
Adaptive Artificial Datasets Through Learning Classifier
Systems for Classification Tasks

Syahaneim Marzukhi
Faculty of Engineering
Victoria University of

Wellington (VUW), Wellington,
New Zealand

marzuksyah@myvuw.ac.nz

Will N. Browne
Faculty of Engineering
Victoria University of

Wellington (VUW), Wellington,
New Zealand

will.browne@ecs.vuw.ac.nz

Mengjie Zhang
Faculty of Engineering
Victoria University of

Wellington (VUW), Wellington,
New Zealand

mengjie.zhang@ecs.vuw.ac.nz

ABSTRACT
In existing artificial classification systems, the problem do-
main is created and controlled by humans. Humans set up
and tune the problem domain, such as determining the prob-
lem’s complexity. If humans can set up the problem appro-
priately then the machines can extract beneficial knowledge
to solve classification task. This paper introduces an au-
tonomous classification-problem generation approach. The
classification problem’s difficulty is adapted based on the
classification agent’s performance within the defined attributes.
An automated problem generator has been created to evolve
the simulated datasets whilst the classification agent, in this
case a learning classifier system, attempts to learn the evolv-
ing problem. The idea here is to tune the datasets au-
tonomously such that the problem characteristics may be
determined efficiently to empirically test the learning bounds
of the classification agent by lowering human involvement.
In this way, the effect of the problem’s characteristics, which
alter the classification agent’s performance, becomes human
readable. Tabu Search has been applied in the problem gen-
erator to discover the best combination of domain features
in order to adjust the problem’s complexity. Experiments
confirm that the problem generator was able to tune the
problem’s complexity either to make the problem ‘harder’
or ‘easier’ so that it can either ‘increase’ or ‘decrease’ the
classification agent’s performance.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics-Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithm, Performance

Keywords
Pattern classification, Learning Classifier Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6-10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$10.00.

1. INTRODUCTION
The challenge of an automated classification system is to

develop a computer based program that learns to identify
whether an object belongs to a specific class. Usually a
classification system’s performance is assessed on different
sets of data, commonly from public repositories. There is
another approach to investigating a classification system’s
capability for a classification task, which uses a synthetic
dataset [15]. This approach helps researchers to analyze
the system (algorithm) under a controlled scenario as the
datasets can be generated according to a particular property.

In existing artificial classification systems, the problem
domain is created and controlled by humans. Humans set-
up and tune the problem domain, such as determining the
problem’s complexity. If the problem is too complex the sys-
tem does not learn; conversely, if the problem is too simple
the system does not reach its full potential to be able to
classify environmental examples. If humans can set-up the
problem appropriately then the machines can extract bene-
ficial knowledge to solve the classification task. Automatic
classification-problem generation is an important problem
that could help in empirically testing the learning bounds of
machine learning systems in general and learning classifier
systems specifically.

In [9], a novel framework has been implemented for Two-
Cornered Learning Classifier Systems (LCSs) for creating
various pattern classification problems where it can be used
to generate artificial datasets (e.g. a library of problems).
Both of the problem domain and the solution evolved au-
tonomously (i.e. the pattern generation agent created the
problems and the associated sets of patterns, while the pat-
tern classification agent learnt each set of the patterns). The
pattern generation agent evolved autonomously to create
various complex problems with different levels of difficulty
for pattern classification based on its prediction of the pat-
tern classification agent’s learning ability.

The ultimate aim of the previous work [9] was to enable
the pattern generation agent to autonomously tune (i.e. in-
crease or decrease the problem’s difficulty) based on the clas-
sifier’s learning performance. The system has been tested on
non-sparse problems with a low number of conditions and
sparse problems with a higher number of conditions. Find-
ings showed that the generated image-based patterns were
not well separable; one pattern may be labeled to more than
one class, which leads to data ambiguity and class imbalance.
It has been discovered that there was no underlying relation
between the resulting pattern and the features in the prob-

1243

lem in order to distinguish the class clearly. This was due
to the problem formulation not being intrinsically separable
and the set of features not being sufficient to describe the
understanding concept.

The original focus of that work [9] was on generating var-
ied data, but the underlying feature relationships were not
easily separated. The pattern generation agent randomly
generated image-based patterns without having any mech-
anism that could control certain features in the problem,
such as data sparsity, noise and class balance. Therefore,
the interpretation of the pattern created for each problem
and mapped to corresponding difficulty levels was not clear.
Moreover, a small number of certain patterns were rare,
which introduced sparsity to the problems. This caused the
system to wrongly generalize all such ‘problems’ as ‘difficult’.
Much more samples would have resulted in the patterns be-
ing trivial to learn but this would have been time consuming.
Instead it is now considered better to generate the feature
relations directly rather than at a level of abstraction.

The main goal of the work is to design a new classification
problem generation methodology that utilizes Tabu Search
technique to autonomously generate synthetic datasets for
classification with different levels of complexity based on the
classification agent’s ability to learn. More specifically, we
are concerned with the autonomous problem domain cre-
ation by the problem generator to generate datasets (i.e.
continuous attributes) for data mining tasks. The first ob-
jective is for the problem generator to determine the prob-
lem’s characteristics (i.e. class balance, noise, decision bound-
ary, number of instances), in terms of either ‘increasing’ or
‘decreasing’ the problem’s complexity. The second objec-
tive is for the problem generator to autonomously make the
problem either ‘harder’ or ‘easier’ for the classification agent
to learn.

