
Evolutionary Algorithms for the Detection of Structural
Breaks in Time Series

[Extended Abstract]

Benjamin Doerr
Max-Planck-Institut für

Informatik
66123 Saarbrücken, Germany

doerr@mpi-inf.mpg.de

Paul Fischer
DTU Compute

2800 Lyngby, Denmark

pafi@dtu.dk

Astrid Hilbert
Linnaeus University

351 95 Växjö, Sweden
astrid.hilbert@lnu.se

Carsten Witt
DTU Compute

2800 Lyngby, Denmark

cawi@imm.dtu.dk

ABSTRACT

Detecting structural breaks is an essential task for the sta-
tistical analysis of time series, for example, for fitting para-
metric models to it. In short, structural breaks are points
in time at which the behavior of the time series changes.
Typically, no solid background knowledge of the time se-
ries under consideration is available. Therefore, a black-box
optimization approach is our method of choice for detect-
ing structural breaks. We describe a evolutionary algorithm
framework which easily adapts to a large number of statis-
tical settings. The experiments on artificial and real-world
time series show that the algorithm detects break points
with high precision and is computationally very efficient.

A reference implementation is availble at the following
address:
http://www2.imm.dtu.dk/~pafi/SBX/launch.html

1. INTRODUCTION
We describe an evolutionary algorithm-approach for the

problem of detecting structural breaks in time series. A
structural break is a point in time where the behavior of the
time series changes. What precisely a “change of behavior”
is depends on the application. It might be a jump in the
numerical values of the observed data or a change of the
magnitude in the local variance (called volatility in financial
mathematics). Often a statistical model is assumed, that is,
the time series is assumed to be generated by a particular
stochastic process. In this case, a structural break is defined
as a“substantial change”of the type of the underlying model
or of its parameters, see e.g., Davis et al. [1].

It should be clear from the above discussion that there
cannot be a single algorithm for the detection of structural
breaks. We would like to provide a generic framework for
the design of such algorithms, where the user has to supply
the application-specific knowledge, basically a procedure to
evaluate how good a set of points is as structural breaks.
In our approach some candidate break points are selected.

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

Then the user-supplied fitness function is used to evaluate,
how good they correspond to structural breaks. Afterwards
the points are moved, new points are added, or existing ones
are removed. This process is iterated until a stop criterion
is met.

2. AN EA SOLUTION
The statistical problem is stated as follows: A univari-

ate time series is a sequence Y = y0, . . . , yT−1 of real num-
bers, where yt is the observation at time t. For notational
convenience assume that the indexing is by time, i.e., that
the series is equidistant, however, this not essential. The
break points are an integer sequence b0, . . . , bk−1, where bi ∈
{0, . . . , T−1}, and bi < bi+1, for i = 0, . . . , k−2. We assume
that b0 = 0 as it is the starting point of the first interval.
With each break point bi additional model data Bi might be
associated, e.g., parameters for the model which is valid in
the interval [bi, bi+1 − 1].

A candidate solution string X = x0, . . . , xT−1 is defined
as a sequence of length T . Each xi either is the symbol ∗,
meaning “no break point at i” or Bi for “break point at i”,
where the possible parameters of Bi are those of the model
valid for the interval [bi, bi+1 − 1], e.g.

index: 0 1 · · · b1 · · · b2 · · · T − 1
string: B0 ∗ · · · B1 · · · B2 · · · ∗

(1)

The fitness f(X) of X is a non-negative real number. In
the application to structural breaks, the fitness function is
often a sum of a number of terms in the following way: Ev-
ery interval [bi, bi+1−1] between two successive break points
contributes a positive term f(bi, bi+1), e.g., the goodness of
fit of the statistical model described by Bi on that inter-
val. When using goodness of fit, usually a perfect fit can
be achieved, by making every point t in time a breakpoint
and fitting a model to every single observation yt. In or-
der to control the number of break points one introduces a
penalty term p(k) which is a positive, increasing function of
the number k of breakpoints and which is subtracted from
the fitness. Examples of such fitness functions can be found
in the full paper.

We use the following operations. The uniform crossover

119



operation on two parent strings X = x0, . . . , xT−1 and X ′ =
x′

0, . . . , x
′

T−1 is defined in the usual way: A child string C =
c0, . . . , cT−1 is constructed by choosing the values from the
parents with equal probabilities, i.e.,

ci =

{

xi, with probability 1/2;
x′

i, with probability 1/2.

The one-point crossover operation on two parent strings
X = x0, . . . , xT−1 and X ′ = x′

0, . . . , x
′

T−1 is defined in the
usual way: An index k is chosen uniformly at random from
0, 1, . . . , T −1. The child C consist of the first k values from
X and the last T − k values from X ′, i.e.,

C = x0, . . . , xk−1, x
′

k, . . . , x
′

T−1.

