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ABSTRACT
This paper proposes REUCS-CRG, a Reduct-based Ensem-
ble of sUpervised Learning Classifier Systems with Combi-
natorial Rule Generation, which is an extension to the clas-
sical sUpervised Classifier System (UCS). In REUCS-CRG
we build a two-stage ensemble architecture to improve gen-
eralization in UCS. In the first-stage, rough set attribute re-
duction is used to generate a set of reducts with different at-
tribute subspaces, and then a diverse subset of these reducts
is selected to train an ensemble of base classifiers. New
instances are sent to several UCS-CRGs for classification,
which includes a combinatorial rule searching component
based on differential evolution algorithm. In the second-
stage, a fusion method is used to combine the classification
results of individual UCS-CRGs into a final decision. Three
combining method are used and their results are compared:
simple majority voting, winner-takes-all, and median rule.
Experiments on some benchmark data sets from the UCI
repository have shown that REUCS-CRG has better per-
formance and better generalization ability than the single
UCS and other UCS extensions. It also produces compa-
rable results with other supervised learning methods. The
experiments did not show significant differences in the accu-
racy rates obtained by the three combination methods.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE, Learning—Concept learning
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Learning Classifier System; Rough Set Theory; Ensemble
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1. INTRODUCTION
Learning Classifier Systems (LCSs) [Holland 1976] are on-

line learning systems. The rules are usually represented in
the traditional production system “IF state THEN action”
form. The rule set is incrementally updated through the
interaction with the environment and eventually improved
by the action of evolutionary algorithms. One of the most
successful LCSs is the sUpervised Classifier System (UCS)
that has been introduced in [Bernado et al. 2003]. UCS’s
fitness is based on accuracy, computed as the percentage
of correct classifications. This makes UCS explore the con-
sistently correct classifiers and thus evolve only best action
maps. LCSs in general and UCS in particular have shown
competitiveness with respect to other widely-used machine
learning techniques on data mining applications [Shafi et al.
2009, Bernado et al. 2003, Bacardit and Butz 2007]. Be-
ing evolutionary based, LCSs are inherently adaptive to the
problem at hand. Moreover, LCSs are also competitive for
mining large data sets due to their population-based archi-
tecture which permits their parallelization for use on super-
computing resources [Bull et al. 2007]. Last but not least,
they can learn knowledge from imperfect data taken from
the real environment.

Though several researches have shown that LCSs work
well on data mining domain, there are still some problems
that hinder its performance. For example, LCSs tend to
overfit smaller data sets. Other problems include noisy data
and the missing data which often takes place in real data
sets. To mitigate the effects of these problems with LCS, we
need to improve its performance in terms of generalization
capabilities to avoid over-fitting and increase classification
accuracy in general. It has been recently shown in the evo-
lutionary computation literature that the implementation of
the genetic operators can influence the flow of the evolving
population [Bacardit and Krasnogor 2006, Morales-Ortigosa
et al. 2008]. Butz et al. introduced a new crossover operator
called informed crossover [Butz et al. 2006], which adapted
the usual uniform operator such that exchanges of effective
building blocks occurred. It was shown that this approach
helped to avoid the over-generalization phenomenon inher-
ent in XCS. Morales-Ortigosa et al. [Morales-Ortigosa et al.
2008] have also proposed a new XCS crossover operator,
BLX, which allowed for the creation of multiple offspring
with a diversity parameter to control differences between
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offspring and parents. In subsequent work, they presented a
systematic experimental analysis of the rule discovery com-
ponent in LCS [Morales-Ortigosa et al. 2009]. Moreover,
they developed crossover operators to enhance the discovery
component based on evolutionary strategies with significant
performance improvements.

In previous work [Debie et al. 2013a], the authors pro-
posed a differential evolution (DE) based discovery compo-
nent in UCS. Experiments conducted with three variations
of the DE-based discovery component on synthetic and real
data sets showed encouraging results in terms of general-
ization performance. The DE based discovery component
led to more accurate solutions and sped up the search for
maximally general and accurate rules.

On the other hand, ensemble method is one of the most
interesting and successful learning systems with powerful
generalization capabilities. Breiman [Breiman 2001] showed
that generating multiple versions of a classifier and using
them to get an aggregated classifier can improve the classi-
fication accuracy. Rough sets have been applied to a very
wide variety of application domains with success, in partic-
ular to feature selection [Wang and Wang 2001]. Recently,
the utility of rough set theory in constructing ensemble sys-
tems has been shown in the literature with success [Hu et al.
2007]. In previous work [Debie et al. 2013b] the authors
proposed an explicit divide and conquer approach to evolve
a robust ensemble of supervised learning classifier systems
by detecting variable interactions that exist in a problem,
and subsequently making use of this expert knowledge when
partitioning the feature space. In this model, rough set at-
tribute reduction was firstly applied on the training set, re-
sulting in a set of reducts. Then, a subset of these reducts
was chosen to train an ensemble of UCSs. Results on real
data sets from the UCI repository showed generalization im-
provements over the traditional UCS.

