The Subsumption Mechanism for
XCS using Code Fragmented Conditions

Hsuan-Ta Lin
Institute of Biomedical Engineering,
National Chiao-Tung University,
Taiwan (R.O.C.).
+886 (3)571 2121#59329

ada19900409 @ gmail.com

ABSTRACT

By utilizing a code-fragmented representation of Extended
Classifier System (XCS) condition in conjunction with building-
block extraction technique, autonomous scaling has been realized
in the latest work of XCS. The technique substantially reduces the
number of training instances required in various benchmark
problems. However, the subsumption mechanism was not
included in the former report of the technique. Therefore, we
invented the subsumption mechanism for XCS with such
technique, and observed the characteristics of such the system in
multiplexer problems. The finding indicates that our subsumption
mechanism decreased the number of macro-classifiers.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics-Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithms, Performance

Keywords
Extended Classifier System (XCS), Building Blocks, Code
Fragments, Scalability, Pattern Recognition

1. INTRODUCTION

Machine learning techniques are widely used in many fields, such
as data mining and artificial intelligence because of their
capability of extracting previously unknown knowledge from
datasets. One of the research mainstreams is Learning Classifier
Systems (LCSs), especially Extended Classifier System (XCS).
XCS is a Learning Classifier System (LCS) that learns the
problem using a set (called population set [P]) of condition-action
rules called classifiers. Via the learning process, XCS continually
updates [P] to extract useful unknown knowledge from the dataset

[1].

Because of XCS’s excellent performance in a wide range of real
world applications, XCS has been successfully applied to various

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CECCO’13 Companion, July 6-10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07...$15.00.

Po-Ming Lee
Institute of Computer Science and
Engineering, National Chiao-Tung
University, Taiwan (R.O.C)
1001 Ta Hsueh Rd., Hsinchu,
Taiwan (R.O.C.)

pmli@cs.nctu.edu.tw

1275

Tzu-Chien Hsiao
Institute of Computer Science and
Engineering and with Institute of
Biomedical Engineering, National
Chiao-Tung University, Taiwan
(R.O.C)).

labview @cs.nctu.edu.tw

areas, including security [2, 3], finance [4-6], medical research [7,
8], and chip design [9]. In the area of finance, XCS is known for
its capability of financial time series forecasting. As a promising
classifier, XCS is also used in applications of personalization and
user context extractions [10, 11]. These studies provide a
comparison of accuracy rates between XCS and other commonly
used traditional machine learning techniques to demonstrate that
XCS is competitive [12].

Traditionally, LCSs use binary representations. Later on, different
types of encoding representation are proposed to solve problems
in different domains. For example, XCSR (see [13]), by adopting
real-value representation, can be applied to continuous variables
such as stock index, temperature, height and weight. Furthermore,
on the path of the attempts of using code-fragment style
representations, Lanzi firstly experimented with two different
ways to represent classifier conditions: a variable length messy
coding [14], and S-expressions [15]. The messy coding scheme
translates environmental inputs into bit strings that have no
positional linking between bits in classifier condition and any
feature of the environmental input [14]. On the other hand,
compare to messy coding, S-expressions is a more complex
representation for general classifier conditions [15]. The
representation methods are complementary and can be used
together, for coping more dynamic types of input variables.

Later, in 2003, Lanzi presented a stack-based genetic
programming mechanism for XCS [16]. Such the technique
represents the condition of XCS by linear sequences of tokens
expressed in Reverse Polish Notation. Each token can be a
function, a variable, or a constant. The set of used functions
includes boolean operators (AND, OR, NOT, EOR), arithmetic
operators (+ and -), and comparisons (> and =). The variables
were represented by the values of sensory inputs. In 2012, Igbal et.
al, by utilizing a code-fragmented representation of XCS
conditions in conjunction with a building-block extraction
technique, autonomous scaling was demonstrate effective in LCSs
for the first time. The effectiveness and the reduction in the
number of training instances required in large problems of the
proposed technique was reported [17]. Such the genetic
programming (GP) like approach proposed by Igbal et. al,
would be desirable for researchers in LCS field, because such
approach may allow XCS to cope with high dimension problems.

GP is an evolutionary algorithm-based methodology that
generates the computer programs. These computer programs are
represented by a tree structures that perform a user-defined task.

