationally Expensive Constraint Evaluations

Md Asafuddoula
University of New South Wales
Canberra, ACT 2610, Australia

Md.Asaf@.adfa.edu.au

Tapabrata Ray
University of New South Wales
Canberra, ACT 2610, Australia

t.ray@.adfa.edu.au

Ruhul Sarker
University of New South Wales
Canberra, ACT 2610, Australia

r.sarker@.adfa.edu.au

ABSTRACT
Existing optimization approaches adopt a full evaluation policy,
i.e. all the constraints corresponding to a solution are evaluated
throughout the course of search. Furthermore, a common sequence
of constraint evaluation is used for all the solutions. In this paper,
we introduce a scheme of constraint handling, wherein every solu-
tion is assigned a random sequence of constraints and the evalua-
tion process is aborted whenever a constraint is violated. The solu-
tions are sorted based on two measures i.e. the number of satisfie
constraints and the violation measure. The number of satisfie con-
straints takes a precedence over the amount of violation. We illus-
trate the performance of the proposed scheme and compare it with
other state-of-the-art constraint handling methods within a frame-
work of differential evolution. The results are compared using g-
series test functions for inequality constraints. The results clearly
highlight the potential savings offered by the proposed method.

Categories and Subject Descriptors
I [Computing Methodologies]: MISCELLANEOUS

General Terms
Algorithm

Keywords
Constraint Handling, Constraint Sequencing, Fitness Evaluation

1. INTRODUCTION
Constraint handling is an important area of research and various

forms of constraint handling schemes have been proposed in litera-
ture. The performance of all population-based stochastic optimiza-
tion algorithms are known to be affected by the presence of con-
straints. The nonlinearity, multi-modality and the feasibility space
associated with each constraint is likely to be different. Constraint
handling methods can be broadly categorized in four different types
i.e. use of penalty functions, repair schemes, use of decoders and
the separation of objective function and constraints [1]. More re-
cent methods maintain infeasible solutions such as through stochas-
tic ranking, ε based comparisons or adaptive penalty function for-
mulations [2]. However, in all such formulations and implemen-
tations, a full evaluation policy is adopted, i.e. for every solution,
its constraint violation (CV) measure is computed which is the sum

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

of all constraint violations. An important question is “why do we
spend computational resources to evaluate constraints of a solution,
when it has already violated a constraint ?”. Assuming that one is
only interested in a feasible solution (preferably optimum) at the
end of the search process, it is important to investigate the worth of
evaluating infeasible solutions i.e. the cost of evaluation versus the
knowledge gained to steer the search. Other followup questions in-
clude “what is the best sequence to evaluate the constraints ?” and
“is there a benefi in using different sequence of constraints ?”. This
paper attempts to understand the cost-benefit of partial evalua-
tion policy i.e. aborting evaluation of constraints if the solution has
already violated one constraint. Above discussion becomes more
relevant in the context of optimization problems involving compu-
tationally expensive constraint evaluations. The study assumes that
the constraints can be evaluated independently of one another.
An optimization algorithm has been introduced based on a par-

tial evaluation policy. The solutions in the population are evalu-
ated based on a random sequence of constraints. The search using
multiple constraint sequences offer the potential to reach different
regions of the search space. The proposed scheme has been imple-
mented using a framework based on differential evolution [3].

2. PROPOSED ALGORITHM
A population of N individuals is initialized. The variables of ith

individual are initialized as follows:

xj,i = xj,min + randi,j [0, 1).(xj,max − xj,min) (1)

where j = 1, 2,D is the number of variables; xj,max and xj,min

are the upper and the lower bounds of jth variable. For a problem
with m constraints, each individual is assigned a random sequence
of constraints for evaluation. Every individual of the population
is evaluated using its prescribed constraint sequence. Whenever a
constraint is violated, the evaluation is aborted. The term number of
function evaluations referred in the paper is the sum of the number
of evaluated constraints and objective function evaluations [4].
In order to generate an offspring solution, the firs parent is se-

lected sequentially, the second and third parents are selected ran-
domly from the entire population. In the recombination process,
a binomial crossover [2] has been used to generate the offspring
solution. The fitnes of a solution is determined as follows:

fitness(ξ) =

j
f(x), x ∈ �n

ci, i = 1, 2,m
(2)

where ci is the constraint violation measure of m number of con-
straints. The equality constraints are transformed into a set of in-
equalities as |hj(x) − δ| ≤ 0 (assuming δ is small positive quan-

113

Algorithm 1 DE-CS
SET: NTmax{Total number of function evaluation}, N{Size of population},
CR{Crossover rate}, F{A Mutation scale factor}, Evalcount = 0

1: Initialize the population of individuals and assign a random constraint sequence to
each individual;

2: Evaluate the solutions following the above assigned sequence of constraints;
Update(Evalcount);

3: while (Evalcount ≤ NTmax) do
4: for i=1:N do
5: Select P1 = i i.e. the ith parent and two other parents P2 and P3 ran-

domly s.t. P1 �= P2 �= P3;
6: Generate an offspring using recombination;
7: Evaluate the offspring using the sequence of P1; Update(Evalcount);
8: The offspring is compared with solutions in the population for replacement

based on fitness
9: end for
10: end while
*Evalcount denotes the sum of objective and all individual constraint evaluations

tity). Here, ci denotes the constraint satisfaction vector where

ci =

8<
:

0, if ith constraint satisfied i = 1, 2,, m
gi(x), if ith constraint violated, i = 1, 2,, q

|hj(x) − δ|, if ith constraint violated, i = q + 1,, m
(3)

For every solution in the population, one can compute the num-
ber of satisfie constraints (NS) and the amount of violation (V).
With the number of constraints satisfie taking a precedence over
the violation value, a sorting would yield the ranks of the individual
solutions. For example assume a population, containing 4 solutions
(S1, S2, S3, S4). The constraint violation matrix would assume a
form illustrated in Table 1 with S3 identifie as the best and S1 the
worst.

