
Comparison of Two Methods for Computing Action Values
in XCS with Code-Fragment Actions

Muhammad Iqbal
Victoria University of

Wellington, NZ

muhammad.iqbal@

Will N. Browne
Victoria University of

Wellington, NZ

will.browne@

Mengjie Zhang
Victoria University of

Wellington, NZ

mengjie.zhang@ecs.vuw.ac.nz

ABSTRACT

XCS is a learning classifier system that uses accuracy-based
fitness to learn a problem. Commonly, a classifier rule in
XCS is encoded using a ternary alphabet based condition
and a numeric action. Previously, we implemented a code-
fragment action based XCS, called XCSCFA, where the typi-
cally used numeric action was replaced by a genetic program-
ming like tree-expression. In XCSCFA, the action value in a
classifier was computed by loading the terminal symbols in
the action-tree with the corresponding binary values in the
condition of the classifier rule. This enabled accurate, gen-
eral and compact rule sets to be simply produced. The main
contribution of this work is to investigate an intuitive way,
i.e. using the environmental instance, to compute the action
value in XCSCFA, instead of the condition of the classifier
rule. The methods will be compared in five different Boolean
problem domains, i.e. multiplexer, even-parity, majority-on,
design verification, and carry problems. The environmental
instance based XCSCFA approach had better classification
performance than standard XCS as well as classifier con-
dition based XCSCFA and solved all the problems experi-
mented here. In addition it produced more general and com-
pact classifier rules in the final solution. However, classifier
condition based XCSCFA has the advantage of producing
the optimal classifiers such that they are clearly separated
from the sub-optimal ones in certain domains.

Categories and Subject Descriptors

F.1.1 [Models of Computation]: Genetics-Based Machine
Learning, Learning Classifier Systems

General Terms

Algorithms, Performance

Keywords

Learning Classifier Systems, XCS, XCSCFA, Code-Fragments,
Boolean Problems, Pattern Recognition

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

1. INTRODUCTION
A learning classifier system (LCS) is a rule-based online

learning system that adaptively learns a task by interacting
with an unknown environment and uses evolutionary com-
puting to evolve the rules according to the reinforcement
received from the environment. XCS [24] is a formulation of
LCS that uses accuracy-based fitness to learn the problem.
Each rule in XCS is of the form ‘if condition then action’,
having two parts: a condition and the corresponding action.
Commonly, the condition is represented by a fixed length
bitstring defined over the ternary alphabet {0, 1,#} where
‘#’ is the ‘don’t care’ symbol which can be either 0 or 1;
and the action is represented by a numeric constant.

Previously, we implemented a code-fragment action based
XCS, called XCSCFA [13], in order to evolve optimum pop-
ulations; where the typically used numeric action was re-
placed by a tree-expression similar to a tree generated in
genetic programming [19]. In XCSCFA, the action value in
a classifier was computed by loading the terminal symbols
in the code-fragment action with the corresponding binary
values in the condition of the classifier rule. A ‘#’ symbol
in the condition of the classifier rule was randomly treated
as 0 or 1, resulting in inconsistent actions. The XCSCFA
system has outperformed standard XCS in various Boolean
problem domains [15].

In the work presented here, the action value of a classifier
rule in XCSCFA will be computed using the environmental
state, instead of the condition of the classifier rule. The
results will be tested and compared in five different Boolean
problem domains, i.e. multiplexer, even-parity, majority-on,
design verification, and carry problems. These are complex
problem domains having overlapping, niche imbalance, and
epistatic properties (see section 4).

2. BACKGROUND

2.1 Learning Classifier Systems
Traditionally, an LCS represents a rule-based agent that

incorporates evolutionary computing and machine learning
to solve a given task by interacting with a previously un-
known environment. After observing the current state of
the environment, the agent performs an action and the en-
vironment provides a reward. The generalization property
in LCS allows a single rule to cover more than one state
provided that the action-reward mapping is similar. Tradi-
tionally, generalization in LCS is achieved by the use of the
special ‘don’t care’ symbol ‘#’ in classifier conditions, which

1235

matches any value of a specified attribute in the vector de-
scribing the current environmental state.

XCS is a formulation of LCS that uses accuracy-based fit-
ness to learn the problem by forming a complete mapping
of states and actions to rewards. In XCS, the learning agent
evolves a population [P] of classifiers, where each classifier
consists of a rule and a set of associated parameters esti-
mating the quality of the rule. Each classifier has three
main parameters: 1) prediction p, an estimate of the pay-
off expected from the environment if its action is executed;
2) prediction error ǫ, an estimate of the errors between the
predicted payoff and the actually received reward; and 3)
fitness F , an estimate of the classifier’s utility. In addition,
each classifier keeps an experience parameter exp, which is
a count of the number of times it has been updated, and a
numerosity parameter n, which is a count of the number of
copies of each unique classifier.