In this paper, we propose a hybrid model, combining the
strengths of both the directed DE-based rule searching and
reduct based ensemble learning, in learning classifier sys-
tems. Theoretical and experimental research suggest that
combining a set of accurate and diverse classifiers will lead
to a powerful classification system [Hu et al. 2007]. Our hy-
pothesis is that by employing rough set reducts it is possible
to reduce the problem dimensionality and evolve robust clas-
sifiers. To add to that, a directed rule searching can speed
up the search for maximally general and accurate classifiers
and lead to more accurate solutions. Thus, overall ensemble
performance is boosted by combining a set of accurate clas-
sifiers while diversity is also maintained by choosing variant
reducts.

Our proposed model REUCS-CRG, a Reduct-based En-
semble of sUpervised Learning Classifier System with Com-
binatorial Rule Generation, is a two-stage ensemble archi-
tecture. In the first-stage, rough set attribute reduction is
used to generate a set of reducts with different attribute sub-
spaces, and then a diverse subset of these reducts is selected
to train an ensemble of base classifiers. New instances are
then sent to several UCS-CRGs for classification which in-
cludes a combinatorial rule searching component based on
differential evolution algorithm. Then, the learnt knowl-
edge (LK) from each learner is used to give a decision re-
garding testing samples. In the second-stage, a combining
method is used to integrate the classification results of in-
dividual UCS-CRGs into a final decision. In this paper, we

have experimented and compared results of three combining
method namely: simple majority voting, winner-takes-all,
and median rule. Our aim is to improve LCSs’ performance
in supervised learning problems with real-valued attributes.
The performance of the proposed model is evaluated on nine
real-world data sets taken from the UCI machine learning
repository.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly describes the UCS algorithm. UCS with DE
based discovery component algorithm is explained in Section
3, Section 4.2 introduces the construction of Reduct based
UCS ensemble model. Experiments including experimental
setup, data sets used, and results and discussions are pre-
sented in Section 5. Section 6 summarizes, concludes, and
discusses future work.

2. DESCRIPTION OF UCS
Since the eXtended Classifier Systems (XCS) [Wilson 1995]

was firstly introduced, a great amount of research has been
conducted on accuracy-based LCSs, resulting in different
LCSs with a core architecture inherited from XCS. One of
the most prominent proposals is UCS, which inherits the
main components of XCS, but specifies them for supervised
learning tasks. UCS works as an on-line learner. For each
input example x with its associated output, UCS forms the
match set [M], which consists of all the classifiers in the pop-
ulation [P] with their condition matching x. The next steps
depend on whether the system is in exploration (training)
mode or exploitation (testing) mode. In exploration mode,
the system creates the correct set [C] with all classifiers in
[M] that advocate x, that is it has the same class as the
example. If [C] is empty, the covering operator is triggered.
It creates a new rule whose condition is generalized from
x and which predicts its class. Then, the parameters of
the all rules in [M] are updated depending on whether they
predicted correctly. Eventually, a genetic algorithm is trig-
gered on the correct set [C], creating two new classifiers by
means of crossover and mutation. The offspring are intro-
duced in the population, and other classifiers are deleted
from the population if there is no room for the new rules.
The combination of niched-based selection and population-
based replacement is mainly responsible for the generaliza-
tion pressure in UCS. In exploitation mode, each classifier
in [M] emits a vote weighted by the fitness of the rule for
the class it predicts. The most voted class is selected as the
output.

3. DIFFERENTIAL EVOLUTION BASED
RULE SEARCHING COMPONENT

The purpose of this section is to introduce a DE-based
search component into UCS, with the aim of providing a
more guided search toward maximally general and accurate
classifiers.

3.1 Differential Evolution
Differential Evolution (DE) is a floating-point encoding

evolutionary algorithm for global optimization over contin-
uous spaces which can also work with discrete variables.
Usually, a differential evolution algorithm is abbreviated
as DE/x/y/z, where x denotes how the differential muta-
tion base is chosen, y denotes the number of vector differ-
ences added to the base vector and z indicates the crossover
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method. The most popular strategy, denoted by abbrevi-
ation DE/rand/1/bin, generates the point v by adding the
weighted difference of two points and uses a binomial (uni-
form) crossover operator.