The problem of defining a problem with suitable complex-
ity for the classification agent is considered a meta-problem.
The meta-problem is difficult in practice due to the time
taken for any individual problem. Starting from the begin-
ning for each problem or repeating a given problem is time
consuming. Thus a local search method is required to ad-
just the problem domain so the classification agent can com-
mence from the previous learnt solutions, without requiring
to repeat the same problem domain.

Tabu Search (TS) is a neighborhood search method that
has a memory (recency-based memory) that allows escaping
from sub-optimal solutions by improving the efficiency of the
exploration process. The memory forces TS to explore a new
area of the search space in order to overcome local-optimal
problem. Whenever a new candidate solution is introduced
(i.e. a new best solution is found), it goes in the memory
and it is made forbidden for a certain number of iterations.
TS is used to search the best combination of features in
the problem (i.e. with the objective either to ‘increase’ or
‘decrease’ the classification agent’s performance) by varying
the difficulty level (i.e. either to make the problem ‘easier’
or ‘harder’ to learn).

Relative change in performance is observed, whereas ‘easy’
and ‘hard’ measures of the problem’s difficulty required arbi-
trary judgment [9]. It is hypothesized, that this method will
help the problem generator to : 1) define the problems with
the appropriate levels of complexity, 2) find types of prob-
lems that are commensurate in the domain of competence of
the classification agent, and 3) identify adversarial problems

to which the pattern classification agent’s performance can
still be improved.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the necessary background of pattern classi-
fication, problem complexity, LCSs and Tabu Search (TS)
technique. Section 3 describes the framework design, the
synthetic datasets generation, the knowledge representation
and the classification process. Sections 4 and 5 present re-
sults of the experiments and discuss the outcomes. Section
6 provides the conclusions and the direction for future work.

2. BACKGROUND

2.1 Pattern Classification
The field of pattern recognition is concerned with the au-

tomatic discovery of regularities in data through the use of
computer algorithms for further actions [1]. An example
of pattern recognition is classification, which is the task of
assigning one of several predefined categories to each object.

Given a pattern as a pair of variables: [x, ω] [2], where x
is a vector of observation, and ω is a label that represents a
meaningful concept for the problem domain. Classification
is the task of learning a target function f = [x, ω] that maps
each attribute set x to one of the predefined class labels
ω. The target function can serve as an explanatory tool to
distinguish between objects of different classes (descriptive
modeling), or can serve as a predictive tool to predict the
class label of unknown records (predictive modeling).

2.2 Problem Complexity
A problem can be difficult for different reasons [3], which

can affect the performance of classifiers. In [3], Ho and Basu
identified that problems can be difficult because of a mixture
of three effects: (1) class ambiguity, (2) boundary complex-
ity, and (3) sample sparsity and feature space dimensionality.
In [15], Macia defined these three effects as follows.

Ambiguity is referred to a situation when there are ex-
amples in which their features do not allow to distinguish
the class. Usually, this ambiguity is due to the problem for-
mulation in which the concepts are intrinsically inseparable
or the set of attributes is not sufficient to describe the con-
cepts. Class separability and problem linearity are based on
the geometrical complexity of data structure. The classes
are ambiguous regardless of sample size or feature space di-
mensionality.

Boundary complexity is related to the description of the
class boundary. Complex decision boundaries and the sub-
class structure can be categorized by the minimum length of
a computer program needed to reproduce it. Boundary com-
plexity is also due to the nature of the problem regardless
of sample size or feature space dimensionality.

Sample sparsity and feature space dimensionality are con-
cerned with the difficulty when the sampled instances of a
problem do not contain all of the necessary patterns. More-
over, small sample size and high dimensionality are likely to
increase this difficulty, making the solution more complex to
discover. Therefore, the rules may overgeneralize if they do
not encounter examples near the decision boundary. In con-
trast, simple problems are normally linearly separable with
wide margins between decision boundaries.

This set of descriptors that characterize different aspects
of complexity are useful to estimate the classification sys-

1244

tem’s performance, as well as to investigate the classification
system’s domains of competence.

2.3 Learning Classifier Systems (LCSs)
LCSs [17] are a subset of Genetics-based Machine Learn-

ing (GBML) systems, which are machine learning techniques
that incorporate reinforcement learning (RL) and evolution-
ary computation (eg. Genetic Algorithm (GA)) in its main
component. The RL component works on the classifier’s
prediction to evaluate the classifiers for the identification of
best rules, while the GA component is responsible for dis-
covering potentially better rules[5]. The desired outcome of
running an LCS is for the classifiers to collectively model an
intelligent decision maker [10].