XCS operates in two modes, explore and exploit. In the
explore mode, the agent attempts to obtain information
about the environment and describes it by creating the de-
cision rules, using the following steps:

• observes the current state s of the environment, usually
represented by a fixed length bitstring defined over the
binary alphabet {0, 1}.

• selects classifiers from the classifier population [P] that
have conditions matching the state s, to form the match
set [M].

• performs covering: for every action ai ∈ A in the set
of all possible actions, if ai is not represented in [M]
then a random classifier is generated with a given gen-
eralization probability such that it matches s and ad-
vocates ai, and added to the set [M] as well as to the
population [P].

• forms a system prediction array, P (ai) for every ai ∈ A
that represents the system’s best estimate of the payoff
should the action ai be performed in the state s.

• selects an action a to explore (probabilistically or ran-
domly) and selects all the classifiers in [M] that advo-
cated a to form the action set [A].

• performs the action a, records the reward r received
from the environment, and uses r to update the asso-
ciated parameters of all classifiers in [A].

• when appropriate, implements rule discovery by apply-
ing an evolutionary mechanism (commonly a genetic
algorithm) in the action set [A], to introduce new clas-
sifiers to the population.

Additionally, the explore mode may perform subsumption
deletion to merge specific classifiers into any more general
and accurate classifiers. Subsumption deletion is a way of
biasing the genetic search towards more general, but still ac-
curate, classifiers [3]. It also effectively reduces the number
of classifier rules in the final population [18]. In contrast to
the explore mode, in the exploit mode the agent does not
attempt to discover new information and simply performs
the action with the best predicted payoff. The exploit mode
is also used to test learning performance of the agent.

Various richer encoding schemes have been investigated
to represent high level knowledge in LCS in an attempt to
obtain compact classifier rules [2,7,12], to reach the optimal
performance faster [20,22], to approximate functions [4,25],
to learn problems involving a large number of actions [21],
to develop useful feature extractors [1], and to identify and
process building blocks of knowledge [5,16].

2.2 Previous Work on Code-Fragment Classi-
fier Systems

The main goal of the research direction is to develop a scal-
able classifier system. To achieve this goal, we implemented
a GP-like rich encoding scheme, in the conditions of classifier
rules, in an XCS based system to identify building blocks of
knowledge [17]. Then, the fitter building blocks of informa-
tion were extracted, in the form of tree-like code fragments,
from low dimensional problems and reused in learning more
complex high scale problems in the domain [11,16].

Subsequently, we implemented the code-fragment encod-
ing scheme in action of a classifier rule in XCSCFA to evolve
optimum populations [13]. The XCSCFA system outper-
formed standard XCS in various Boolean problem domains [15].
We also implemented code-fragment based action in real-
valued XCSRCFA to compute continuous action [12]. Re-
cently, we implemented a state machine based XCS classifier
system, known as XCSSMA [14], where the action in a clas-
sifier rule was replaced by a Moore state machine [23]. XC-
SSMA produced the optimal classifiers in the final solution
set to provide general scalable solutions to solve any n-bits
even-parity problems and any n+n bits carry problems.

3. XCS WITH CODE-FRAGMENT ACTION
In XCSCFA, the typically used numeric action in a clas-

sifier rule is replaced by a GP-tree like code fragment. Each
code fragment is a binary tree having maximum seven nodes.
The function set for the action trees is {AND, OR, NOT,
NAND, NOR} and the terminal set is {D0, D1, D2, ... Dn-
1}, where n is the length of an environmental instance. A
population of classifiers having code-fragment actions is il-
lustrated in Table 1. The symbols &, |, ∼, d, and r denotes
AND, OR, NOT, NAND, and NOR operators respectively.
The code-fragment trees are shown in postfix form.

Table 1: A population of classifiers in XCSCFA.
No. Condition Action
1 0 1 # 1 # 0 D5 D5 d
2 1 0 0 0 1 # D4
3 0 1 # 1 # 1 D3 D0 | ∼

4 0 0 0 # # # D1 D4 r
5 1 1 # # 0 0 D1 D4 &
...

In XCSCFA, the action value is computed by loading the
terminal symbols in the action tree with corresponding bi-
nary values from the condition in the classifier rule, and a
‘don’t care’ symbol in the condition is randomly treated as
0 or 1. For example, consider the classifier rule shown in
Fig. 1 and the environmental input message ‘110010’. In
the condition of this classifier rule, D2 is a ‘#’ symbol. To
compute the action value in this classifier rule, D2 will be
loaded with 0 or 1 randomly. Now, if the binary value taken
for D2 is 0 then the action will be 0, otherwise 1. Hence, the
action value in XCSCFA may vary, even for the same en-
vironmental instance, at different times during the training
process; unlike standard XCS.

XCS keeps a complete map, i.e. the classifiers advocating
consistently correct classification (and hence predicting ac-
curate environmental reward of say 1000) as well as the clas-
sifiers advocating consistently incorrect classification (and
hence predicting accurate environmental reward of say 0).

