Coevolution of Rules and Topology in Cellular Automata
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ABSTRACT

Coevolution is nature’s response to highly complex and ra-
pidly changing conditions. Biological systems are able to
have multiple traits evolving concurrently to adapt to their
environment. For many years, evolutionary algorithms have
been successfully used on cellular automata (CA) to pro-
duce performant update functions. The resulting CAs are,
however, much slower and more sensitive to perturbations
than CAs with an evolved topology and fixed uniform up-
date rule. Unfortunately, these are not nearly as perfor-
mant, and suffer from scaling up the number of cells. We
propose a hybrid paradigm that simultaneously coevolves
the supporting network and the update functions of CAs.
The resulting systems combine the high performance of the
update evolution and the robustness properties and speed
of the topology evolution CAs. Coevolution in CAs a viable
tradeoff between the two single trait evolutions.

Categories and Subject Descriptors

F.1.1 [Models of Computation]: Unbounded-action de-
vices—cellular automata; 1.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuristic
methods; H.3.4 [Data Structures]: Graphs and networks
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1. INTRODUCTION

In biology, coevolution refers to the concurrent or sequen-
tial mutation in one or more organisms driven by one or more
changes in a related biological object. All members/features
taking part in coevolution exert mutual selective pressure on
each other, influencing each other’s evolution. When taking
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place within a single biological entity, coevolution is benefi-
cial for the entire organism, where traits coevolve in order
to produce individuals with a higher degree of “fitness”.

Cellular automata (CAs) have been used for years as a
rudimentary proxy for biological organisms. In a prominent
study, Mitchell et al. have successfully used genetic algo-
rithms (GAs) to artificially evolve a single feature, the up-
date function shared by all cells of small radius linear CAs
[1] to perform the density classification task. More recently,
we have conducted a study evolving a different property of
CAs, the underlying network topology of CAs, with compa-
rable success [2]. The resulting evolved topologies are gen-
eral graphs that exhibit social network properties. In this
work, we study a new framework for CA evolution consisting
of the simultaneous evolution of both a single update func-
tion shared by all cells (uniform CA) and the supporting
network topology of the CAs. We hypothesize that evo-
lutionary algorithms (EA) will generate individuals with a
high capacity to solve the task at hand, and develop net-
work topologies supporting higher robustness and resilience
to transient failures than that of strictly regular CAs [2].

In this work, we propose a new framework allowing simul-
taneous evolution of the update function and the underlying
topology of the CA. Coevolution starts with a population
of uniform regular CAs, each with a randomly generated
lookup table. Selected parents at each generation will pro-
duce mutated offspring, which may replace its parents in the
subsequent generation. Mutations affect the topology of the
CA, by rewiring edges, and the update function, by modify-
ing the lookup table. Rewiring causes one end of the edge to
connect to a different cell, thus changing the neighborhood.
The size of the lookup table might need to be adapted to the
growing sizes of the neighborhoods. Indeed, every time the
size of the largest neighborhood increases by 1, the table size
doubles, and the new half of the lookup table is completed
with randomly selected values with equal probability.

CAs are evolved for the density task. The initial pop-
ulation is made of uniform regular (i.e. ring) CAs with a
radius 7 = 2. The termination criterion is satisfied when



the entire population has reached an optimal fitness or a fit-
ness plateau, where improvement becomes marginal or null.
The fitness is defined as the fraction of instances for which
the CA converges to the known density of the initial con-
figuration (IC). At each generation a different set of ICs is
generated for each individual. We use a combination of bi-
nary tournaments over pairs of individuals picked by roulette
wheel selection to generate the next generation. The loser
has a small probability of 1 — p that it will the next popu-
lation, which helps to maintain the diversity, explore larger
portions of the solution landscape, and escape local maxima.
At the end of each evolutionary process, we select the CA in
the 95" percentile of performance (elite population, EP) by
evaluating the entire population on 1,000 instances on ICs
with a density of p =~ 0.5. We replicate all experiments 100
times.

2. DISCUSSION & CONCLUSIONS

In order to compare results with previously proposed evo-
lutionary CAs frameworks, we conduct parallel simulations
for all possible combinations of frameworks (rule only, topol-
ogy only, and coevolution) and sizes N € {99,199, 299}.
Figure 1 shows the results of the performance evaluation of
the elite population (EP). Each column represents a com-
bination of frameworks (UFE, TE, or CE) and CA sizes.
Performance, just like fitness, is normalized to represent the
fraction of correctly classified IC after at most 2N time steps.
We show the consistency of the EP results by showing the
absolute best performance, the average performance, and
the lowest performance. The number in parentheses is the
size of the EP for each case, and gives an estimate of how
rich the solution space is in “good individuals”.
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Figure 1: Performance of Best Evolved CAs.

CAs with a UFE only consistently show the highest aver-
age and top performance above 0.98, they are also the most
steady across all studied CA sizes. However, UFE also shows
the widest deviation between the lowest and the highest per-
formances within the EP. CE CAs come close to performing
as well as UFE, and their deviation is much narrower. Addi-
tionally, the performance clearly degrades as the CAs scale
up. Finally, CA evolving the topology-only (TE) exhibit the
lowest performance across the board, below the performance
of a random uniform draw. Moreover, they are strongly neg-
atively impacted by the scaling of the CA. These results are
also reflected by the number of individuals in each EP. UFE
easily evolves excellent CAs for the density problem as over
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80% of the final population yield a fitness in the 95" per-

centile. This leads us to conclude the UFE solution space is
the smallest, and also the richest in good individuals. The
solution space of CE is much larger for the EA to explore,
and good individuals are fewer as only about 1/5 to 1/3 of
the final population are in the EP. Finally, the most difficult
solution space would be that of topology-only evolution, as
they yield the lowest performance, and the smallest EP at
around 5% of the final population.

We analyze the time progression of our evolutionary CAs
over the 100 generations. We track the development of UFE,
TE, and CE populations’ average fitnesses and the fitness
of the best individual in the CA population. We notice
that the general trends are similar across all combinations
of framework and size. UFE reaches its fitness plateau the
fastest, and is overtaken by TE, although it is much slower.
Best performances are virtually indistinguishable.

EA’s only goal is to optimize the performance of the CAs.
However, looking beyond the performance, we are interested
in studying the properties emerging from the evolved topolo-
gies, and how they differ when obtained solely by topology
evolution, and when the network’s evolution is combined
with adaptations of the update function. The degree distri-
butions reveal a widening of the curve for TE, and a shift
of the peak from all nodes having a degree k = 4 to a ma-
jority of degree k = 5. Although there is some spread in
the degrees, the function is narrowly centered around its
peak, with little deviation, and no extreme values. Coevo-
lution has, on the other hand, facilitated a larger hetero-
geneity in the degree distribution, with a significantly wider
bell shaped curve, and no clear peak at a single value of
the degree k. Additionally, the average path length (APL)
is significantly shorter than expected, and clustering coeffi-
cient (CC) significantly elevated. Together, these properties
suggest that the network structures emerging from artifi-
cial evolution share properties with technological, social, and
other “real-world” networks. Cellular Automata are, despite
their apparent simplicity, powerful models for distributed
computations, provided that an adequate update function
can be found. EAs can evolve highly performant rules to
solve CA computational problems. However, these CAs are
slow and sensitive to perturbations. Evolving the topology
will give rise to faster, more robust CAs. When simultane-
ously evolving the update function and underlying topology,
the resulting CAs are interesting tradeoffs in terms of speed,
robustness, and performance.
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