Remark: The reason for using both types of crossover is
based on empirical evidence. Uniform crossover quickly im-
proves the fitness. One-point crossover supports the building
block structure of the underlying problem. Both crossover
operations maintain the expected number of break points.
Based on empirical evaluations we have defined the crossover
operations to produce only one child.

For the mutation operation on string X = x0, . . . , xT−1.
consider index i. Let pm be the probability to perform any
mutation at position i. If a mutation is performed at i, let
pb and pe = 1 − pb, denote, respectively, the probabilities
to introduce a breakpoint at i and to (possibly) erase an
existing break point at i. For the application considered,
introducing a break point at position i means to generate a
breakpoint b and a model description B. Details on how this
is implemented for various statistical models can be found
in the full paper.

2.1 Outline of the Basic Algorithm
The input to the procedure is a time series Y of length T .

The algorithm starts by initializing a population ofM strings
of length T each having ks break points, where ks is an ed-
ucated guess for the true number of break points.

The algorithm proceeds in rounds, in every round ex-
actly one of the operations (one-point crossover, uniform
crossover, mutation) is performed. The parent strings X
and X ′ (only X in case of a mutation) are selected at ran-
dom proportional to their fitness. Specifically, the fitnesses
are scaled such that they form a probability distribution ac-
cording to which the strings are drawn. Instead of using
the fitness for the selection one can also use the squared
or exponentiated fitnesses in order to increase the selection
probability of the fittest strings.

The resulting child string C will replace the string Xmin ∈
X with minimum fitness with probability f(C)/(f(C) +
f(Xmin)).

The algorithms is terminated after R rounds or when the
maximum fitness of the best string in X has not been im-
proved within the last R′ rounds. The string with maximum
fitness in the current population is returned.

Remark The decision for not performing a combination
of operations in every step but only a single one is based
on empirical evidence. It seems that mutations “spoil” the
result of crossovers. This happens especially in the later
phase, when a population already has a number of good
strings. The improvement of the fitness is slower when al-
lowing a mutation on top of crossover on the same string.

2.2 Modifications of the Algorithm
The following modifications of the algorithm have been

implemented and evaluated.
Island model: A number of copies of the algorithm is

run, each with its own population, and from time to time
some individuals migrate between populations.

Multi-start: A number of copies of the algorithm, each
with its own population, is run in parallel until termination.
The overall best solution string is returned.

Champions league: This uses a greedy initialization of
the evolutionary algorithm and applies to both of the just
described modifications. The fittest strings from each pop-
ulation are collected into a set C of champions. The evolu-
tionary algorithm is then run with C as initial population.
If C is very large, one can use the M fittest strings from C.

The experiments showed, that multi-start with champions-
league gave the best results.

2.3 Implementation Issues
For our application the number of break points will be

small as compared to the length of the time series, 1% or
less. An explicit representation of a string as in (1) would
then mainly consists of ∗-symbols, which is highly inefficient.
Therefore, a string is implemented as a doubly linked list of
the pair consisting of indices and model data sets Bi.

[b0;B0]←→ [b1;B1]←→ · · · ←→ [bk, Bk]←→ [T ;−]

The last entry is the pair [T ;−] which indicates the position
one after the end of the time series is added for convenience
of the implementation. We assume b0 = 0. Then crossover
and mutation can be performed in time proportional the
number of break points. For the mutation we have to avoid
to perform a coin toss at each index, see [2]. Let pm de-
note the probability that an action (insertion or erasion of
a break point) is done at a given position. The distances
between these positions are distributed according to a ge-
ometric distribution with parameter pm. We traverse the
string starting at index i = 0. When arriving at index i we
generate an integer d from the geometric distribution and
perform a mutation at i+ d . We continue from i+ d in the
same way until we reach an index that is at least T .

Even though crossover and mutation can be performed
in sub-linear time for the problem under consideration, the
computation of the fitness will often still depend on all T
observations of the time series and thus require at least linear
time (in the length of the series). In the full paper we given
an example, where also the fitness can be computed in time
proportional to the number of break points multiplied by
log(T ).

3. REFERENCES
[1] R. Davis, T. Lee, and G. Rodriguez-Yam. Break

detection for a class of nonlinear time series models. J.
of Time Series Analysis, 29:834–867, 2008.

[2] T. Jansen and C. Zarges. Analysis of evolutionary
algorithms: From computational complexity analysis to
algorithm engineering. In Proc. of the 11th ACM
SIGEVO Workshop on Foundations of Genetic
Algorithms (FOGA 2011), pages 1–14. ACM Press,
2011.

120