0011 (Env. Info.)

)

[Environment]

Hit a wall (Env. Feedback)

)

A 1

[P] Population Set

[|

Effectors:
[(on{l. Act. p £ turn left
#011 01 43 .01 (action)
- 1144 00 32 13
Classifier :*1™yoag™ "1 Y S
Matching GoiE" o1 37 1) Payoff
Cover > ENES 11 18 .02 . Function
(if needed) 1#01 10 24 17 15 “01”
k. etc, _/
. . “-100"
Fitness-weighted
- [M] Match Set average prediction
(7 Co Act. » € F (for set of cl. having Prediction Array
3011‘= o1 43 o1 99 | same act. string) o
#osgl 11 14 .05 52 n'hf'z-S,}"'l 16.6
\ 001/ 01 27 .24 03 7
A 1061 11 18 .02 92 Pckan act., e.g. “01”
-
-~ [A]Action Set
_Subsumption 7
Cond. ,t Act.“. p € F Update
#011 | 01 ; 43 .01 99
oot \ o1 4 27 24 03

(if activated)

Figure 1 The system architecture of XCS.

Cond.
#011

Act.

01 43 .01 99

Figure 2 An example of a typical classifier managed by XCS.

The internal nodes of the tree are functions and the leaves are
terminal symbols. GP is used to seek the program that delivers the
correct output for each known input. For instance, if the set {x,1}
is the terminal symbols and {+,-,*,/} is the function set, then GP
will generate the program that map the set {(1,2), (2,5), (3,10),
(4,17),...} as shown in Figure 3. The expression of the tree is
x*+1 18],

However, the subsumption mechanism for the modified version of
XCS has not been proposed. Since the subsumption technique in
XCS results in a small final [P] by reducing the number of
specific classifiers, we invented a subsumption mechanism for
XCS with code fragments, and observed the characteristics of the
system in multiplexer problems.

The remainder of this paper is structured as follows: Section 2
will describe the brief description of extracting building blocks of
knowledge and the subsumption mechanism in XCS. The result
and discussion of this research are presented in Section 3 and 4.
Finally, we will describe an explicit and abbreviated conclusion in
Section 5.

2. METHOD AND MATERIALS
2.1 XCS Classifier System
2.1.1 XCS Base System

XCS is a rule-based online learning algorithm which is able to
extract knowledge from an unknown dataset in an iterative
manner. XCS can also be regarded as a system that manages a set
of classifiers that are represented in the traditional production
system form of "IF state THEN action". By integrating the
Genetic Algorithm (GA) component (also named rule discovery
component in XCS), the set of classifiers can evolve occasionally,
and search for a set of classifiers that yields the maximal
generality and accuracy [1].

A detailed description on the flow of a typical XCS learning
iteration is presented as follows: first, as shown in Figure 1, the
XCS detector encodes the status of the environment at the
beginning of a typical iteration into a binary string, and uses it for
the classifier matching process. Second, during classifier
matching process, XCS searches for classifiers in [P], in which the
condition space represented by its condition string (0, 1, # for
each bit, # indicates a bit that should be ignored, also called “don’t
care” bit) includes the detected current status, and places all
matched classifiers into Match Set (denoted by [M]). If the
classifiers found during classifier matching process do not meet
the predefined criteria, XCS applies cover to generate new
classifiers to enable their condition string to match current input
(i.e., the environmental status), and action string is chosen at
random.

1276

Third, XCS calculates the fitness weighted average prediction
from sets of classifiers that suggest the same output (with the
same action string) after [M] is generated.

After calculating P; for each possible output, Prediction Array is
formed for output selection process. The output selection regime
is usually set to pick up output i, which owns the maximal
predicted payoff, max (P;), in the prediction array, and
occasionally picks up an output for exploration purpose
arbitrarily.

The Effectors perform its action to the environment according to
the selected output. Fourth is the Q-learning style reinforcement
learning part of XCS (on the right and the bottom of Fig. 1). After
Effectors perform action to the environment, feedback generated
by the environment is gathered by XCS. Payoff Function is a
function predefined by the user to interpret the feedback into
numeric form of payoff, and the computed payoff is used to
update parameters (p, & and F) of each classifier. The Update
process is held on only the current Action Set (denoted by [A]),
which represent the set of classifiers (demonstrated in the bottom
of Fig. 1) that are responsible for the environmental feedback
caused by the classifiers’ suggested action performed by the
Effectors. Last is the Rule (Classifier) Discovery part of XCS (on

N\
/\

X X

Figure 3 An example of a GP tree structure.

