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ABSTRACT
Permutation strategies for statistically evaluating the sig-
nificance of predictions and patterns identified within learn-
ing classifier systems (LCSs) have only appeared since 2012.
While already considered to be computationally expensive
algorithms, a permutation testing based approach to deter-
mining statistical significance has the potential to be many
times more demanding. One area of LCS research which has
become both feasible and popularized in recent years is the
adoption of parallelization strategies. In the present study
we explore the simple benefits of parallelizing a set of LCS
analyses in an attempt to make the completion of a permu-
tation test with cross validation more feasible on a single
multi-core workstation. We test our python implementation
of this strategy in the context of a simulated complex ge-
netic epidemiological data mining problem. Our evaluations
indicate that on Windows 7 computers, as long as the num-
ber of concurrent processes does not exceed the number of
CPU cores, the speedup achieved is approximately linear.
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1. INTRODUCTION
Large scale investigations of genetic variation related to

human disease have become increasingly complicated by the
acknowledgement of, and search for complex patterns of as-
sociation, including multivariate effects, epistatic interac-
tions, and heterogeneous relationships [12]. Previously, we
introduced a promising new methodology to address these
complexities using a Learning Classifier System (LCS) al-
gorithm [14]. Learning classifier systems (LCSs) [18] are a
rule-based class of algorithms which combine machine learn-
ing with evolutionary computing and other heuristics to pro-
duce an adaptive system. LCSs represent solutions as sets
of rules affording them the ability to learn iteratively, form
niches, and adapt. These characteristics make the applica-
tion of LCSs to the problem of heterogeneity, in particular,
intrinsically appealing.

In [14] we applied our own extended supervised-learning
classifier system, called AF-UCS [13], and a statistical and
visualization guided knowledge discovery pipeline [15] to
a real world genetic epidemiology study of bladder cancer
susceptibility. In that work, we successfully replicated the
identification of previously characterized factors that mod-
ify bladder cancer risk: i.e. single nucleotide polymorphisms
from a DNA repair gene, and smoking. Furthermore, we
identified potentially heterogeneous groups of subjects char-
acterized by distinct patterns of association. While success-
ful, this study was performed on a relatively small dataset,
and the computation was aided by a 1576 processor cluster,
a resource to which few researchers may have access. Due to
the complexity of LCS and the demands of large-scale data
mining, the issue of scalability remains both a key challenge
and opportunity for the LCS research community [5].

In order to obtain statistical significance measures in [14],
k -fold cross validation (CV) was paired with p-fold permu-
tation testing (where k = 10 and p = 1000). While CV
had been previously applied in various LCS studies, it had
yet to be combined with permutation testing for LCS sig-
nificance evaluations. CV has typically been utilized to de-
termine average testing accuracy and account for algorithm
over-fitting. CV is performed by randomly partitioning a
dataset into k equal partitions and applying the algorithm
k separate times during which k − 1 partitions are used to
train the algorithm, and the remaining partition is set aside
for testing the resulting model. Permutation testing offers a
non-parametric strategy for evaluating whether an observed
test statistic (such as test accuracy) is significantly differ-
ent from what might be observed by random chance. This
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characterization as a non-parametric strategy is particularly
important in LCS evaluations where the probability distri-
bution of different statistics of interest would not be known
ahead of time. This is critical to LCS data mining, in that
it offers researchers a measure of confidence when evaluat-
ing algorithm performance or extracting knowledge from the
rule population.

Permutation testing yields a null distribution for a given
target statistic by repeating the analysis on variations of the
dataset (with class status shuffled). This null distribution
is then used to determine the likelihood that the observed
result could have occurred by chance. In [14], 1000 permuted
versions of the original dataset were generated by randomly
permuting the affection status (class) of all samples, while
preserving the number of cases and controls. It should be
noted that for each permuted dataset the algorithm was run
using 10-fold CV. Thus, this testing strategy required k ∗ p

or 10,000 runs of the algorithm in total. Without access to
large scale multi-processor clusters (i.e. completed serially
on a single computer workstation), this task quickly becomes
impractical.