In LCSs, knowledge is commonly represented as a set of
condition-action rules called classifiers, where the rules are
usually in the form of “IF <condition> THEN <action>”.
The condition specifies the state which the rule matches, and
the action specifies the selected action to be sent to the en-
vironment when the condition is satisfied. The condition is
commonly fixed length ternary strings from {0, 1,#}, while
the action and environmental state are fixed length binary
strings from {0, 1} [8]. Typical LCSs learn by interacting
with the environment.

Accuracy-based LCSs was introduced by Stewart Wil-
son [12] in 1995, called XCS. The success factors of XCS are:
1)the fitness is based on the accuracy of the prediction and
2)the niche-based nature of the GA. The classifier’s fitness is
based on the accuracy with which it predicts the reward re-
ceived from its interaction with the environment [8], rather
than the prediction (reward) itself. The GA acts in environ-
mental niches instead of on the whole population to maintain
the parallel sustenance of equally important sub-solutions.
This means that the GA searches for rules (classifiers) that
are accurate in their prediction, independently from their
prediction value for selecting rules [11].

There are three important classifier groupings in the XCS:
the population set [P], the match set [M] and the action set
[A]. The population of rules consists a number of rules af-
ter the input domain has been covered. The match set [M]
is formed from the current population set [P] such that it
includes all classifiers that match the current input. The
action set [A] is formed from the current match set [M]
such that it includes all classifiers from match set [M] that
propose the executed action to the environment. The in-
teraction process in the XCS’s performance components is
illustrated in Figure 1, followed by the basic LCSs algorithm
shown in Algorithm 1.

Accuracy-based Learning Classifier Systems with real-
value (XCSR), which was introduced later by Wilson [13],
enhanced XCS to real inputs (i.e. integer and real-valued
problem domains). The changes from XCS to XCSR for in-
teger and real-valued inputs were as follows [13]. The classi-
fier condition C that specifies a problem domain is encoded
within the interval C = (l1, u1, l2, u2, ..., ln, un), where ln is a
lower bound and un is an upper bound of a real-values. The
action part A specifies an available action, that is, A ∈ a,
where a = (a1, ..., am) is the set of all possible actions in
the problem [4]. A classifier matches an input message x
if each element xn belongs to the corresponding interval
in C within the lower bound and upper bound range, i.e.
ln ≤ xn ≤ un. When a new covered classifier is created, each
interval intn = (ln, un) is generated as ln = xn − rand(r0)

Figure 1: Schematic XCS, adapted from [12].

Algorithm 1: Algorithmic description of XCS’s (Perfor-

mance Component), adapted from [8]

1 begin
2 Perceive a single input string (e.g. current state of the

problem) from the environment.
3 Generate a random population of classifiers [P]. Build a

match set [M] containing all the classifiers in the population
[P], where the condition matches the input string.

4 if ([M] is empty or some of the classes are not predicted
in [M]) then

5 Covering process is activated, a new classifier is created
(a condition is a generalized version of the input
example, an action is the class that not covered in [M].
Add this classifier in the population.

6 end
7 Calculate the prediction values for each action in the match

set [M] based on the p and f values of each classifier in [M].
8 Evaluate each action in the match set [M] based on the

calculated prediction value.
9 Form the action set [A] containing the classifiers in match

set [M] that will advocate action to the environment.
10 Send the selected action to the environment and receive a

reward.
11 Activate the credit assignment algorithm (i.e.

Q-Learning-like for classifiers updation).
12 end

and un = xn + rand(r0), where rand(r0) is a value uniform
randomly from [0, r0] and r0 is a real constant [6]. GA com-
ponent and the rest of the system works as described in [6,
13].

2.4 Two-Cornered LCSs
In the Two-Cornered LCSs [9], the system consists of

two main agents, the pattern generation agent (i.e. the
Sender(S)) and the pattern classification agent (i.e. the Re-
ceiver (R)) (Figure 2). The pattern classification agent is
developed based upon Accuracy-based LCSs with real-value
encoding (XCSR), an applicable agent model that provides a
framework for investigating learning in agents and practical
applications [4, 13].

In this setup, the goal is that S generates synthetic datasets
from various problems for classification that will need to
be solved by R. Therefore, S activates a program for syn-
thetic datasets generation, while R activates a program for
data classification. R maintains its own population of candi-
date classifiers and evolves using evolutionary computation.
R learns the classification problems and adapts to different
feedback returns from S. Based on R’s performance, S will
identify the affect of varying feature values in the problem

1245

and generate a new problem for classification at the appro-
priate levels of difficulty for R to learn. If S’s objective is to
increase R’s performance, S will tune and make the problem
‘easier’ to learn. If S’s objective is to decrease R’s perfor-
mance, S will make the problem ‘harder’ to learn. Each new
problem for classification will be generated to maximize (or
minimize) R’s performance.

Figure 2: Problem generation and classification process.

2.5 Tabu Search
Tabu Search (TS) is a neighborhood search method pro-

posed by Glover in 1986 as an improvement over basic local
search techniques in order to overcome local search prob-
lems by not being stuck in a local optimum [18]. A memory
forces TS to explore a new area of the search space. A known
number of solutions that have been examined recently be-
come tabu (forbidden) points that cannot be selected when
searching for the next solution, they are stored in the mem-
ory called the tabu list (recency-based memory) [16].