Table 1: Ranking of 4 individuals in the population in presence
of 3 constraints

Initial order NS V Final rank

S1 (g1, g2, g3) 5 − − 0 5 4
S2 (g2, g3, g1) 0 3 − 1 3 2
S3 (g1, g3, g2) 0 0 1 2 1 1
S4 (g2, g1, g3) 2 − − 0 2 3

3. EXPERIMENTAL RESULTS
The above section illustrated the principles of constraint sequenc-

ing and partial evaluation. In this section we objectively evaluate
its performance on CEC-2006 [5] benchmarks. We also include the
results obtained by using stochastic ranking (SR) [6], self adaptive
penalty (SP) [7], superiority of feasibility (SF) [8] and epsilon con-
straint (EC) [9] within the same framework of DE. Results based
on performance profile are included for a more objective compar-
ison. A population size of 50 is used for all the problems and the
results are computed based on 30 independent runs. A f xed value
of CR = 0.9 and F = 0.5 have been set for all the cases resulting
the number of function evolutions (i.e. NFEs) of 4800 ∗ (N ∗ m),
where N is the size of the population and m is the number of con-
straints.
In this experiment, we observe how quickly a feasible solution

appears in the population–the function evaluation to reach a feasi-
ble solution and the computational time required to achieved the
feasible solution. A performance profil [10] is computed for a
more objective comparison between the strategies. The results clearly
indicate the superiority of DE-CS over other strategies in terms of

NFEs and computational time. Figure 1 shows the value of ρ(τ)
for rp,s ≤ τ of the normalized performance ratio [10] i.e. (a) the
number of function evaluation (b) computational time. One can ob-
serve from the figur that DE-CS outperforms with other strategies
in terms of both.

100 101 1020

0.2

0.4

0.6

0.8

1

τ

ρ(
τ)

DE−CS
DE−SF
DE−SP
DE−SR
DE−EC

DE−EC
DE−SP

DE−SF
DE−SRDE−CS

(a) NFEs
100 101 1020

0.2

0.4

0.6

0.8

1

τ

ρ(
τ)

DE−CS
DE−SF
DE−SP
DE−SR
DE−EC

DE−SPDE−SR
DE−EC

DE−SF

DE−CS

(b) computational time

Figure 1: Performance profile of DE-CS and others

4. CONCLUSION
In this paper, a scheme of constraint handling has been intro-

duced within the framework of differential evolution utilizing the
concepts of partial evaluation and constraint sequencing. The per-
formance of the algorithm is subsequently assessed on 11 well
known constrained single objective optimization benchmarks. The
results on the test problems clearly indicate that the approach is
computationally efficien and better than existing strategies for con-
straint handling.

5. ACKNOWLEDGEMENT
The second author would like to acknowledge the support of Fu-

ture Fellowship offered by the Australian Research Council.

6. REFERENCES
[1] M. Schoenauer and S. Xanthakis, “Constrained GA optimization,” in

Proceedings of the Fifth International Conference on Genetic Algorithms
(ICGA-93), S. Forrest, Ed., University of Illinois at Urbana-Champaign. San
Mateo, California: Morgan Kauffman Publishers, July 1993, pp. 573–580.

[2] C. A. C. Coello, “Theoretical and numerical constraint handling techniques
used with evolutionary algorithms: A survey of the state of the art,” Computer
Methods in Applied Mechanics and Engineering, vol. 191, no. 11-12, pp.
1245–1287, January 2002.

[3] R. Storn and K. Price, “Differential evolution – a simple and efficien adaptive
scheme for global optimization over continuous spaces,” Technical report
TR-95-012, International Computer Science Institute, Berkeley, CA, 1995.

[4] A. Asafuddoula, T. Ray, and R. Sarker, “A self-adaptive differential evolution
algorithm with constraint sequencing,” in Proceedings AI 2012: Advances in
Artificia Intelligence, vol. 7691 of Lecture Notes in Artificia Intelligence, pp.
182–193, 2012.

[5] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan, C. A.
Coello, and K. Deb, “Problem definition and evaluation criteria for the cec
2006 special session on constrained real-parameter optimization,” Technical
Report, Nanyang Technological University, Dec 2005.

[6] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolutionary
optimization,” IEEE Transactions on Evolutionary Computation, vol. 4, no. 3,
pp. 284–294, September 2000.

[7] B. Tessema and G. G. Yen, “A self adaptative penalty function based algorithm
for constrained optimization,” in 2006 IEEE Congress on Evolutionary
Computation (CEC’2006). Vancouver, BC, Canada: IEEE Press, July 2006,
pp. 950–957.

[8] K. Deb, “An efficien constraint handling method for genetic algorithms,”
Computer Methods in Applied Mechanics and Engineering, vol. 186, no. 2/4,
pp. 311–338, 2000.

[9] T. Takahama and S. Sakai, “Constrained optimization by the ε constrained
differential evolution with an archive and gradient-based mutation,” in 2010
IEEE Congress on Evolutionary Computation (CEC’2010). Barcelona, Spain:
IEEE Press, July 18–23 2010, pp. 1680–1688.

[10] E. D. Dolan and J. J. More, “Benchmarking optimization software with
performance profiles ”Mathematical Programming, vol. 91, pp. 201–213, 2002.

114