I

/ N\

& &
/NN
T0O T1T2 T3
Figure 4 An example of a code fragment.

|

/N

TO

\

T0

Figure 5 An example of a “don’t care” code fragment.

1277

the left bottom of Fig. 1). During the learning process, GA is
triggered occasionally to search for accurate classifiers in the
classifier (condition-action string representation) space. During
Update process and GA, Subsumption is performed to enable
“Macro-Classifier” (classifiers that are more general than others)
to subsume other classifiers to reduce the number of redundant,
overlapped classifiers.

As shown in Figure 2, a classifier managed by the original XCS
can be divided into three parts, as follows: a ternary string
representing condition (for certain situations. 0, 1, # for each bit, #
indicates a bit that should be ignored, also called “don’t care” bit),
a binary string representing an action (the output suggested by the
classifier), and three parameters of the classifier, in which p
represents predicted payoff, ¢ represents prediction error, and F
represents fitness value. Several versions of XCS were developed
over the past decade to suit various types of problems [19]. The
original XCS was designed to perform on datasets with discrete
inputs and a discrete output.

The detailed description of macroclassifiers and subsumption
deletion will be described in Section 2.1.2 and 2.1.3.

2.1.2 Macroclassifiers

To allow XCS extract generalized rules (classifiers) from a
previously unknown dataset, the use of the macroclassifiers
technique to reduce redundant classifiers is crucial in the design of
XCS. By reducing redundant classifiers, the use of the
macroclassifiers technique realizes the generalization of classifiers
in XCS, and also increases the speed of Classifier Matching
process. The idea of macroclassifier is to obtain an additional
parameter, numerosity parameter, num, for the classifiers
managed in XCS [20], in which a classifier with numerosity num
= n is equivalent to n regular classifiers.

When XCS generates a new classifier at the initialization step or
at later stages, [P] is scanned to examine whether a
macroclassifier exists with the same condition and action as that
of the new classifier. If [P] has classifiers with the same condition
and action, the numerosity of the existing macroclassifier with the
same condition and action is incremented by one instead of
inserting the new classifier into [P]. Otherwise, the new classifier
is added to the population with its own numerosity field set to one.
Similarly, when the macroclassifier experiences a deletion, its
numerosity is decremented by one instead of being deleted, and
then any macroclassifier with numerosity num = 0 is removed
from the population.

2.1.3 Subsumption Deletion

Subsumption deletion is a method to improve the generalization
capability of XCS, and occurs after the Update process of [A] and
GA (also called Action Set Subsumption and GA Subsumption
respectively) [20]. During Action Set Subsumption deletion, XCS
selects an experienced classifier G with & < g [Jfirst; subsequently,
G subsumes all classifiers in [A] that are less general than G by
deleting them, and the numerosity of G 1is incremented
accordingly. The XCS also operates GA Subsumption deletion
when new classifiers (children) are generated through GA; the
children are compared to their parent classifiers and subsumed as
well if the parent classifiers are experienced and more general.
Simultaneously, the numerosity of the subsuming classifier is
incremented. Otherwise, XCS inserts the generated new classifiers
into [P]. For further details of XCS please see Butz’s algorithmic
description of XCS [20].

2.2 XCS Using Code Fragmented Conditions

For the XCS using code fragmented conditions, the binary
representation of each condition bit of a classifier is changed to a
code fragment. A code fragment is a binary tree. Each tree node
has at most two child nodes, which can be distinguished as “left”
and “right”. Each binary tree has depth up to two and so can have
maximally seven nodes. The leaves of each code fragments are
operands, and the other nodes contain operators. The operator
include &, |, d, r, and ~ that denotes the boolean operators of AND,
OR, NAND, NOR, and NOT respectively. The code fragment
uses postfix notation. Figure 4 is an example of a code fragment
which postfix notation is “T0T1&T2T3&|”. The terminal symbols
may be the combination of the symbol set {70, T1, ..., Tn-1}
where n is the length of the classifier rule.