The basic principle of TS is to pursue local search when-
ever it encounters a local optimum by allowing non-improving
moves as cycling back to previously visited better solutions
in the tabu list is forbidden [19]. The Tabu list records the
recent history of the search, essentially the value of the ob-
jective function f(i∗) of the best solution i∗ and also keeps
information on the itinerary through the last solutions vis-
ited [19]. Thus, the use of the tabu list allows escaping from
sub-optimal solutions by improving the efficiency of the ex-
ploration process. Whenever a new candidate solution is
introduced (i.e. a new best solution is found), it goes in the
tabu list and it is made tabu for a certain number of iter-
ations. For each iteration any non-zero values in the tabu
list are decremented by one. It can be revisited again only
when value of the candidate solution in the tabu list is 0.

In this work, instead of maintaining the whole solutions,
TS may consider individual features to be searched, i.e. com-
bination of features that can cause the agent’s classification
performance either to increase or decrease. The simplest ap-
proach for TS maintaining the tabu list is by remembering
an index of features that have been swapped and the time
when it was swapped [16]. Figure 3 illustrates the imple-
mentation of tabu list with length five. In Figure 3 (top)
the swap at index 3 gave the best result, thus the feature
at index 3 is forbidden to be used and not available for the
next five iterations. In Figure 3 (bottom), index 2, 5 and
8 are available to be swapped any time, however index 1 is
not available to be swapped for the next three iterations,
and so on. The most recent swap is at index 4. TS performs
as follows (Algorithm 2).

3. METHODS

Figure 3: Example of performing Tabu List (recency-

based memory), adapted from [16].

Algorithm 2: Algorithmic description of Tabu Search

adapted from [19].

1 begin
2 s← s0 : create an initial solution.
3 sBest← s.
4 TabuList← null.
5 while (not stopping condition) do
6 Find the best neighbor of the current solution by

applying an allowed move (non-tabu move).
7 if (a given criteria is meet) then
8 sCandidate← : accept as the new current solution.
9 end

10 else
11 sCandidate← : find another neighbor (best

non-tabu neighbor).
12 end
13 if (fitness(sCandidate)>fitness(sBest)) then
14 sBest← sCandidate.
15 TabuList← featureDifferences(sCandidate,

sBest).
16 while (size(TabuList)> maximum TabuList size)

do
17 ExpireFeatures(TabuList).
18 end

19 end

20 end
21 return sBest : globally best solution found.

22 end

A method to generate different types of problem with dif-
ferent features in order to create various synthetic datasets
for classification will be presented. The use of TS in the pat-
tern generation agent to search for the best combination of
features in the problem to prevent many repeated datasets
being generated is described.

3.1 Synthetic Datasets Generation
The pattern generation agent will generate datasets from

various problems with different sets of features. The prob-
lem of defining an appropriate problem domain is consid-
ered a meta-problem. The meta-problem can be described
by a list of the features containing <Fn Fc Fd Fi Fr Fan

Fcn Fcbl Fcbd>, where each feature can take a number of
values as described in Table 1. Each instance in the datasets
is created on-the-fly based on the specified problem (see ex-
ample in Table 2). F is used to distinguish a feature of the
meta-problem and f relates to a feature in the dataset of an
individual problem. Note that Fn determines the number of
features f in the dataset. Once these parameters are set, the
dataset containing a number of instances will be generated
and the class of each instance is labeled according to the
specified meta-problem that has been defined. In addition,
we implement Tabu Search technique in S to find an opti-
mal combination of F in the meta-problem that can either
maximize or minimize R’s performance. An algorithmic de-
scription of this method is shown in Algorithm 3, which de-

1246

scribes the main task of S and R for problem generation and
classification task (restricted to two class problems here).

Algorithm 3: Algorithmic description for problem genera-

tion and classification, Subscript R Receiver.

1 begin
2 problem← Sender : generate initial problem to Receiver.

3 while (problem less than maximum problems) do
4 while (instance less than maximum instance in

dataset) do
5 instance← Sender : generate instance based on

problem.
6 Receiver ← pattern : perceive instance from

Sender.
7 GENERATE MATCH SET [M]R out of [P]R using

instance.
8 GENERATE PREDICTION ARRAY PAR out of

[M]R.
9 class← SELECT ACTION according to PAR .

10 GENERATE ACTION SET [A]R out of [M]R
according to class.

11 Receiver : execute action class.
12 reward← Sender : Sender check class and send

reward back to Receiver.
13 prediction← reward : update prediction with

current reward.
14 UPDATE SET [A]R using prediction possibly

deletion in[P]R.
15 RUN GA in [A]R considering instance insertion in

[P]R.
16 if instance equal to maximum instance in dataset

then
17 classificationPerformance : calculate

Receiver classification performance.
18 end

19 end
20 Sender : read classificationPerformance
21 problem← Sender : APPLY TS on problem based on

classificationPerformance.
22 end

23 end

3.2 Knowledge Representation
S initializes a random meta-problem containing a list of

parameters (i.e <Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd>) for
a synthetic dataset generation. The dataset consists of a
set of i instances, where each instance is defined by Fn fea-
tures as in Table 1. Each feature f in i is created on-the-fly
based on the specified problem within the interval of [0, 1]
and is labeled accordingly. Using Tabu Search technique, S
searches for the best combination of features F for the set
task. Based on R’s classification performance, S changes the
values of features F (i.e. finds the best combination of fea-
tures that can either maximize or minimize R’s classification
performance) for generating the next problem for R to learn
(refer to Table 3).