1236

Condition
Action

D0 D1 D2 D3 D4 D5

1 1 # 0 1 0

Figure 1: A classifier with code-fragment action.

It is noted that the building blocks of information in the
condition of an accurate incorrect classifier are exactly the
same as in the counterpart correct classifier. For example,
‘000### : 1 → 0’ is an accurate incorrect classifier which
has the same condition as that in the counterpart accurate
correct classifier ‘000### : 0 → 1000’. The rule discovery
operation is applied in the action set, which is formed by the
classifiers advocating a certain action, commonly selected at
random, and covering the currently observed environmental
input. As all the classifiers in an action set advocate the
same action, the correct and incorrect classifiers cannot oc-
cur in the same action set, so cannot be simultaneously used
in breeding of the new classifiers. This means, in an XCS
system that although both correct and incorrect classifiers
are kept throughout the learning of the system, the building
blocks of information in them are not efficiently exploited as
they are not allowed to take part in the same breeding op-
eration. The XCS ability to keep a complete map combined
with the inconsistent actions may preserve important build-
ing blocks of information in XCSCFA. Due to inconsistent
action values, the incorrect classifiers can occur in the action
set as correct classifiers in XCSCFA so can be used for the
production of good classifiers. For details of the rule discov-
ery operation in XCSCFA, the interested reader is referred
to the original XCSCFA paper [13].

In this work, a more intuitive implementation of XCSCFA
is presented where the action value is computed by loading
the terminal symbols with the corresponding binary values
from the environmental input instead of the classifier con-
dition. For sake of readability the two implementations of
XCSCFA are named XCSCFAc (i.e. classifier based) and
XCSCFAe (i.e. environment based). It is to be noted that
a classifier rule in XCSCFAe can have different action val-
ues for different environmental instances, but for the same
instance it will have the same action value at any time dur-
ing the training process. Previously in XCSCFAc [13], it
was necessary for a subsumer classifier to have a consistent
action value as a precaution to avoid any volatility in the
performance of the classifier system. In the work presented
here this restriction has been removed in order to perform
fair comparison with XCS; and to determine whether the
XCSCFAc and XCSCFAe systems can produce more com-
pact final solutions.

4. EXPERIMENTAL DESIGN

4.1 The Problem Domains
The problem domains used in the experimentation are

the multiplexer, even-parity, majority-on, design verifica-
tion, and carry problems.

A multiplexer is an electronic circuit that accepts input
strings of length n = k + 2k, and gives one output. The
values of the k so-called address bits are used to select one
of the 2k remaining data bits to be given as output. For
example in 6-bits multiplexer, if the input is 011101 then
the output will be 1 as the first two bits 01 represent the
index 1 (in base ten), which is the second bit following the
address. Multiplexer problems are highly non-linear and
have epistasis, i.e. importance of data bits is dependent on
address bits.

In even-parity problems, the output depends on the num-
ber of ones in the input instance. If the number of ones
is even, the output will be one, and zero otherwise. Using
the ternary alphabet based conditions with the static nu-
meric action, no useful generalizations can be made for the
even-parity problems.

The majority-on problems are similar to even-parity prob-
lems in that the output depends on the number of ones in
the input instance. If the number of ones is greater than the
number of zeros, the problem instance is of class one, oth-
erwise class zero. In majority-on problem domain, the com-
plete solution consists of strongly overlapping classifiers, so
is therefore difficult to learn. For example, ‘1##11:1’ and
‘11#1#:1’ are two maximally general and accurate classi-
fiers, but they overlap in the “11*11” subspace.1

Digital design verification is a real world problem domain
where a digital design is verified, to discover bugs, before
manufacturing the actual system. The design verification
problem experimented here is a 7-bits Boolean example of
a simulation-based DV problem, known as DV1, introduced
by Ioannides et al. in [10]. The Sigma notation [8] is a com-
pact representation to denote a Boolean function by listing
each onset row from the truth table of the function. For
example, the function xy+ xy can be denoted by the Sigma
notation Σ(1, 2). The DV1 problem in the Sigma notation
is represented as Σ(1, 2, 3, 8, 9, 10, 11, 13, 14, 24, 25, 26,
27, 28, 30, 40, 41, 42, 43, 46, 47, 56, 57, 58, 59, 61, 65, 66,
67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86,
88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105,
106, 107, 109, 110, 113, 114, 115, 117, 118, 121, 122, 123,
125, 126, 127). Similar to majority-on problems, the com-
plete solution for the DV1 problem consists of overlapping
classifiers.

In the carry problem, two binary numbers of the same
length are added. If the result triggers a carry, then the
output is one otherwise zero. For example, in case of three
bits numbers 101 and 010, the output is 0, whereas for the
numbers 110 and 100 the output is 1. Similar to majority-on
and DV1 problems, the complete solution in carry problem
domain consists of overlapping classifiers, and in addition it
is a niche imbalance problem domain.