DE begins with a randomly initiated population of N D-
dimensional real-valued vectors. Each vector, also known
as genome/chromosome, forms a candidate solution to the
multidimensional problem. Subsequent generations in DE
are denoted by g = 0, 1, ..., G. At any generation g, the ith

vector of the population is represented as follows:

�Xi,g = [x1,i,g, x2,i,g, ...., xD,i,g] (1)

where D is the dimensionality of the problem.

Mutation with Difference Vectors.
In the DE literature, a parent vector from the current gen-

eration is called a target vector, a mutant vector obtained
through the differential mutation operation is known as a
donor vector, and finally an offspring formed by recombin-
ing the donor with the target vector is called a trial vector.
In the DE/rand/1/bin form of DE, a donor vector is cre-
ated for a target vector Xi,g from the current population

by sampling three other distinct vectors, say �Xr1,g, �Xr2,g ,
�Xr3,g randomly from the current population. The indices
r1, r2, and r3 are mutually exclusive integers randomly cho-
sen from the range [1, N ], which are also different from the
base (target) vector index i. These indices are randomly
generated once for each mutant vector. Then the difference
of any two of these three vectors is scaled by a scalar number
F (selected within the the interval [0.4, 1] [Tusar and Filipic
2007]) and the scaled difference is added to the third one as
follows:

�Vi,g = �Xr1,g + F.
(
�Xr2,g − �Xr3,g

)
(2)

Crossover.
To enhance the diversity of the population, a crossover

operation comes into play after generating the donor vector
through mutation. The donor vector Vj,i,g exchanges its

components with the target vector �Xi,g under this operation

to form the trial vector �Ui,g = [u1,i,g , u2,i,g , ..., uD,i,g].
Although various crossover methods are applicable, bi-

nomial (or uniform) crossover is widely used in differential
evolution [Price et al. 2005].

In binomial crossover, the elements of the trial vector Ui,g

are chosen using the following formula:

Uj,i,g =

{
Vj,i,g if (randi,j [0, 1] ≤ Cr or j = jrand)
Xj,i,g otherwise

(3)
where Xi,g is the target vector, Vi,g is the donor vector, Ui,g

is the new offspring, randi,j [0, 1] is a uniformly distributed
random number, jrand is a random number chosen in the
range [1, D], and D is the number of problem length.

3.2 Combinatorial Rule Generation In LCS
There is a restriction on the population size to be at least

four in most commonly known versions of DE. However,
Combinatorial Sampling Differential Evolution (CSDE) al-
gorithm [Iorio and Li 2011] has reduced this restriction to
two individuals only, so that it has the capability to explore
and find global optima using relatively smaller population

sizes. In LCSs, on the other hand, population size is one of
the critical factors that system performance depends on, es-
pecially in complex and high dimensional problems. In this
section, we introduce a combinatorial rule searching compo-
nent into UCS, with the aim of providing more guided search
toward maximally general and accurate rules. In what fol-
lows, we first review the CSDE algorithm, then we introduce
our model sUpervised Classifier System with Combinatorial
Rule Generation (UCS-CRG).

3.2.1 Combinatorial Sampling Differential Evolution
In contrast with other DE variations, CSDE uses only

two individuals Xi and Xr (i �= r) for a difference vector
calculation. It does not have a crossover operator to enforce
diversity while searching the problem space. Instead, two
types of mutations are performed in this algorithm around
the individual that is deemed to be better than the other;
better here is described in terms of the fitness of solutions.
The first type of mutation is called a C-sampling (correlated
sampling) such that the vector difference and perturbation
are in the same direction, around the better individual. For
the purpose of explaining the operation of the algorithm
suppose X(i) is better than X(r) in Figure 1. The point
labeled by 4 and 5 corresponds to the point specified by Eqs.
4 and 5. Similarly, the point labeled by 6 and 7 correspond to
the point specified by Eqs. 6 and 7. Both points 4,5 and 6,7
are correlated because they are in the same direction as the
difference vectors and sampled with the same probability.

