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ABSTRACT
We study a matrix representation for an EA attack on the
CCPOP with transaction costs. The representation is based
on portfolio sequences which change over the investment
lifetime in response to asset price changes. We show the
approach is effective and that EA performance is directly
related to asset price correlation. We compare the EA with
a matrix hillclimber and show some common results of vec-
tor representations do not hold for a matrix one, potentially
providing a step forward in performance of such algorithms.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; G.1.6
[Optimization]: Constrained optimization; I.6.3 [Simulation
and Modeling]: Applications

Keywords
Portfolio optimization; evolutionary algorithm; matrix rep-
resentation; transaction cost

1. INTRODUCTION
The Portfolio Optimization Problem (POP) seeks optimal

numbers of different assets that may be owned at a given
time, with certain criteria met. Often the criteria are risk
and return, investors seeking maximum return for minimum
risk. Optimization subject to such criteria has been studied
since the 1950s, when the POP was posed as a QOP. Indeed,
simple POP flavors were tackled by quadratic programs [3].
The cardinality constrained POP (CCPOP) [3, 4] is a vari-
ant where, to spread risk, only k out of a total n assets are
bought per period. Attacks range from time series predic-
tion to evolutionary methods [1, 3, 4]. The work [4], via
Sharpe’s Index, compares three EAs that optimize weight
vectors, and [1] attacks the CCPOP with rounded lots. A
GA and hillclimber, both with vector representations, are
compared, showing negligible difference in results.

This work extends our work in [5], using a matrix EA
representation to optimize a sequence of vectors (portfolios),
one for each period in the investment lifetime. This represen-
tation makes the CCPOP of higher complexity in number of
assets. We compare our EA with a hillclimber to determine
if the conclusions of [1] hold for our representation. Matrices
have been used in multiperiod asset allocation, but, to our
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knowledge, not as an EA representation. For example, [2]
used matrices to calculate fitness values but the EA repre-
sentation was a string. Trading transaction costs tend to be
ignored in simpler POP treatments, but are an issue. They
are hard to model as, in practice, there are many costs in-
volved and social costs are not considered. There have been
various cost models, from constant to piecewise linear [8].
We take transaction cost as a function of asset risk, echoing
practice where investors pay more for higher risk in expec-
tation of larger returns. Reflecting this and future social
levies, we use an exponential model with small coefficients.

2. THE PROBLEM AND EA
We extend standard notation from [3]. The proportion of

an asset to buy at a given period is its weight. The n × n
weight matrix is W = (wij), with wij the asset j weight at
period i. Row i of W is a vector denoted W (i, :). This vec-
tor is the standard representation in POP models, but our
representation is matrix-based. Let k ≤ n be the constant
number of assets bought; the choice of which k assets are
bought may change at each period. The initial data, X, is
the normalized prices of n assets over n periods. The invest-
ment value matrix over all periods is P = X.∗W , with total
value at period i being vi(W ) =

∑n
j=1 Pij . The vectors of

expected return and risk of W over all periods are respec-
tively written R (W ) and r (W ) [5]. Extending the COP
formulation of [1, 3] to include matrices, the constraints are:∑n

j=1 wij = 1 for all i;

wij ∈ [γi, δi] with 0 ≤ γi ≤ δi ≤ 1 for all i;

−∆vi(W ) ≤ 0.01vi(W ) for all i;

Zi = n− k for all i.

Our CCPOP objective function, to be minimized, is

C (W ) =

∥∥∥∥∥ λr (W )− (1− λ)R (W )

+ (1− λ)
(
αeβR(W ) − 1

) ∥∥∥∥∥
2

− V (W ) .

An optimal weight matrix is denoted W ∗. Constant λ repre-
sents investor risk preference, and transaction cost is taken
from return R [6]. The number of zero entries in W (i, :) is
Zi, and V (W ) =

∑n
i=1 vi(W ) is taken from the norm to fa-

vor acceptance of larger-valued portfolios. The EA returns
the best found weight matrix by the above constraints. In-
puts are the normalized price matrix X (the instance) and
initial (naive) weight matrix W0 (produced at random [7]
with n − k zeros in each row at random positions and each
row sum as 1). The main operator on W is perturbation:
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for a given value m, add a random vector ε, with
∑
ε = 0

and
∑

(W (m, :) + ε) = 1, to the vector of non-zero entries
of row W (m, :). There is also a feasibility operator. Selec-
tion is by a partially-elitist 3-tournament scheme. Mutation
perturbs a random row, and crossover perturbs every row,
of a weight matrix W chosen u.a.r. from the top 10% of
the population. We chose population size 100 with nc = 30
crossovers, ns = 10 selections and nm = 60 mutations.