4.2 Experimental Setup
The system uses the following parameter values, com-

monly used in the literature, as suggested by Butz and
Wilson in [6]: learning rate β = 0.2; fitness fall-off rate
α = 0.1; prediction error threshold ǫ0 = 10; fitness expo-
nent ν = 5; threshold for GA application in the action set
θGA = 25; two-point crossover with probability χ = 0.8; mu-
tation probability µ = 0.04; experience threshold for classi-
fier deletion θdel = 20; fraction of mean fitness for dele-
tion δ = 0.1; classifier experience threshold for subsumption

1Here, * can be 0, 1, or #.

1237

θsub = 20; probability of ‘don’t care’ symbol in covering
P# = 0.33; reduction of the fitness fitnessReduction = 0.1;
and the selection method is tournament selection with tour-
nament size ratio 0.4. Both GA subsumption and action set
subsumption are activated. The number of classifiers used is
2000 and the number of training examples is half a million,
in all the experiments conducted here. Explore and exploit
problem instances are alternated. The reward scheme used
is 1000 for a correct classification and 0 otherwise. All the
experiments have been repeated 30 times with a known dif-
ferent seed in each run. Each result reported in this work is
average of the 30 runs.

In all graphs presented here, the X-axis is the number
of problem instances used as training examples, the Y-axis
is the classification performance measured as the moving
average over the last 1000 exploit problem instances, and
the error bars show standard deviation in the 30 runs.

5. RESULTS

5.1 The Multiplexer Problem Domain
The results of standard XCS and the two code-fragment

action based XCSCFA methods for the 20-bits multiplexer
problem are shown in Fig. 2. All of the three methods suc-
cessfully solved the problem, but XCSCFAc took more in-
stances to reach a similar performance level.

Figure 2: Results of 20-bits multiplexer problem.

The multiplexer is a niche balanced problem domain and
there exists a complete solution that does not contain any
overlapping classifier rules. Hence, the standard XCS effec-
tively solved the 20-bits multiplexer problem. The XCSCFA
methods used more training examples due to the increased
search space.

5.2 The Even-Parity Problem Domain
The performance of standard XCS and the XCSCFAmeth-

ods in learning 7-bits even-parity problem is shown in Fig. 3.
It is observed that standard XCS and XCSCFAc could not
learn the 7-bits even-parity problem, whereas XCSCFAe has
successfully solved it.

The even-parity domain does not allow generalizations
if the standard ternary alphabet based encoding scheme
is used with static numeric action. So each bit must be
specific for a rule to be accurate, requiring 28 such rules
for the 7-bits even-parity problem. The standard XCS and
XCSCFAc methods were not able to evolve enough accurate

Figure 3: Results of 7-bits even-parity problem.

rules, given the experimental setup in section 4.2. However,
the XCSCFAe method solved the 7-bits even-parity problem
by producing generalized classifier rules, see section 6.

5.3 The Majority-on Problem Domain
The complete solution of the majority-on problem do-

main consists of strongly overlapping classifiers in the fi-
nal solution, which makes it a hard problem to learn. The
performance of standard XCS and the XCSCFA methods
in learning 5-bits majority-on problem is shown in Fig. 4.
It is observed that standard XCS reached approximately
94% performance, but could not completely solve the 5-bits
majority-on problem, whereas the XCSCFA methods have
solved it using approximately 10, 000 training examples.

Figure 4: Results of 5-bits majority-on problem.

5.4 The Design Verification Problem Domain
The performance of standard XCS and the XCSCFAmeth-

ods in learning the DV1 problem is shown in Fig. 5. It is
observed that standard XCS achieved approximately 97%
performance level, but could not completely solve the DV1
problem, whereas the XCSCFA methods have successfully
solved it. Ioannides et al. [9] improved the performance
of XCS in the DV1 problem to 99.76%, by modifying the
standard fitness update procedure and using an individually
computed learning rate for each classifier, but still could not
completely solve it.

5.5 The Carry Problem Domain
The complete solution in the carry problem domain con-

sists of overlapping classifiers, in addition it is a niche im-

1238

Figure 5: Results of the DV1 problem.

balance domain, which makes it very difficult to learn. The
performance of standard XCS and the XCSCFA methods in
learning 3+3 bits carry problem is shown in Fig. 6. It is ob-
served that standard XCS reached approximately 97% per-
formance, but could not completely solve the 3+3 bits carry
problem, whereas the XCSCFA methods have successfully
solved it.

Figure 6: Results of 3+3 bits carry problem.

6. ANALYSIS OF EVOLVED CLASSIFIERS

6.1 The Multiplexer Problem Domain
Every optimal classifier, encoded in ternary representa-

tion, for the 20-bits multiplexer problem contains five spe-
cific bits in the condition. Four of these are the address
bits and the fifth is corresponding data bit, see section 4.1,
e.g. ‘0101#####1########## : 1’. The solu-
tion obtained using XCS contains both optimal and sub-
optimal classifier rules, see Table 2, that needs extensive
post-processing to separate these rules [18]. The XCSCFAc

system has the advantage of producing the optimal classi-
fiers separated from the sub-optimal ones with respect to
the numerosity values, see Table 3 and refer to [13] for more
examples and details.