1X

2X

iX
rX

4 7

6 5

6 74 5

Figure 1: Offspring sampling in a two dimensional
problems with CSDE

The second type of sampling is called UC-sampling (Un-
correlated sampling) and is labeled in Figure 1 by the points
4,7 and 6,5 which, respectively, correspond to the points gen-
erated by Eqs. 4 and 7 and Eqs. 6 and 5. Both of these
samples are uncorrelated and it is this second type of sam-
pling that contributes diversity to the search.

u
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In CSDE, there are two pressures in the generation of
offspring; exploitation results from the highly correlated ro-
tationally invariant samples (C-samples) being generated,
which rapidly drives the algorithm towards better solutions,
and exploration occurs from the UC-sampling, which at-
tempts to discover new and diverse points around the better
individual. The general idea of this approach is to increase
the diversity that DE is capable of generating using a rela-
tively small population size.

3.2.2 sUpervised Classifier System with Combinato-
rial Rule Generation

In this model, which we refer to as UCS-CRG, the combi-
natorial rule searching algorithm is applied to [C]t by choos-
ing two parent classifiers pi, pr (i �= r) using tournament
selection. Mutation is then performed on the parent that
is deemed to be better than the other in terms of macro-
classifier fitness. Whether a correlated or uncorrelated rule
generation occurs is determined probabilistically by a con-
trol parameter k. Choosing the best value for k along with
a sensitivity analysis are explained in detail in [Iorio and Li
2011].

4. REDUCT BASED ENSEMBLE OF
LEARNING CLASSIFIER SYSTEMS

4.1 Rough Set Theory
The idea behind Rough Set Theory is to approximate a

given concept by two descriptive sets, called lower and up-
per approximations. The lower and upper approximations
must be extracted from available training data. The main
philosophy of rough set approach to concept approximation
problem is based on minimizing the difference between up-
per and lower approximations (the boundary region).

The rough set concept can be defined quite generally by
means of topological operations, interior and closure, called
approximations. Data sets are usually given in the form of
tables. A data set is a four-tuple DT = (U,A, V, f), where U
is the universe of objects x, cases, and A is a set of attributes.
With every attribute a ∈ A we associate a set Va, of its
values, called the domain of a. The union of all attributes’
values is V . f is the information function f : U × A → V .
The set of attributes is divided into condition attributes C
and decision attributes D.

Any subset B of A determines a binary relation (indis-
cernibility relation) IND(B) ⊆ U × U :

IND(B) = {〈x, y〉 ∈ U ×U | ∀b ∈ B, f(x, b) = f(y, b)} (8)

The equivalence class induced by B for element x (denoted
by [x]B) is the subset of all elements ∈ X that are equivalent
to x according to B. It is referred to as an elementary set.
The family of all equivalence classes induced by B, i.e. par-
titions determined by IND(B), are denoted by U/IND(B),
or simply U/B.

Given a subset X of U , the concept X is approximated
by two sets of elementary granules:

1. The lower approximation of a set X with respect to B
is the set of all objects, which can be certainly classified
as members of X with respect to B (are certainly X
with respect to B).

B− (X) = {[x]B |[x]B ⊆ X,x ∈ U} (9)

2. The upper approximation of a set X with respect to B
is the set of all objects which can be possibly classified
as X with respect to B (are possibly X with respect
to B).

B̄ (X) = {[x]B |[x]B ∩X �= ∅, x ∈ U} (10)

Granules of knowledge

The setUpper 
approximation

Lower 
approximation

Figure 2: A graphical illustration of the set approx-
imations.

A set X is called crisp (exact) with respect to B if and
only if the lower approximation and upper approximation of
X are the same. A set X is called rough (inexact) with re-
spect to B otherwise. Assume C is the set of attributes and
D is the decision in a given nonempty and finite universe U .
C and D generate two partitions of the universe. The ex-
pression POSC(D), called a positive region of the partition
U/D with respect to C, is the set of all elements of U that
can be uniquely classified to blocks of the partition U/D by
means of C. It is defined as follows:

POSC (D) =
⋃

X∈U/D

C− (X) (11)

Thus the concept of dependency of attributes is strictly
connected with that of consistency of the decision table.

We will say that D depends on C in a degree k (0 ≤ k ≤
1), denoted C ⇒k D, where

k(C,D) =
|POSC(D)|
|U | (12)

Given a decision table DT = 〈U,C ∪D,V, f〉, B ⊆ C, b ∈
B, we say attribute b is indispensable in B if k(B−b)(D) <
kB(D); otherwise, we say b is redundant. B ⊆ C is indepen-
dent if any b in B is indispensable. An attribute subset B
is a reduct of the decision table if

1. kB(D) = kC(D);

2. ∀b ∈ B : kB(D) > kB−b(D)

Thus a reduct is a set of attributes that preserves partition.
It means that a reduct is a minimal subset of attributes that
enables the same classification of elements of the universe as
the whole set of attributes. In other words, attributes that
do not belong to a reduct are superfluous with regard to
classification of elements of the universe. Rough set the-
ory admits that there exist multiple subsets of attributes
which can keep the classifiability of the original data. They
characterize the problem in different subspaces and therefore
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capture different information of classification tasks. Reducts
are considerably complementary to each other. Therefore,
generalization power may be improved via combining a set
of rough-set-based reducts.