Table 4 illustrates the R’s condition-action rule. The con-
dition was encoded to real value of realn = (ln, un), where
ln is the lower bound and un is the upper bound within the
interval [0, 1]. The action can be either ‘1’ for ‘Class 1’, oth-
erwise ‘0’ for ‘Class 0’. R will receive a reward of ‘1000’ for
correct classification or ‘0’ for incorrect classification.

3.3 Pattern Generation and Classification
A detailed example of process of pattern generation and

classification between S and R follows. First, S creates vari-
ants of the meta-problem with different features F and gen-
erates various synthetic datasets for classification that will

Table 1: Description of features in the problem.

Description. Value.

Fn: number of data features in each instance
(i.e. IF Fn=2, THEN instance f1, f2:class).

Fn: from 2 to 5

Fc: number of data features that apply con-
junction.

Fc: at least 1/2 of Fn

Fd: number of data features that apply dis-
junction.

Fn ≥ Fd ≥ 0

Fi: number of irrelevant data features in each
instance.

Fn ≥ Fi ≥ 0 and Fi 6= Fc 6=
Fd

Fr: number of redundant data features in each
instance.

Fn ≥ Fr ≥ 0

Fan: percentage of noise level that apply to
class.

Fan: from 0% to 50%

Fcn: percentage of noise level that apply to
data features.

Fcn: from 0% to 50%

Fcbl: percentage of class balance within Class
1 and Class 0 to dataset (i.e. percentage of
Class 1, percentage of Class 0).

Fcbl: from 0% to 100%

Fcbd: percentage of decision boundary to class
(i.e. wide or small decision boundary of the
class).

Fcbd: from 0% to 50%

Table 2: Sample of the generated instances.

Problem. Instance and class.

Example 1: conjunction
Problem:
<Fn=2,Fc=1,Fd=0,Fi=0,Fr=1>
Class 1: f1<=0.4 AND f2<=0.8

f1 f2 : class
0.1 0.1 : 1
0.5 0.5 : 0

Example 2: disjunction
Problem:
<Fn=5, Fc=0, Fd=2, Fi=0, Fr=1>
Class 1: f1<=0.5 OR f2<=0.2

f1 f2 f3 f4 f5 : class
0.1 0.1 0.3 0.4 0.5 : 1
0.6 0.6 0.3 0.3 0.1 : 0

Example 3: conjunction and
disjunction
Problem:
<Fn=5,Fc=1,Fd=2,Fi=0,Fr=1>
Class 1: f1<=0.5 AND f2<=0.6, f3>=0.5

f1 f2 f3 f4 f5 : class
0.6 0.6 0.5 0.3 0.1 : 1
0.1 0.1 0.3 0.4 0.5 : 0

Example 4: noise to class
Problem:
<Fn=2,Fc=0,Fd=1,Fi=0,Fr=1,Fan=10>
Class 1: f1<=0.4

f1 f2:class:random value
0.1 0.1 : 1 : 0.5
0.5 0.5 : 0 : 0.6
FOR each feature (f1 to f2).
IF(random value>noise)THEN
remain the class.
ELSE flip the class either from 1
to 0 or from 0 to 1.

Example 5: noise to condition
Problem:
<Fn=2,Fc=0,Fd=1,Fi=0,Fr=1,Fcn=10>
Class 1: f1<=0.4

f1 f2 : class
0.1 0.1 : 1
0.5 0.5 : 0
FOR each feature (f1 to f2)
IF(feature’s value>noise) THEN
remain the value.
ELSE the value will be replaced
by a new random value.

Example 6: conjunction and
class balance
Problem:
<Fn=4,Fc=2,Fd=2,Fi=0,Fr=1,Fcbl=70>

Class1=70%,Class0=30%
Formula:
P (AandB) = P (A)xP (B)
If P(A and B)=0.7, then
P(A),P(B),P(C),P(D)=0.914
Set value f1,f2,f3,f4>=0.1

Example 7: disjunction and
class balance
Problem:
<Fn=2,Fc=0,Fd=2,Fi=0,Fr=1,Fcbl=60>

Class1=60%,Class0=40%
Formula:
P (AorB) = P (A) + P (B) −
[P (A)xP (B)]
If P(AorB)=0.6, then P(A)<0.6
If P(A)=0.5, then P(B)=0.2
Set value f1>=0.5, f2>=0.8

Example 8: decision boundary
Problem:
<Fn=2,Fc=1,Fd=1,Fi=0,Fr=1,Fcbd=20>
Class 1: f1<=0.5 and f2<=0.5
DB(DecisionBoundary) = 0.5
R(Range) = Fcbd/100

FOR each feature (Xn:f1 to
f2)
IF(feature’s value>decision
boundary)
Xn = (DB + (R/2)) + (Xn −
DB/1−DB)x(1−DB − (R/2))
ELSE
Xn = (Xn/DB) + (DB − (R/2)

1247

Table 3: Changes in features F using Tabu Search.