To determine whether a problem input is matched by a classifier,
each of the code fragments in a classifier will determine whether
the problem input matches it. If each code fragment in the
condition of classifier has output 1, the problem input is matched
by the classifier. For example, consider the problem instance is
“100010” then the code fragment shown in Figure 4 will generate
0 as the output value (not matched). Because T1, T2, T3, T4 are
replaced by 1, 0, 0, and 0 respectively.

Using S, and
Calculating the output 4
of Classifier A and B

i=i+1l
Input the next Simulate
problem input.
Eg. 000000 000001

Output, =0
Outputz=1

true true

Ado ot A subsume B
subsume B

Figure 6 The flow diagram of the mechanism of subsumption.

1278

XCS randomly chooses the code fragments from a code fragment
population to generate classifier conditions during the covering
mechanism. The Genetic Algorithm (GA) and the crossover point
can occur between any two code fragments. The mutation
operator will check whether the code fragment is “don’t care”
(same as “#” used in the ternary representation stated in Section
2.1.1). If not, change the code fragment to “don’t care”. As shown
in Figure 5, the output of the “don’t care” code fragment is always

The building blocks of knowledge from a smaller problem seed
the population of the code fragments used in the problems that are
more complex. The fitter code fragments are used to replace the
terminal symbol of the next level problem. The probability of
choosing a code fragment from the population of fitter code
fragments is set to 0.5.

Each code fragment has a fitness value which is updated by
Equation 1, where specificness is the number of the code
fragments cf in the classifier c/fr. Initially the fitness value of the
code fragment is equal to 0. By Equation 1, when XCS updates
the classifier fitness, then the fitness of the code fragments in the
classifier condition is also updated too.

The system will observe the fitness of each code fragment, and
hence identify the fitter and useful building blocks of knowledge.

cf-fitness = cf fitness + (clfr.specificness)” (1)

2.3 The Mechanism of Subsumption

In this section, we describe the mechanism of subsumption we
invented. The main principle of our method is a way to determine
a classifier is more general than another classifier. Figure 6 shows
the flow chart of our proposed mechanism of subsumption.

The following steps show how we determine classifier A is more
general than classifier B. If classifier A is more general than
classifier B, for all environmental inputs, classifier A and
classifier B must followed the rule that when classifier B matches
an input (all code fragments in this classifier rule output 1), A
must matches the input as well. On the other hand, when classifier
B does not match an input, we don’t care whether classifier A
matches the input or not.

Based on such the principle, to determine if classifier A is more
general than classifier B, a truth table of all inputs can be
generated, called the table of simulations. The simulated input is
called simulate question input (S;). Initially, S; set to 0 in binary
representation. For example, if the classifier’s condition length is
6, S; will set to “000000”. Then S; replaces each terminal symbols,
such as TO, T1, T2, ..., TS respectively of each code fragment in
the classifier rule. Each code fragment will generate the value of
CFi (i = 0~5) as shown in Table 1. Finally, each code fragmented
value (CFi) will use the boolean operator AND to generate the
value of output. For example, outputy, = CFA0 * CFo1 » CF 2 »
CFA3 ~ CFa4 " CF45 and outputg - CFg0 ~ CFgl » CFg2 ~ CFg3 »
CFg4 " CFgS5. If classifier A does not subsume B, system will
return false. Otherwise, S; will do the action i =i + 1 and get the
next S;. Having the next iteration and generating the next output
until S; =1 in binary representation.

Table 1 The simluate question input.

Simulated Classifier A Classifier B
Question Input (S) (cF, | cF, [cry | cF, | CFs | cFs | Outputa | CFy | CF, | CFs | CF, | CFs | CFs | Outputs
000000 1 1 1 1 1 1 1 1 1 0 0 1 1 0
000001 1 0 0 0 0 1 0 1 1 1 1 1 1 1
000010 1 1 1 0 1 1 0 0 0 0 1 1 0 0
111111 1 1 0 0 0 1 0 1 1 1 1 1 1 1
e Performance System error s Population size(/1000)
Performance System error s Population size(/1000) 1 -~ —
1 -
0.8 -
0.8 S S
0.6
0.6
0.4 - 0.4 -
032 -]L 0.2
0 0
O OO OO OO0 000000 0O oo o o
RER83838383338338 LQQUWOWOWLWOWOWmOoWwono
MBSOV IS MW OSMLL N MO NDM®©OANLOWASN oSN
dAN®MWLO™0O dAN®Mn YN A AN NN O NS S