4.2 REUCS-CRG
Our proposed system (REUCS-CRG) is a multiple clas-

sifier system, in which base classifiers are trained with at-
tribute subsets generated by rough set attribute reduction.
The structure of REUCS-CRG is shown in Fig 3. Given a
training set, rough set attribute reduction is used to gen-
erate a set of reducts with different attributes, and then a
diverse subset of these reducts is selected to train an ensem-
ble of base classifiers. New instances are then sent to several
UCS-CRGs for classification which includes a combinatorial
rule searching component based on differential evolution al-
gorithm. Then, in the second-stage, a combining method
is used to fuse the classification results of individual UCS-
CRGs into a final decision. From the perspective of rough
set theory, reducts do not lose any essential information from
the raw data. The idea is that classifiers trained with reducts
will have a greater generalization power than those trained
with either the whole set of attributes or randomly chosen
subsets of attributes. Moreover, classifiers trained with dif-
ferent reducts are diverse, because they are trained in dif-
ferent attribute subspaces.

Training Data

Final Decision

Reduct Generation

Diverse Reducts 
Selection

Reduct 1 Reduct 2 Reduct N

UCS-CRG 1 UCS-CRG 2 UCS-CRG N

Learnt 
Knowledge 1

Combining 
Strategy

Learnt 
Knowledge 2

Learnt 
Knowledge N

Data Pre-Processing

Single UCS-CRG Training

UCS-CRG Ensemble

Figure 3: High level overview of the REUCS-CRG
model. Each isolated sub-population evolves solu-
tions based on a specific reduct using a separate
UCS-CRG.

4.2.1 Generating Multiple Reducts
A number of methods for discovering reducts have already

been proposed in the literature. The most popular meth-
ods are based on discernibility matrices, and information

entropy. There are also approximation approaches to cal-
culate reducts. Among these algorithms is the hitting set
approach [Vinterbo and Øhrn 2000]. In the hitting set ap-
proach, non-empty elements of the discernibility matrix are
chosen as elements of a multiset L. The minimal hitting sets
of L are exactly the reducts. Since finding minimal hitting
sets is an NP-hard problem, GAs are used to find approxi-
mate hitting sets (reducts). Here we use the implementation
of SAVGeneticReducer algorithm provided by the Rosetta
toolkit [Komorowski and Ohrn 1997], which is based on the
hitting sets approach, to generate multiple relative reducts.

We provide here a brief overview of the algorithm; for
detailed information the reader is directed to [Vinterbo and
Øhrn 2000]. Let O be a finite set of objects, and define a
attribute a on O to be a function : O → Va from O into
an attribute value set Va. Let A ∪ {d} be a set of distinct
attributes on O such that the decision attribute d is not in
A. An equivalence relation ≡A on O can now be defined as
follows:

x ≡A y ⇔ a(x) = a(y) for all a ∈ A. (13)

Then the generalized decision attribute dA with respect to
A is defined as

dA(x) = {d(y)|y ≡A x}. (14)

For x, y ∈ O we further define

MA(x, y) =

{ ∅ if dA(x) = dA(y),
{a ∈ A|a(x) �= a(y)} otherwise.

(15)
Skowron and Rauszercalled this the discernibility matrix

with respect to the decision attribute. Each entry contains
the set of attributes that discern between two objects that
are discerned by dA. We can define a partition of O using
MA. The equivalence classes of this partition can be defined
as follows:

[x]A = {y|MA(x, y) = ∅}. (16)

A minimalization problem in rough set theory is to deter-
mine minimal sets of attributes that preserve a given par-
tition of O. These minimal sets are called reducts. Taking
non-empty elements of MA to be the multiset C, the mini-
mal hitting sets of C are exactly the rough set reducts. An
r-approximate reduct is defined to be an r-approximate hit-
ting set of C constructed from MA. The algorithm fitness
function f consists of two parts, and a weighed sum of both
parts is taken: for each candidate solution B (reduct, or
minimal hitting set) the following fitness function is defined:

f(B) = (1− α) × cost(A)− cost(B)

cost(A)

+α×min

{
E , |[S∈L|S ∩ B �= ∅]||L|

}
.