INITIAL SOLUTION: 2, 1, 0, 0, 0, 50, 50, 70, 25

INITIAL PERFORMANCE: 44.0

Search COMPLETE!

BEST PERFORMANCE: 96.0

BEST SOLUTION: 2, 1, 0, 0, 0, 1, 50, 70, 25

NOTE:

R’s classification performance increased from 44% to 96% using
TS to adjust Fc,Fd,Fi,Fr,Fan,Fcn,Fcbl,Fcbd.

Table 4: Example of Receiver’s condition-action rule.

Receiver’s condition-action rule:
IF<condition> THEN<class>

c1 : [u1, l1], c2 : [u2, l2], c3 : [u3, l3], c4 : [u4, l4], c5 : [u5, l5] : class

0.6:[0.98,0.5], 0.6:[0.8,0.4], 0.5:[0.6,0.3], 0.3:[0.5,0.2], 0.1:[0.5,0.08]:0

need to be solved by R. The meta-problem contains a list of
features <Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd>.

For example, given <Fn=5 Fc=1 Fd=0 Fi=0 Fr=1 Fan=5

Fcn=5 Fcbl=50 Fcbd=5>, the dataset will consist of five data
features such as f1,f2,f3,f4,f5, where f2 will have the
same value with f1 (when number of redundant data fea-
tures is 1, Fr=1). Therefore, the dataset may contain in-
stances such as <0.6 0.6 0.5 0.3 0.1 :0> and <0.1 0.1

0.3 0.4 0.5 :1>. The data features of f1 and f3 will ap-
ply conjunction (when Fc=1), thus the class for each instance
is determined as follows, IF (f1<=0.5 AND f3<=0.4) THEN
‘Class 1’, ELSE ‘Class 0’. The noise level to apply to the
condition is 5% (when Fcn=5), for any value of the data
features f1,f2,f3,f4,f5 that is less than 0.05, it will be
recalculated to any random value. When Fan=5, the noise
level to apply to the action is 5%, for any generated value of
the class that is less than 0.05, the class will be flipped ei-
ther from ‘1’ to ‘0’ or ‘0’ to ‘1’. There will be 50% instances
of ‘Class 1’ and 50% instances of ‘Class 0’ (as Fcbl=50). In
order to avoid the classification agent learn the inverse prob-
lem, the value of Fan and Fcn is set within 0-50%. If class
balance Fcbl=100, all instances will belong to ‘Class 1’.

Second, R needs to classify each instance as either belong-
ing to ‘Class 1’ or ‘Class 0’ and sends either ‘1’ for ‘Class
1’ or ‘0’ for ‘Class 0’ as suggested by its rules (Table 4). In
response, S sends a numerical reward of ‘1000’ for correct
classification else ‘0’ returned to R.

S’s objective can be either to maximize R’s performance
by decreasing the problem’s difficulty or minimize R’s per-
formance by increasing the problem’s difficulty. Based on
R’s performance (i.e. problem became ‘harder’ or ‘easier’
based on change in R’s performance), S uses the effect of
varying feature values F using Tabu Search for generating a
new meta-problem in the next set of iterations (Table 3).

4. EXPERIMENTAL DESIGN
Three sets of experiments have been performed in order to

confirm the suitability of the synthetic datasets as the con-
trol environment for the Two-Cornered Coevolution LCSs
Framework for classification tasks. In Experiment 1, differ-
ent combinations of the problem features within the problem
(i.e. increasing and decreasing value of Fan, Fcn and Fcbl)
are enumerated to analyze R’s performance with respect to
those changes. In Experiment 2, R was tested on differ-

ent datasets (i.e. different problems) throughout the exper-
iments. In Experiment 3, TS was applied in S to search for
the best combination of features in the problem. Based on
R’s classification performance, S changes the combination of
features in the problem for generating the next problem for
R to learn.

4.1 Experimental Setup
In our implementation, R was executed following Wilson’s

explore/exploit scheme [12], which has become the standard
approach in XCS. The explore and exploit scheme are run
alternately with probability 50% Explore and 50% Exploit.
The parameter settings used were also similar for the most
part in [7], where a few modifications were made to improve
efficiency, including the number of classifiers in the popu-
lation, the tournament size and the number of iterations.
The tournament size is a fraction τ = (0, 1] of the current
action set size (τ = 0.4 is the suggested value). Both GA-
subsumption and ActionSet-subsumption are activated.

The population size N was limited to 500 classifiers for
each problem, R learns 2,000 instances (i.e. R runs for 2,000
iterations). Both values are low for standard LCSs to reduce
training times as the overall meta-problem task is time con-
suming. All experiments were run 30 times with different
random seeds for analysing the results. R’s performance
was calculated from exploit trials (i.e. classification perfor-
mance). The classification performance is the percentage of
correct classifications over all the instances from each of the
datasets.