The XCSCFAe method produced more general and com-
pact classifiers than the other two methods, see Table 4.
These may appear over-general as they have more ‘#’ sym-
bols than the optimal ternary representation classifiers. How-

ever, they are perfectly accurate for all the matching envi-
ronmental instances due to the referencing of specific bits in
the code-fragment action. For example, the classifier num-
ber 10 ‘1010################ : D14’ does not
contain any specific data bit in the condition, but the ad-
dressed data bit is in the action, i.e. D14. Now, the action
value of this classifier is 1 if the environmental bit D14 is 1
and 0 otherwise. Therefore, it is correct for all the matching
instances. It is to be noted that the compact optimal classi-
fiers produced in XCSCFAe are not clearly separated from
the sub-optimal ones; unlike XCSCFAc.

The XCSCFA systems have larger final populations than
XCS due to the multiple genotypes to a single phenotype
mapping in the code-fragment action trees. As there are
multiple classifiers in the XCSCFA systems for a correspond-
ing single classifier in standard XCS, the fitness values of the
final classifiers are relatively smaller in the former systems.

6.2 The Majority-On Problem Domain
The complete solution in the majority-on problem domain

consists of overlapping classifiers, so is hard to learn. It is
observed that standard XCS produced overgeneral classi-
fiers in the 5-bits majority-on problem, see Table 5. For
example, the first classifier rule ‘#0#0# : 0’ is an overgen-
eral classifier which matches eight environmental instances:
‘00000’, ‘00001’, ‘00100’, ‘00101’, ‘10000’, ‘10001’, ‘10100’,
and ‘10101’. It is a “dangerous” classifier because it is cor-
rect for all the matching instances except ‘10101’, so likely
to be considered accurate (ǫ < ǫ0) and therefore, it is highly
likely that it will subsume the specific but correct classifier
‘10101 : 0’ in the training process.

There are a few maximally general and accurate classifiers
in the final solution, and they have relatively low experience
values, e.g. the classifiers number 11 to 15 in the Table 5.
These low experience values indicate that the overgeneral
classifiers like number 1 and 9, having ǫ < ǫ0, would have
subsumed the otherwise needed accurate classifiers, resulting
in poor performance of the system.

The XCSCFA systems managed to avoid overgeneral clas-
sifier rules in the final solutions, see Table 6 and Table 7.
The XCSCFAe method produced more general (and still ac-
curate) classifiers than the other two methods, similar to
the multiplexer domain. For example, the classifier number
9 ‘1##1# : D2 D1 D4 | |’ matches eight environmental
instances ‘10010’, ‘10011’, ‘10110’, ‘10111’, ‘11010’, ‘11011’,
‘11110’, and ‘11111’. Now, the action value of this classifier
is 1 if any of the environmental bits D1, D2, or D4 is 1.
Therefore, it is correct for all the matching instances.

6.3 The Even-Parity Problem Domain
In standard XCS with numeric action, it is not possible

for a classifier rule to have a ‘#’ symbol in the condition and
still be accurate for the even parity problems. However, it is
interesting to note that XCSCFAe was able to produce accu-
rate general classifier rules having a ‘#’ symbol in the con-
dition for the 7-bits even parity problem, see Table. 8. For
example, the second classifier rule in Table. 8 is ‘101010# :
D6’ which matches two environmental instances, ‘1010100’
and ‘1010101’; and the action value is the binary value of the
last symbol in the environmental instance, i.e. D6. There-
fore the advocated action for the problem instance ‘1010100’
is 0 and for ‘1010101’ is 1, and both are accurate. It is to be
noted that in the 7-bits even parity problem, the classifiers

1239

Table 2: A sample of classifiers from final solution obtained in XCS for the 20-bits multiplexer problem.
No. Condition Action n F ǫ p exp

1 0010##0############# 0 24 0.81 0 1000 455
2 00001############### 0 23 0.92 0 0 7281
3 0010##0############# 1 22 0.79 0 0 7007
4 0101#####1########## 1 19 0.62 0 1000 7542
5 0111#######0######## 1 18 0.66 0 0 7358
6 0110######1######### 1 17 0.69 0 1000 7324
7 0111#######1######## 0 15 0.53 0 0 6013
8 1010##########1##### 1 14 0.64 0 1000 3841
9 00000############### 0 11 0.54 0 1000 74

10 00#01#1############# 1 8 0.22 0 1000 1131
11 011#######00######## 1 8 0.23 0 0 1810
12 11#0############0#0# 0 8 0.27 0 1000 2483
13 0#000###0########### 0 8 0.29 0 1000 6435
14 00#1#1#1############ 0 8 0.23 0 0 7170
15 000#00############## 1 7 0.21 0 0 193