Parallelization presents one strategy to ameliorate the cost
of running LCS repeatedly for both CV and permutation
testing. The time complexity of LCS algorithms, specif-
ically those of the Michigan style, are generally bounded
by the number of generations used to evolve the solution
set. Due to the inherent data dependency between each it-
eration of rule set generations, parallelization of this major
term in the asymptotic time analysis is not feasible. Previ-
ous works have focused on parallelizing mechanisms of the
LCS algorithm itself using General Purpose Graphics Pro-
cessing Units (GPGPUs) with NVIDIA’s Compute Unified
Device Architecure (CUDA). These included strategies to
parallelize (1) matching in XCS [10], (2) fitness calculation in
BioHEL, and (3) prediction computation (also in XCS) [11].
While these strategies successfully decrease the time burden
of LCS, gains may also be achieved through careful consid-
eration of the analytical workflow. Specifically, since both
cross validation and permutation testing are“embarrassingly
parallel”, there is a clear opportunity for performance im-
provement through running the individual instances of the
LCS algorithm concurrently.

In the present study, we have implemented a modified ver-
sion of AF-UCS which capitalizes on the multi-core architec-
ture of most modern computers. Consistent with paralleliza-
tion work in other python projects [9, 8, 7], we use the mul-
tiprocessing [3] module in Python 2.6 and greater to enable
AF-UCS to launch multiple instances concurrently. This
enables AF-UCS to internally manage both CV and permu-
tations parallelized over processes run on separate cores of
the CPU. Further, we show that use of this implementa-
tion on typical windows desktops can offer significant time
savings without the use of enthusiast level hardware. The
remainder of this paper is organized as follows. Methods for
the implementation and evaluation of this strategy are given
in Section 2. The results with discussion are given in sec-
tion 3. Conclusions are drawn and ongoing efforts outlined
in section 4.

2. METHODS
In this section we describe (1) the LCS algorithm and the

run parameters used, (2) implementation of the paralleliza-

tion, (3) the evaluation strategy and benchmark dataset,
and (4) the hardware utilized in testing.

2.1 AF-UCS
In order to implement and test our parallelization scheme,

we used the Python encoding of AF-UCS, described in [13].
AF-UCS (attribute feedback UCS), is an expanded and mod-
ified implementation of UCS [6]. UCS, or the sUpervised
Classifier System, is a michigan style LCS based largely on
the popular XCS algorithm [20] but replaced reinforcement
learning with supervised learning. UCS was designed specif-
ically to address single-step problems such as classification
and data mining, where delayed reward is irrelevant, and
showed particular promise when applied to epistasis and het-
erogeneity in [19].

The selection of AF-UCS run parameters for this evalu-
ation was arbitrary. We adopted mostly default michigan-
style LCS run parameters. Parameters unique to this study
include: 10,000 learning iterations, a rule population size
of 1000, tournament selection, uniform crossover, and sub-
sumption on. Parallelization code was incorporated into the
Main.py class. The implementation described above is avail-
able on request (ryanurbanowicz@gmail.com) and will be
posted on the LCS and GBML Central webpage [1].

2.2 Implementation
While multithreading presents an ideal implementation

strategy for this problem as it would limit the overhead as-
sociated with new jobs and allow each new AF-UCS run
to share a common state and data, the use of threads in
Python suffers from the Global Interpreter Lock (GIL). The
GIL is a well known feature of Python which allows only one
thread to execute at a time. To circumvent this, we chose
a multiprocessing strategy. Our parallelization of AF-UCS
hinges on the ‘Pool’ object provided by the ’multiprocess-
ing’ package in Python (v 2.6 and greater) [3]. As shown in
Algorithm 1, the size of the pool is initialized at the start
based on a user modifiable input parameter which specifies
the number of processes (nProcesses). Next, the input data
is partitioned into k partitions in preparation for CV. Each
CV job is then submitted to the process pool. For each
of the (nPermutations) permutations specified by the user,
the data labels are scrambled then submitted to the pro-
cess pool. Finally, the jobs in the process pool are executed
nProcesses at a time. Thus, the number of jobs submitted
to the pool depends both on the number of CV partitions
and the number of permutations. While the permutation
threads are relatively independent of each other, the CV pro-
cesses do require shared input data which must be copied to
each process and a final synchronization in order to calcu-
late the average testing accuracy. To improve performance,
we delay the CV synchronization until the end of the run at
which time we also perform a permutation synchronization
in order to generate a p-value based on the null distribution.