S generates a problem containing a list of parameters (fea-
tures of the problem) and hence creates a dataset (i.e. set
of n instances, n=2,000), where each value of an instance is
randomly initialized in the interval of [0, 1]. The instance
is labeled (i.e. either ‘Class 0’ or ‘Class 1’, as a two-class
problem) according to the defined problem. S uses TS to
search for the best combination of features in the problem
(i.e. either to maximize or minimize R’s performance) by
avoiding becoming trapped in the local optimum.

5. RESULTS

5.1 Experiment 1 Results
In this experiment, different combination of features in the

problem (i.e. increasing and decreasing value of certain fea-
tures such Fan,Fcn and Fcbl) on four problem domains (i.e.
Fn=2 to 5) are exhaustively explored. In each problem do-
main, the value of Fan and Fcn are incremented by 5 within
the range of 5 to 50, and value of Fcbl is also incremented by
5 within the range of 50 to 100, while other features value
Fc,Fd,Fi,Fr are set where Fc=1,Fd=0,Fi=0,Fr=0. Figure
4 and Figure 5, show the trade-off surface for examples of
Fn=2 that alters R’s performance. If there is no gradient in
difficulty then it would be impossible for S either to make
the problem ‘harder’ or ‘easier’ for R to learn.

R achieves a good performance of 90-95%, when the class
balance Fcbl is within 50-100% and the noise level that ap-
plies to the action Fan is within 5-20% (Figure 4). R also
achieves a good performance of 90-100%, when the class
balance Fcbl is in the range of 50-100% and the noise level
that applies to the condition Fcn in the range 5-40% Figure
5. Results of R’s performance in the other problem domain
(i.e. Fn=3,Fn=4 and Fn=5) are varied but show the same
pattern (i.e. the affects of changing the value of Fan,Fcn

1248

and Fcbl either will increase or decrease R’s performance)
so are not included in this paper due to space restriction.

Figure 4: Trade-off surface of R’s performance (based

on the average of R’s classification performance from 30

runs in training mode for learning a two-class classifica-

tion problem when Fn=2, while value of Fan and Fcbl is

incremented by 5).

Figure 5: Trade-off surface of R’s performance (based

on the average of R’s classification performance from 30

runs in training mode for learning a two-class classifica-

tion problem when Fn=2, while value of Fcn and Fcbl is

incremented by 5).

Note, 100% performance is not reached due to limiting
the number of classifiers and training instances. Also the
performance improves as the class imbalance increases be-
yond 90% as the majority class facilitates general (possibly
over-general) classifiers and the crude (deliberately so) fit-
ness function does not take this into account. Results show
that a gradient in difficulty exists in relation to features.
Therefore, this enumerated-information can be used in later
experiments to set up the starting problem for S and deter-
mine whether S can vary the difficulty levels appropriately.

5.2 Experiment 2 Results
Figure 6 presents R’s classification performance on four

problem domains with different combination of features in
the problem (i.e<Fc Fd Fi Fr Fan Fcn Fcbl Fcbd>). Re-
sult shows that R was able to learn the generated datasets
with varied performance. These results suggest that the
problem domain of Fn=5 is the hardest problem compared to
others, while the problem domains of Fn=2 and Fn=3 are the
easiest problem as would be expected. Therefore, R perfor-

mance can be tested on these four problem domains, whilst
the problem’s difficulty can be varied within that domain.

Figure 6: Average of R’s classification performance from

30 runs in training mode for learning a two-class clas-

sification problem on 4 problem domains. The problem

consists of 2,000 instances, result from 1000 Exploit trial.

5.3 Experiment 3 Results
Figure 7 shows R’s classification performance when TS

is applied in S to search for the best combination of fea-
tures (i.e. <Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd>) for a
two-class classification problem, with the objective to maxi-
mize R’s performance. S was started with a predefined prob-
lem, where <Fc=1 Fan=50 Fcn=50 Fcbl=70 Fcbd=25> that
was likely to be a ‘hard’ problem. TS is used to vary the
features except for Fn.

Figure 7: Average of R’s classification performance from

30 runs in training mode for learning a two-class classifi-

cation problem on 4 problem domains, where TS is used

in S for adjusting the difficulty levels (i.e. from ‘hard’ to

‘easy’).

Figure 8 shows R’s classification performance when TS
is applied in S to search for the best combination of fea-
tures (i.e. <Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd>) for a
two-class classification problem, with the objective to min-
imize R’s performance. S was started with a predefined
problem, where <Fc=1 Fan=5 Fcn=5 Fcbl=50 Fcbd=5> that
was likely to be an ‘easy’ problem. TS is used to vary the
features except Fn.

The results suggest that applying TS in S is suitable for
helping S discover combinations of features in the problem
to alter R’s performance (i.e. S can autonomously deter-
mine the effect of individual problem features towards R’s
performance). For example, in the problem domain Fn=2,
TS changes the initial-predefined problem <2 1 0 0 0 50

1249

Figure 8: Average of R’s classification performance from

30 runs in training mode for learning two-class classifica-

tion problems on 4 problem domains, where TS is used

in S for adjusting the difficulty levels (i.e. from ‘easy’ to

‘hard’).