Table 3: A sample of classifiers from final solution obtained in XCSCFAc for the 20-bits multiplexer problem.
No. Condition Code-Fragment Action n F ǫ p exp

1 1011###########1#### D2 D0 & D0 & 9 0.24 0 1000 586
2 0010##0############# D6 9 0.28 0 1000 1076
3 1100############1### D1 D13 | ∼ 9 0.35 0 0 1455
4 1001#########0###### D13 D9 d D13 D9 d d 9 0.29 0 1000 2080
5 0111#######1######## D0 D0 d D0 D0 d r 9 0.23 0 0 4894
6 1000########1####### D2 D2 d D2 d 8 0.2 0 1000 156
7 1000########0####### D6 D0 ∼ d 8 0.24 0 0 1563
8 0111#######0######## D11 D11 D13 & r 8 0.25 0 0 2226
9 0101#####0########## D11 D0 & D11 D0 & & 8 0.36 0 1000 2494

10 1100############1### D3 D2 d ∼ 8 0.31 0 0 2445
11 1111###############1 D3 8 0.27 0 1000 4295
12 1011###########1#### D0 ∼ ∼ 8 0.21 0 1000 5468
13 1100############1### D11 D16 | ∼ 8 0.32 0 0 5657
14 1011###########0#### D15 D15 d 7 0.23 0 0 358
15 1010##########1##### D14 D1 r D1 r 7 0.21 0 1000 405

Table 4: A sample of classifiers from final solution obtained in XCSCFAe for the 20-bits multiplexer problem.
No. Condition Code-Fragment Action n F ǫ p exp

1 010#####0########### D9 D3 & ∼ 12 0.22 0 0 1968
2 1110################ D0 D18 d 12 0.25 0 0 3659
3 1110################ D18 ∼ 12 0.22 0 0 13580
4 1000################ D2 D12 r 11 0.19 0 0 5094
5 1000################ D12 D0 D0 d r 11 0.2 0 0 12093
6 0010################ D2 D6 d D2 D6 d r 10 0.16 0 1000 1944
7 1111################ D3 D1 9 D2 & d 10 0.16 0 0 5939
8 1100################ D16 D2 r 9 0.19 0 0 1859
9 1011################ D15 ∼ ∼ 9 0.18 0 1000 4804

10 1010################ D14 9 0.16 0 1000 5660
11 1011################ D15 ∼ 9 0.2 0 0 5843
12 0100####0########### D2 ∼ D2 ∼ | 9 0.19 0 0 3916
13 0010################ D6 ∼ 9 0.16 0 0 7796
14 0000################ D4 ∼ ∼ 9 0.19 0 1000 10549
15 101############1#### D14 D3 r ∼ 8 0.1 0 1000 1882

obtained using XCSCFAe have sufficiently higher fitness val-
ues than other domains, because it is relatively difficult to
produce multiple classifiers covering the same niche. This is
unlikely in other problem domains such as the multiplexer
and majority-on problems.

Similar to standard XCS, the XCSCFAc method could not
produce accurate general classifier rules in the 7-bits even
parity problem, and failed to solve it with this setup. As a
result of the generalized classifiers in XCSCFAe, the number
of classifiers required in the final solution set reduced to half

of the number of specific classifiers needed otherwise and it
successfully solved the 7-bits even parity problem. It is to
be noted that there is just one ‘#’ symbol in the condition of
a general classifier produced in the XCSCFAe approach for
the 7-bits even-parity problem. In XCSCFAc the classifiers
having just one ‘#’ symbol cannot be consistently accurate
in the even-parity domain because the ‘#’ symbol is ran-
domly treated 0 or 1 in XCSCFAc to compute the action
value of a classifier.

1240

Table 5: A sample of classifiers from final solution obtained in XCS for the 5-bits majority-on problem.
No. Condition Action n F ǫ p exp

1 #0#0# 0 108 0.93 0.09 999.99 18453
2 1#1## 1 93 0.7 203.53 799.51 238
3 ##1#1 1 88 0.1 155.47 958.68 1414
4 #0#0# 1 83 0.37 23.34 4.09 1955
5 11### 0 74 0.15 136.84 46.46 2103
6 0#0## 0 66 0.45 11.34 998.47 4883
7 ##11# 0 64 0.02 181.66 71.84 18909
8 0##0# 1 57 0.47 193.97 128.22 2164
9 ##0#0 1 57 0.71 4.67 0.54 2104

10 ##00# 0 50 0.01 106.5 973.67 7352
11 1#11# 0 22 0.93 0 0 66
12 #00#0 0 15 0.58 0 1000 62
13 11#10 1 3 0.53 0.72 1000 23
14 111## 0 1 0.36 5.15 0 3
15 0#00# 0 1 0.13 4.47 1000 4

Table 6: A sample of classifiers from final solution obtained in XCSCFAc for the 5-bits majority-on problem.
No. Condition Code-Fragment Action n F ǫ p exp