2.3 Evaluation
Test runs were submitted, and wall-times to the millisec-

ond were recorded using the ’Measure-Command’ provided
by Windows Powershell [4]. Evaluations were completed on
three separate workstations and all tests were completed af-
ter a fresh boot of the respective workstation. The hardware
specifications for each machine are given in the next section.
On each machine we ran three separate LCS analysis scenar-
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Table 1: Hardware Specifications

Desktop 1 Desktop 2 Laptop

Part Description Part Description Part Description

CPU Intel Core i7 950 CPU Intel Xeon E3-1225 CPU Intel Core i7-3840QM
RAM 12GB DDR3 1600Mhz RAM 8GB DDR3 667 MHz RAM 16 GB DDR3 798 Mhz
Hard Drive Western Digital Hard Drive Samsung Hard Drive Samsung

7200 RPM PM830 238GB SSD PM830 477 GB SSD
1TB SATA 3Gb/s SATA Gen 3.0 6Gb/s SATA Gen 3.0 6Gb/s

Cores 4 Cores 4 Cores 4
Processes 8 Processes 4 Processes 8
OS Windows 7 x64 OS Windows 7 x64 OS Windows 7 x64
Python 2.7 Python 2.7 Python 2.7

Algorithm 1 Pseudo Code for CPU Parallelization

Require: data, nGen, k, nPermutations, nProcesses

jobPool = Pool(nProcesses)
partitions = Partition(data, k)
for part ∈ partitions do

jobPool.add(LCS(part, nGen))
end for

for permute ∈ nPermutations do

data = Permute(data)
partitions = Partition(data, k)
for part ∈ nPartitions do

jobPool.add(LCS(part, nGen))
end for

end for

result = jobPool.execute()
accuracy = result.averageTestAccuracy()
sig = result.significance(alpha = .05)
return result, accuracy, sig

ios: (1) 10-fold CV alone, (2) 100-fold permutation testing
alone, and (3) both 10-fold CV and 100-fold permutation
testing. In order to decrease the amount of time necessary
for these analyses, we opted to examine only 100-fold per-
mutation testing. We expect that the wall-time results can
be extrapolated to 1000-fold permutation testing in a linear
fashion. Though the wall-time results are informative, we
focus on the speedup and efficiency of our implementation
in order to give an indication of expected performance on a
variety of computer hardware.

Speedup and efficiency, both of which are computed from
the raw wall-time data, are measures of the scalability of
parallel implementations. Speedup for a specific number of
processes indicates the fold improvement in wall-time rela-
tive to a single process serial implementation. Speedup with
t processes is calculated as St =

Walltime1

Walltimet
, whereWalltime1

is the total wall-time for the analysis using only a single pro-
cess. Efficiency is the slope of the speedup line for a specific
number of processes. The efficiency of using t processes is
simply calculated as Et = St

t
. Ideally, the wall-time fold

change is equal to the total number of processes used which
would result in a linear speedup and an efficiency value of 1.

In this evaluation we used a single simulated dataset as
a benchmark for comparing across workstations, number of
threads, and analysis scenarios. In keeping with our biolog-
ical problem of interest, our benchmark dataset was simu-
lated to concurrently possess patterns of epistasis and het-

erogeneity. The genetic models used to simulate our bench-
mark dataset were generated using GAMETES [17]. The
datasets generated from these models were merged to pro-
duce our benchmark dataset containing two distinct under-
lying two-locus epistatic models, adding a heterogeneous
component to the dataset. The first model was used to gen-
erate 75% of the dataset with a heritability of 0.05 and minor
allele frequencies of 0.2. The second model was used to gen-
erate the remaining 25% of the dataset with a heritability
of 0.025 and minor allele frequencies of 0.4. Both simulated
models were selected to be of high difficulty based on model
architecture according the model difficulty score prediction
implemented in GAMETES [16]. This benchmark dataset
included 200 instances, and a total of 20 attributes (4 of
which were predictive). This dataset was selected to be ex-
tremely challenging such that AF-UCS would not be able to
quickly converge on a solution.

2.4 Hardware
Three consumer computers were used to perform testing.

The hardware details of these workstations are listed in Ta-
ble 1. A range of multicore CPUs were used in order to test
scaling and performance on hyperthreaded hardware.