(17)

where α lies between 0 and 1, A is the set containing all the
attributes, L is the set containing all elements S of the dis-
cernibility matrix, and the parameter E signifies a minimal
value for the hitting fraction. Note that E=1 implies proper
minimal hitting sets. The first term rewards the shorter ele-
ments and the second tries to ensure that we reward sets that
are hitting sets. The subsets B of A that are found through
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the evolutionary search driven by the fitness function and
that are good enough hitting sets (i.e., have a hitting frac-
tion of at least E) are collected in a keep list whose size is
specified a priori. Different approaches can be used to define
the cost function of an attribute subset; a trivial approach is
to use the cardinality of candidate solutions cost(B) =| B |.
Each reduct in the returned reduct set has a support count
associated with it. The support count is a measure of the
strength of the reduct.

Compared with random subspace method and attribute
bagging, rough set attribute reduction presents a systematic
method to get a set of attribute subsets that do not lose the
distinguishing information in the original data. However,
the former two methods randomly select attributes and the
quality of the base classifiers is uncertain. Therefore, reduct-
based ensembles have more opportunity to get good general-
ization than the random subspace method and the attribute
bagging method.

4.2.2 Choosing Reducts for Ensemble Learning
Rough set attribute reduction results in hundreds or even

thousands of reducts. Choosing the appropriate subset of
reducts for ensemble learning is not a trivial task. In this
section, we propose an algorithm that chooses N diverse
reducts from the set of all reducts generated. The idea of the
algorithm is to choose a first reduct randomly from the orig-
inal list of reducts. Then, for each subsequent step choose
a reduct which was not chosen before and is as diverse as
possible to the list of chosen reducts so far. Diversity here
is calculated as the inverse of the average similarity to other
reducts, as shown in Equation 18:

SDi =

∑

j∈L
redi∩redj

redi∪redj

L
(18)

where redi is the current reduct to calculate diversity for,
L is the number of reducts chosen so far. After calculat-
ing the similarity degree for each available reduct we choose
the one with the minimum amount of similarity rbest ←
arg min

r∈RED
SDi.

4.2.3 Combining Methods
Three combination methods for determining the output of

the ensemble have been investigated in REUCS-CRG. The
first is majority voting. The output of the greatest number
of individual UCS-CRG will be the output of the ensem-
ble. The second is winner-takes-all. For each pattern of the
testing set, the output of the ensemble is only decided by
the individual REUCS-CRG whose output has the highest
prediction weight. The third is median rule. The output
of the ensemble is formed by a simple median of output of
individual REUCS-CRG in the ensemble.

5. EXPERIMENTS
The objective of this section is to evaluate the generaliza-

tion capabilities of our proposed system. A series of experi-
ments was conducted to validate our approach. The under-
lying hypothesis was that classification using the REUCS-
CRG model would lead to improved generalization for real-
valued data sets.

We compared the performance of REUCS-CRG with the
standard UCS; UCS with correlated rule generation (UCS-

CRG); a reduct-based ensemble of UCS with correlated rule
generation (REUCS). We also compared its performance
with three other algorithms: Bagged C4.5, Boosted C4.5
and SVM.

We used a test suite of nine data sets from the University
of California at Irvine (UCI) Machine Learning Repository.
They are summarized in Table 1.

Table 1: Data Description — UCI Data Sets

Data set No.
Samples

Type of At-
tributes

No.
Classes

No. At-
tributes

Breast Cancer 569 Real 2 30
Horse-colic 368 Nominal 2 22
Sonar 208 Real 2 60
Letter 20,000 Integer 26 16
Segment 2,310 Real 7 19
Soybean 683 Categorical 19 35
Hepatitis 155 Categorical,

Integer,
Real

2 19

Spectf 267 Integer 2 44
Wpbc 198 Real 2 33

5.1 Experimental Setup
All the data sets have been partitioned into two parts: a

training and a testing set. The results shown are the aver-
age of a total of 10 runs. Student t-tests with a confidence
interval of 95% is used to determine whether significant dif-
ferences between the performance of standard UCS and the
proposed model REUCS-CRG exist. The input data for the
t-test is the test accuracy obtained in each of the 10 test
sets that we have. We set UCS with standard values used
in the literature for its configuration parameters as follows:
β = 0.2, α = 0.1, ν = 10, θGA = 25, x = 0.8, μ = 0.04, θdel =
20, δ = 0.1, acc0 = 0.999. Tournament selection was ap-
plied. Subsumption was activated in the genetic algorithm
with θsub = 20, initial covering interval r0 = 0.6, the popu-
lation size N = 6, 400. For UCS, we use two point crossover
with χ = 0.8, and bitwise mutation with μ = 0.04. For UCS-
CRG, we use mutation scaling factor F = 0.8 and crossover
probability Cr = 0.95. Ensemble size is set to 10 classifiers
for all data sets.