1 00111 D1 D0 r 10 0.21 0 1000 3554
2 00101 D2 D4 & D4 & 7 0.14 0 0 1421
3 01001 D0 D1 D4 d r 7 0.14 0 0 1325
4 10101 D3 D3 & D1 | 7 0.14 0 0 1593
5 00101 D2 D4 d D2 D3 r | 7 0.14 0 1000 1703
6 01010 D3 D1 d D3 D1 d | 7 0.16 0 1000 1896
7 0#00# D1 D0 & 6 0.11 0 1000 139
8 100#0 D0 D0 d 6 0.11 0 1000 70
9 000## D2 D0 & D2 D0 & r 6 0.11 0 0 247

10 #1000 D4 D1 D2 r r 6 0.13 0 0 204
11 #1000 D1 D4 r 6 0.1 0 1000 376
12 1#000 D0 ∼ D3 | 6 0.1 0 1000 429
13 01010 D3 D1 d D3 D3 d | 6 0.12 0 1000 234
14 1#11# D0 6 0.11 0 1000 923
15 11#10 D3 D4 & D3 D4 & | 6 0.09 0 0 467

Table 7: A sample of classifiers from final solution obtained in XCSCFAe for the 5-bits majority-on problem.
No. Condition Code-Fragment Action n F ǫ p exp

1 00#1# D2 D4 d D2 D4 d | 15 0.13 0 0 3159
2 1##1# D1 D4 | D2 D2 | r 13 0.12 0 0 10996
3 1#01# D1 D4 | D1 D4 | d 13 0.12 0 0 16004
4 011## D3 D4 r 13 0.12 0 0 17314
5 #1#10 D2 D0 r D3 & 13 0.11 0 0 19667
6 ###00 D1 D2 D0 & d 11 0.1 0 0 6641
7 101#1 D1 D4 ∼ | 11 0.11 0 0 2382
8 #1#00 D2 D0 & D2 D0 & d 11 0.1 0 0 5579
9 1##1# D2 D1 D4 | | 11 0.1 0 1000 14545

10 0#01# D1 D4 d ∼ 11 0.09 0 1000 11127
11 #1#10 D2 D0 | D2 D0 | | 10 0.09 0 1000 2927
12 ##100 D1 D0 & 10 0.08 0 1000 6826
13 #01#0 D3 D0 & D0 & 10 0.09 0 1000 11246
14 0#0#1 D1 D3 d ∼ 9 0.08 0 1000 1017
15 #011# D0 D4 | D0 D4 | | 9 0.07 0 1000 2093

7. CONCLUSIONS
The main aim of this work was to investigate the envi-

ronmental instance based action value computation in XC-
SCFA. The environmental instance-based XCSCFAe system
successfully solved all the experimented problems from five
different complex Boolean domains whereas the classifier’s
condition-based XCSCFAc and the standard XCS systems
failed in learning one and four of the five problems respec-
tively. The XCSCFAe system produced more generalized
classifiers, but the XCSCFAc system has the advantage of

producing the optimal classifiers separated from the sub-
optimal ones in certain domains.

It is anticipated that the XCSCFA systems outperformed
standard XCS due to the following two properties of code-
fragment based actions: 1) the ability in all accuracy-based
systems to keep a complete map combined with inconsis-
tent actions in XCSCFA systems preserve important build-
ing blocks of information, and 2) multiple genotypes for a
single phenotype action provide diversity and redundancy,
resulting in the robust XCSCFA systems especially in the

1241

Table 8: A sample of classifiers from final solution obtained in XCSCFAe for the 7-bits even parity problem.
No. Condition Code-Fragment Action n F ǫ p exp

1 10#1011 D2 22 0.99 0 0 2097
2 101010# D6 19 0.97 0 1000 1092
3 1011#10 D1 D4 r 17 1 0 1000 576
4 000011# D6 17 0.98 0 0 2016
5 1#01000 D1 D1 | D1 D1 | d 15 0.86 0 1000 548
6 1011#00 D4 D2 d D4 D2 d & 15 0.99 0 0 611
7 00#1011 D2 ∼ ∼ 15 0.99 0 1000 2163
8 010#100 D3 15 0.94 0 0 2828
9 11010#1 D5 D5 & D5 D5 & d 14 0.88 0 1000 672

10 101010# D0 D6 d 14 0.98 0 0 1142
11 00#0000 D2 14 0.99 0 0 3537
12 111110# D6 D6 d 13 0.98 0 0 972
13 00#0001 D1 D2 | D1 D2 | | 13 1 0 1000 1400
14 00#0010 D2 D6 r 13 0.84 0 0 1715
15 0#01110 D4 D1 D1 d & 13 0.96 0 0 1818

overlapping natured problems. These two properties will be
experimentally verified in the future. In the work presented
here, only Boolean classification problems were tested. The
XCSCFA systems will be extended and tested for multi-
step problems and the problems involving more than two
actions.

8. REFERENCES

[1] M. Ahluwalia and L. Bull. A Genetic Programming Based
Classifier System. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 11–18, 1999.