3. RESULTS AND DISCUSSION
As shown in Figure 1, our parallelized algorithm scales

approximately linearly up to the number of cores in repre-
sentative consumer level computers. Workstation 1, Work-
station 2, and the Laptop have quad-core processors and the
speedup achieved using 1 to 4 processes is approximately lin-
ear. The Intel Core i7 processors (Workstation 1 and Lap-
top) make use of Intel Hyperthreading technology which al-
lows two processes to execute concurrently using one CPU
core. Thus, these CPUs offer eight concurrent processes
of execution to the Operating System. Scaling results for
5 to 8 threads, however, is less than ideal. Generally, the
hyperthreaded performance plateaus and little performance
improvement is achieved. This is consistent across all three
analysis scenarios with the exception of the CV scenario in
which performance deteriorates with the addition of hyper-
threaded processes. While Workstation 1 eventually achieves
a 4-fold increase in performance in all 3 analyses, the Lap-
top achieves a maximum of approximately 3.5-fold. These
results are consistent across CV, permutation testing, and
CV combined with permutation testing. However, the CV
and permutation testing analysis shows the most linear scal-
ing for all three computers. This was the longest running
analysis and the improved scaling suggest that process ini-
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Figure 1: Speedup of parallelized AF-UCS by number of processes. Red lines indicate ideal linear scaling.

Performance is approximately linear up to threads equal to the number of physical CPU cores.
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Figure 2: Efficiency of parallelized AF-UCS by number of processes. Red lines indicate ideal efficiency.

Efficiency exceeds 80% up to threds equalling the number of physical CUP cores.
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tialization costs were overshadowed by the LCS computa-
tion.

Figure 2 illustrates the efficiency of analysis over the dif-
ferent experimental run scenarios. Efficiency is the slope
of the speedup curve which is ideally ≥ 1. The more the
efficiency falls below 1, the less the additional thread con-
tributes to overall performance increases. The results in
Figure 2 are consistent with those in Figure 1, i.e. processes
1-4 achieve approximately 80% efficiency. However, as the
number of processes exceeds the number of cores and the
algorithm begins to make use of hyperthreading, efficiency
drops precipitously.

While measures of scaling suffer when hyperthreading is
used, there remain tangible benefits to making use of all
concurrent processes. For example, using all 8 processes of
Workstation 1 in the CV and permutation testing analy-
sis yielded an approximate 1.2-fold increase in performance
in comparison to using 4 processes (the number of physical
CPU cores available). Relative to a single process, using all 8
processes increased performance by approximately 4.3-fold.
In our small testing example, the improvement decreased the
running time by approximately 1,672 and 29,100 seconds
respectively. In larger analyses, however, the difference is
potentially much greater. These data suggest a reliable op-
erational heuristic of number of processes equal to the total
number of concurrent processes available (including hyper-
threading).

4. CONCLUSIONS
This study extends previous work by Urbanowicz et. al.

[15, 14] by parallelizing AF-UCS in order to accelerate k-
fold CV and permutation testing. While GPGPU based
parallelization strategies can yield dramatic reductions in
the run time of an algorithm, we focus on a CPU paral-
lelization strategy that is likely to benefit a larger group of
potential users in reducing the run time involved in perform-
ing permutation testing based statistical analysis in LCS
algorithms. Our results show a consistent improvement in
run time for CV, permutation testing, and CV combined
with permutation testing, when parallelizing the analysis
over the available cores of the CPU. As long as the num-
ber of processes does not exceed the number of CPU cores,
the speedup achieved is approximately linear. This suggests
a significant increase in performance for multi-core work-
stations which, we hope, will make this algorithm more ap-
proachable to a wider range of users. While a workstation
with additional cores was not available for this study, the
results suggest that additional CPU cores would likely yield
similar, near-linear speedups. In the present study we have
focused our implementation and evaluation on Windows 7
workstations. While this workstation selection was made
largely on our own hardware availability we expect Win-
dows 7 workstations to be as or more prevalent than Mac or
Linux workstations in the research setting based on global
market share statistics [2].

Additionally, it is worth noting that preliminary tests sug-
gest that this implementation also works on Linux. We ex-
pect scaling and performance on Linux to be better than
that of Windows 7 due to the multiprocessing module’s use
of the POSIX fork function on Linux. This fork allows new
processes in Linux to be created with exact copies of the
memory in the parent process. This in turn can decrease
the initialization cost for each process.

This work constitutes a first step in the direction of adapt-
ing our AF-UCS algorithm to the computational demands
inherent both in the determination of statistical significance
as well as the analysis of large-scale data which are rapidly
becoming more massive. Our future efforts will concentrate
on further improvement of AF-UCS scalability as well as
migration of the code base to an MPI based cluster imple-
mentation.
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