5.2 Results and Discussion
Table 2 shows the value of rough set attribute subset selec-

tion. It summarizes the attribute reduction and population
size statistics for the nine data sets under consideration. For
each data set, the original number of attributes is shown in
the second column. The third column represents the av-
erage number of attributes used to train a single classifier
in REUCS-CRG after attribute reduction, where the fourth
column shows the percent of reduction achieved. In 5 out
of the 9 data sets, the algorithm has identified more than
50% of the original attributes as superfluous and can be re-
moved without affecting the system performance, while the
minimum percent of reduction recorded in the Letter data
set was 25%.

Table 3 shows the accuracy rates of different combining
methods where the significantly best result for each data
set is shown in bold. Except for Soybean and Wpbc data
sets, comparison with the accuracy rates obtained by three
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Table 2: Summary of attribute reduction statistics
Dataset #

Attributes
Avg #

Attributes
after

reduction

%
reduction

Breast Cancer 30 21.00 30.00
Horse-colic 22 8.50 61.36
Sonar 60 5.90 90.17
Letter 16 12.00 25.00
segment 19 8.10 57.37
soybean 35 19.40 44.57
Hepatitis 19 10.40 45.26
Spectf 44 8.20 81.36
Wpbc 33 9.60 70.91

Table 3: Accuracy rates of different combining
methods
Data set Majority

voting
Winner-
takes-all

Median

Breast Cancer 93.8 ± 0.9 94.5 ± 0.9 93.9 ± 0.8
Horse-Colic 86.0 ± 3.1 85.2 ± 1.5 87.3 ± 2.0
Sonar 66.6 ± 4.9 65.9 ± 5.7 65.9 ± 3.9
Letter 88.8 ± 0.4 87.3 ± 0.8 89.1 ± 0.7
Segment 97.7 ± 0.5 97.8 ± 0.5 97.9 ± 0.3
Soybean 59.7 ± 1.8 74.0 ± 2.7 59.2 ± 2.4
Hepatitis 84.1 ± 3.0 84.5 ± 2.2 81.8 ± 2.9
Spectf 81.8 ± 2.2 79.5 ± 3.3 80.8 ± 2.9
Wpbc 87.9 ± 2.9 84.6 ± 4.8 81.8 ± 4.4

combination methods shows similar performance on most of
the problems. In Soybean, winner-takes-all outperformed
median and majority voting. The justification for this bet-
ter performance is that not all individuals are equally im-
portant. Because different individuals trained by different
reducts, this gives an indication that not all reducts used
with the Soybean data set were equally good.

Table 4 shows the results of the experiments conducted on
nine real data sets studied in this paper. The best result for
each data set is shown in bold. Significant results obtained
by REUCS-CRG over standard UCS are marked by ‘*’.

In seven out of nine data sets, UCS-CRG performed bet-
ter than or similar to the standard UCS. In four out of
these seven data sets it significantly outperformed the stan-
dard UCS. Standard UCS outperformed UCS-CRG on Let-
ter while it showed slightly better performance on the Wpbc
data set. The mean reason for the poor performance of
UCS-CRG my be traced back to the type of attributes of
the problem since all the attributes of the Letter problem
are integers.

It is also observable how the ensemble learning increased
the generalization power of UCS as can be seen from the
fourth column where the subspaces in which single classifiers
were trained are defined by ten different reducts. REUCS
model performed better than the standard UCS on eight
data sets where the t-test showed significant accuracy dif-
ferences in six of them.

The fifth column shows the fusion of ten classifiers using
majority voting. The subspaces in which these classifiers

were trained are exactly the same as those used by REUCS
model and where combinatorial rule searching was used. As
is shown, REUCS-CRG significantly outperformed standard
UCS on eight data sets while the accuracy difference on the
Hepatitis data set was not significant. In comparison to
UCS-CRG, it is shown that ensemble learning with reducts
has significantly improved the performance of classifiers with
combinatorial rule generation in six out of nine data sets,
where in the Breast-cancer, Soybean and Hepatitis data sts
the accuracies were not statistically different. Compared
to REUCS, the proposed model (REUCS-CRG) has shown
similar or better improvements in all data sets with signifi-
cantly better performance in four of them, while no signif-
icant differences were recorded on the remaining data sets.
These results validate our hypothesis that combining a di-
rected rule searching mechanism with ensemble learning can
boost system performance on real-valued classification prob-
lems.