[2] L. Bull and T. O’Hara. Accuracy-based Neuro And
Neuro-Fuzzy Classifier Systems. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages
905–911, 2002.

[3] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson.
Toward a Theory of Generalization and Learning in XCS.
IEEE Transactions on Evolutionary Computation,
8(1):28–46, 2004.

[4] M. V. Butz, P. L. Lanzi, and S. W. Wilson. Function
Approximation With XCS: Hyperellipsoidal Conditions,
Recursive Least Squares, and Compaction. IEEE
Transactions on Evolutionary Computation, 12(3):355–376,
2008.

[5] M. V. Butz, M. Pelikan, X. Llorà, and D. E. Goldberg.
Automated Global Structure Extraction for Effective Local
Building Block Processing in XCS. Evolutionary
Computation, 14(3):345–380, 2006.

[6] M. V. Butz and S. W. Wilson. An Algorithmic Description
of XCS. Soft Computing, 6(3-4):144–153, 2002.

[7] H. H. Dam, H. A. Abbass, C. Lokan, and X. Yao.
Neural-Based Learning Classifier Systems. IEEE
Transactions on Knowledge and Data Engineering,
20(1):26–39, 2008.

[8] S. P. Dandamudi. Fundamentals of Computer Organization
and Design. Springer, 2003.

[9] C. Ioannides, G. Barrett, and K. Eder. Improving XCS
Performance on Overlapping Binary Problems. In
Proceedings of the Congress on Evolutionary Computation,
pages 1420–1427, 2011.

[10] C. Ioannides, G. Barrett, and K. Eder. XCS Cannot Learn
All Boolean Functions. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1283–1290,
2011.

[11] M. Iqbal, W. N. Browne, and M. Zhang. Extracting and
Using Building Blocks of Knowledge in Learning Classifier
Systems. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 863–870, 2012.

[12] M. Iqbal, W. N. Browne, and M. Zhang. XCSR with
Computed Continuous Action. In Proceedings of the
Australasian Joint Conference on Artificial Intelligence,
pages 350–361, 2012.

[13] M. Iqbal, W. N. Browne, and M. Zhang. Evolving
Optimum Populations with XCS Classifier Systems. Soft
Computing, 17(3):503–518, 2013.

[14] M. Iqbal, W. N. Browne, and M. Zhang. Extending
Learning Classifier System with Cyclic Graphs for
Scalability on Complex, Large-Scale Boolean Problems. In
Proceedings of the Genetic and Evolutionary Computation
Conference, 2013. to appear.

[15] M. Iqbal, W. N. Browne, and M. Zhang. Learning
Overlapping Natured and Niche Imbalance Boolean
Problems Using XCS Classifier Systems. In Proceedings of
the Congress on Evolutionary Computation, 2013. to
appear.

[16] M. Iqbal, W. N. Browne, and M. Zhang. Reusing Building
Blocks of Extracted Knowledge to Solve Complex,
Large-Scale Boolean Problems. IEEE Transactions on
Evolutionary Computation, 2013. under review.

[17] M. Iqbal, M. Zhang, and W. N. Browne. Automatically
Defined Functions for Learning Classifier Systems. In
Proceedings of the Genetic and Evolutionary Computation
Conference (Companion), pages 375–382, 2011.

[18] T. Kovacs. Evolving Optimal Populations with XCS
Classifier Systems. Technical Report CSR-96-17 and
CSRP-9617, University of Birmingham, UK, 1996.

[19] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. The MIT Press,
1992.

[20] P. L. Lanzi. XCS with Stack-Based Genetic Programming.
In Proceedings of the Congress on Evolutionary
Computation, pages 1186–1191, 2003.

[21] P. L. Lanzi and D. Loiacono. Classifier Systems that
Compute Action Mappings. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages
1822–1829, 2007.

[22] D. Loiacono, A. Marelli, and P. Lanzi. Support Vector
Machines for Computing Action Mappings in Learning
Classifier Systems. In Proceedings of the Congress on
Evolutionary Computation, pages 2141–2148, 2007.

[23] E. F. Moore. Gedanken-experiments on Sequential
Machines. In Automata Studies: Annals of Mathematics
Studies, pages 129–153. Princeton University Press, 1956.

[24] S. W. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[25] S. W. Wilson. Classifiers that Approximate Functions.

Natural Computing, 1:211–233, 2002.

1242

	Introduction
	Background
	Learning Classifier Systems
	Previous Work on Code-Fragment Classifier Systems

	XCS with Code-Fragment Action
	Experimental Design
	The Problem Domains
	Experimental Setup

	Results
	The Multiplexer Problem Domain
	The Even-Parity Problem Domain
	The Majority-on Problem Domain
	The Design Verification Problem Domain
	The Carry Problem Domain

	Analysis of Evolved Classifiers
	The Multiplexer Problem Domain
	The Majority-On Problem Domain
	The Even-Parity Problem Domain

	Conclusions
	References