50 70 25> to the next problem <2 1 1 0 0 1 50 70 25>

which increases R’s performance from 44% to 96% (Figure
7). In another example, TS changes the initial-predefined
problem <2 1 0 0 0 5 5 50 5> to the next problem <2 1 1

0 1 0 3 50 7>, which decreases R’s performance from 93%
to 89% (Figure 8). S is able to adjust the difficulty levels
by varying the features in the problem either to maximize
or minimize R’s performance, where S can either make the
problems ‘harder’ or ‘easier’ for R to learn.

6. CONCLUSIONS AND FUTURE WORK
Generating datasets through specifying features rather than

patterns has led to a system that can tune datasets to adjust
the performance of a LCS in a desired manner. An enumer-
ative analysis of the potential datasets identified the per-
formance gradients but the on-line learner identified useful
gradients more efficiently. Important features, which con-
trol the ease of learning within the problem domain for the
classification system, were identified. Although the system
can be extended to expand the maximum values of features
f in the datasets (e.g. Fn>5), the work only focuses on iden-
tifying features values F that affect the classification agent’s
performance (i.e. controlling for possible confounding vari-
ables to the problem’s complexity).

Future work will investigate different types of performance
measure (i.e. robustness, scalability, and predictive accu-
racy) that relate to difficulty factors. Furthermore, the de-
veloped system will be used to modify the process of generat-
ing classification problems for Three-Cornered LCSs Frame-
work, where the problem domain will tune autonomously
depending on the two different agents’ ability to learn (i.e.
the Receiver (R) and the Interceptor (I) which used differ-
ent techniques of learning) [14]. I is required to direct S to
change the problem’s difficulty when R becomes stagnated.

7. REFERENCES
[1] C.M. Bishop. Pattern Recognition and Machine

Learning. Springer, Natural Computing Series. 2006.

[2] R.O. Duda, P.E. Hart and D.G. Stork. Pattern
Classification 2nd Edition. John Wiley, 2001.

[3] Tin Kam Ho and Mitra Basu. Complexity Measure of
Supervised Classification Problems. IEEE Transactions

on Pattern Analysis and Machine Intelligence, Volume
24/2002(3):289-300. 2002.

[4] M.V. Butz. Kernel-based, Ellipsoidal Conditions in the
Real-Valued XCS Classifier System. Genetic
Evolutionary Computational Conference (GECCO
2005). ACM, 2005.

[5] M.V. Butz. Rule-Based Evolutionary Online Learning
Systems: A Principal Approach to LCS Analysis and
Design. Springer. 2006.

[6] Muhammad Iqbal, Will N. Browne and Mengjie
Zhang. XCSR with Computed Continuous Action.
Australisian AI 2012, pages 350-361. Springer, 2012.

[7] F. Kharbat, L. Bull and M. Odeh. Revisiting Genetic
Selection in the XCS Learning Classifier System. The
2005 IEEE Congress on Evolutionary Computation,
pages 2061-2068. 2005.

[8] T. Kovacs. Strength or Accuracy: Credit Assignment
in Learning Classifier Systems. Springer, 2004.

[9] Syahaneim Marzukhi, Will N. Browne and Mengjie
Zhang. Two-Cornered Learning Classifier Systems for
Pattern Generation and Classification. The 12th
Genetic and Evolutionary Computation Conference
(GECCO 2012), pages 895-902. ACM, 2012.

[10] R.J. Urbanowicz and J.H. Moore. Review Article
Learning Classifier Systems: A Complete Introduction,
Review, and Roadmap. Journal of Artificial Evolution
and Applications, Volume 2009:1-25. 2009.

[11] O. Sigaud and S.W.Wilson. Learning Classifier
Systems: A Survey. Soft Computing - A Fusion of
Foundations, Methodologies and Applications, Volume
11(11):1065-1078. 2007.

[12] S.W. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, Volume 3 (2):149-175.
Massachusetts Institute of Technology, 1995.

[13] S.W. Wilson. Get Real! XCS with Continuous-Valued
Inputs. Learning Classifier Systems, From Foundations
to Applications, LNAI-1813,pages 209-219. Springer,
2000.

[14] S.W. Wilson. Coevolution of Pattern Generators and
Recognizers. Lecture Notes in Computer Science
(LNCS), Volume 6471/2010(1):38-46. 2010.

[15] Nuria Macia, Albert Orriols-Puig and Ester
Bernado-Mansilla. Beyond Homemade Artificial Data
Sets. Hybrid Artificial Intelligence Systems Lecture
Notes in Computer Science, Volume
5572/2009:605-612. 2009.

[16] Z. Michalewicz and D.B. Fogel. How to Solve It:
Modern Heuristics. Springer, 2000.

[17] J.H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control, Artificial Intelligence. University
of Michigan Press, pages 313-329. 1975.

[18] Sean Luke. Essentials of Metaheuristics: A Set of
Undergraduate Lecture Notes. Department of
Computer Science, George Mason University. 2010.

[19] Micheal Gendreau. A Tutorial On the Tabu Search.
Department of Computer Science, de Montreal
University, Canada. 2000.

1250