Comparisons to other non evolutionary algorithms are
also shown in Table 4. The results of those algorithms were
generated using the Weka package. Our proposed model
showed competitive performance to these algorithms on most
of the data sets under consideration. REUCS-CRG outper-
formed bagged and boosted decision trees on two data sets
and was outperformed on three other data sets and produced
statistically similar performance on the other data sets. An
important note to be mentioned here is that the performance
of the proposed model on domains with a high number of
classes such as Letter and Soybean was significantly worse
than boosted decision tree. One way to improve the perfor-
mance is to increase the ensemble size; the number of single
classifiers set to be more than the number of classes in the
problem. Comparison with SVM showed that REUCS-CRG
performed significantly better that SVM on three data sets
while it showed significantly poorer performance on two data
sets.

One drawback of the proposed model is that the run-time
of the approach, from the creation of the reducts to the final
classification, is long. Especially, it is much longer than that
of the decision trees based approaches. However, obtain-
ing improved classification with high interpretability (hu-
man readable rules) mitigates the additional time required.

6. CONCLUSION AND FUTURE WORK
In this paper, we have introduced REUCS-CRG, a two-

stage ensemble structure of UCS in order to improve its
generalization capabilities. Experiments with nine data sets
from UCI showed that our model has achieved multiple ob-
jectives simultaneously. Firstly, it removed irrelevant at-
tributes of the problem and reduced the dimensionality of
the rule searching space. Secondly, it improved the discov-
ery of new rules by adopting a directed searching mechanism
based on differential evolution. Thirdly, classification accu-
racies has been significantly improved using reduct based
ensemble learning. However, one drawback in the proposed
model is that DE based rule discovery evolved relatively
bigger population sizes to derive classifiers than the conven-
tional algorithms. This is due to the principles of differential
evolution which require creating many candidate solutions.
Future work will consider this problem and propose solution
for it. Comparison of the accuracy rates obtained by three
combination methods did not show significant differences in
the results obtained. Extended analysis on more real data
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Table 4: Comparison of classification accuracies
Data set UCS UCS-CRG REUCS REUCS-

CRG
Bagged
C4.5

Boosted
C4.5

SVM

Breast Cancer 79.3 ± 3.2 90.6 ± 4.2 90.7 ± 1.2 93.8 ± 0.9 * 95.7 ± 2.7 95.9 ± 3.4 98.0 ± 1.4
Horse-Colic 66.4 ± 3.2 76.5 ± 2.8 83.3 ± 2.1 86.0 ± 3.1 * 83.0 ± 6.2 80.3 ± 5.4 82.1 ± 5.4
Sonar 51.7 ± 0.0 51.7 ± 0.0 64.8 ± 5.9 66.6 ± 4.9 * 78.3 ± 5.7 80.7 ± 8.2 74.6 ± 6.6
Letter 76.2 ± 0.8 50.6 ± 1.1 88.8 ± 0.4 88.8 ± 0.4 * 92.6 ± 0.6 95.1 ± 0.4 82.1 ± 0.8
Segment 94.8 ± 1.2 96.1 ± 0.8 96.2 ± 0.8 97.7 ± 0.5 * 96.8 ± 0.8 98.0 ± 0.6 92.5 ± 1.2
Soybean 44.2 ± 2.0 60.1 ± 5.5 52.0 ± 1.9 59.7 ± 1.8 * 93.0 ± 3.0 93.8 ± 2.2 94.9 ± 1.4
Hepatitis 81.8 ± 0.0 82.3 ± 2.6 81.8 ± 0.0 84.1 ± 3.0 78.6 ± 6.4 82.2 ± 5.7 84.0 ± 6.7
Spectf 77.4 ± 2.4 78.9 ± 0.0 81.3 ± 4.0 81.8 ± 2.2 * 80.1 ± 5.4 79.0 ± 5.7 79.8 ± 1.2
Wpbc 78.9 ± 3.7 78.6 ± 0.0 81.1 ± 3.2 87.9 ± 2.9 * 79.1 ± 5.3 76.5 ± 5.4 79.8 ± 1.2

sets, especially high dimensional data sets will also be con-
sidered. The effectiveness of other fusion techniques such
as the mixture of experts needs to be examined. The effec-
tiveness of rule sharing among different populations is also
a possible direction for future work.
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