Instance RW-8 covers eight real-world indices from 2003-
10, sampled yearly [5], and RW-20 covers twenty, sampled
monthly from 03/2011-10/2012. Simulated instances are
matrices of random numbers in [0, 1]. Intuitively, real-world
instances likely have high correlation between assets over
subsequent periods, but simulated instances may not. To
test this, for each instance we calculated the mean abso-
lute correlation between all assets over all periods (Table 1).
Observe that correlation in real-world instances is notably
larger than in simulated instances. We chose medium risk
aversion λ = 0.5, cardinality constraint k = n

2
and constants

α = 1, β = 0.5. All trials ran for 5000 generations on a Core
Duo 1.8GHz computer with 1GB RAM running MATLAB.

Table 1: Mean absolute correlation by instance.
Instance RW-8 RW-20

Mean abs. corr. 0.5316 0.4794

Instance Sim-8 Sim-20 Sim-30 Sim-40
Mean abs. corr. 0.3221 0.1809 0.1524 0.1283

3. RESULTS
Each instance was trialled on both algorithms thirty times,

every trial using a distinct random naive weight matrix W0.
Let I(W ∗,W0) be the percent gain in value from naive to
best found weight matrix, with µI , σI and σC respectively
the mean of I and standard deviations of I and C over the
given instance. Table 2 summarizes EA results.

Table 2: Summary statistics for the EA.
Instance RW-8 RW-20

µI(W∗,W0) 120.21 331.32
σI(W∗,W0) 56.37 59.65
σC(W∗) 0.66 0.96

Instance Sim-8 Sim-20 Sim-30 Sim-40

µI(W∗,W0) 33.52 40.87 41.23 40.40
σI(W∗,W0) 10.77 7.98 4.63 3.68
σC(W∗) 0.36 0.31 0.41 0.36

The results show that, in all simulated instances, we ob-
tain large mean gain from naive to best found weight ma-
trices, and these gains increase with the number of assets.
Strikingly, in real-world instances, mean gains are much
larger. We conjecture this is due to increased mean abso-
lute correlation compared to the simulated instances (Table
1), and, moreover, EA performance follows the level of as-
set correlation. Also, as the number of simulated assets in-
creases, EA performance standard deviation decreases. We
may interpret this result as evidence of EA robustness.

Emulating a hillclimber, we take population size two and
parameters (ns, nm, nc) = (1, 1, 0). Table 3 summarizes
hillclimber results. Gains for real-world over simulated in-
stances are smaller than those exhibited by the EA. Table
3 also implies that gains in value are directly related to the
absolute correlation between assets in X.

Table 3: Summary statistics for the hillclimber.
Instance RW-8 RW-20

µI(W∗,W0) 79.78 61.53
σI(W∗,W0) 33.51 15.09
σC(W∗) 0.57 0.61

Instance Sim-8 Sim-20 Sim-30 Sim-40

µI(W∗,W0) 27.25 21.48 11.59 7.23
σI(W∗,W0) 7.90 4.50 1.53 0.89
σC(W∗) 0.42 0.45 0.42 0.47

4. COMPARISON AND CONCLUSION
Comparing both algorithms, Tables 2–3 show that the dif-

ference in µI from hillclimber to EA increases with n. Thus
the advantage of EA over hillclimber increases with instance
difficulty. In all instances, the difference in σI between EA
and hillclimber also generally increases with n, implying the
EA produces a wider range of solutions than the hillclimber.
Hence the importance of the crossover operator (and a larger
population) increases with n. Work [1] compares a vector
EA and hillclimber, showing the EA offers negligible perfor-
mance gain over the hillclimber. We conclude the opposite
for the matrix representation, especially for larger numbers
of simulated assets. For real-world assets, the performance
difference is very clear. We also showed a direct relationship
between asset correlation and algorithm performance. Our
analysis shows the time-dependency of individual portfolios
in the sequence; vector representation approaches do not.
Overall, we have a promising technology for improving the
accuracy of multiperiod portfolio optimization.
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