Figure 7 6-bit multiplexer with the “GA subsumption™ off. Figure 9 11-bit multiplexer with the “GA subsumption” off.

e Performance System error e Population size(/1000)

1 A—— 1
0.8 r 0.8 -

0.6 06 \
0.4 - 0.4 \\“\~
Q%f\\‘ 02 |y

Performance System error e Population size(/1000)

S nannn,
0 0
[eNeoNolNeololNololNoNoNoNoNoNoNolelN o]
N oOoMnmMounmMomnmMowmLowmowmouwmo [oleolololoNoNolNoleoNololoNololNe o]
N W 0O MW OO MLWNOWO ML O N ounNnNOoOMmMOoOoOmMOoOWLMLOWmMOoOuwmOowmOo
A NMNWONWOOAANMLL ©ON N MWL OODNDA NS INNOOOAHAM
D I T I I I M O OO NN OANLW O o TN o <IN
A A A N NN OO T T

Figure 8 6-bit multiplexer with the “GA subsumption” on, Figure 10 11-bit multiplexer with the “GA subsumption” on.

1279

2.4 Experiment Design
2.4.1 L-bit Multiplexer

The experiment uses L-bit multiplexer to be the testing problem.
L-bit multiplexer is a simple L-bit Boolean function that inputs
Boolean strings with length L and outputs with a single bit binary
output of 0 or 1. The function’s output values are determined by
regarding the first k bits as an address that indexes the remaining
2% bits, and returns the indexed bit. For example, in the 6-bit
multiplexer problem (k = 2), the output corresponds to the input
string, 100010 is 1, because the “address,” 10, indexes bit 2 of the
remaining four bits.

2.4.2 Parameter Setup

XCS parameters use as follows: fall of rate of the fitness a = 0.1,
learning rate f = 0.2, the threshold of prediction error ¢, = 10,
fitness exponent v = 5, the threshold for GA application in the
action set Og4 = 25, the threshold for subsumption 6,,, = 20, the
fraction of mean fitness = 0.1, the probability of mutation u =
0.04, the probability of crossover x = 0.8, the probability of using
don’t care symbol when covering P# = 0.5, N = 500, 1000, and
2500 for 6-, 11-, and 20-bit multiplexer respectively. The number
of the code fragments used is twice the number of classifiers. The
number of the fitter code fragments from 6- to 11-bis multiplexer
is 22, and from 11- to 20-bit multiplexer is 40. Only “GA
subsumption” which occurs in the mechanism of GA is turned on
in our experiment.

3. RESULT

The result of the experiment is discussed in this section. We
divided the experiment into three parts, as follows: 6-bit, 11-bit,
and 20-bit multiplexer problems. Figure 7 shows the average of
30 runs, the population size of 6-bit multiplexer with the GA
subsumption off is approximately 300. Performance reaches its
maximum approximately 99% at about 6000 problems. System
error reaches a minimum at a similar point. Figure 8 shows the
multiplexer with the GA subsumption on, we observe that the
population size reduces to about 60. Performance reaches its
maximum approximately 99% at about 12000 problems. System
error reaches a minimum at a similar point.

Figure 9 shows the average of 30 runs, the population size of 11-

bit multiplexer with the GA subsumption off is approximately 750.

Performance reaches its maximum approximately 99% at about
15000 problems. System error reaches a minimum at a similar
point. Figure 10 shows the multiplexer with GA subsumption on,
we observe that the population size reduces to about 160.
Performance reaches its maximum approximately 99% at about
36000 problems. System error reaches a minimum at a similar
point.

4. DISCUSSION

4.1 The Performance of Experiments

In our experiments (6-bit, 11-bit multiplexer), the performance do
not reach 100% occasionally, so the average of the accuracy
reached in 6000 iteration (6-bit multiplexer) was provided in the
result section as 99%. The average and standard deviation of
performance, system error, and population size are provided in
Table 2.

Table 2 shows the average of the experiment after 30 runs and the
standard deviation indicates how much variation or dispersion

1280

exists from the average. In the 6-bit multiplexer with GA
subsumption off, the average of the performance is 0.99+0.02,
system error is 0.047+0.032, and the population size is 314+12 at
about 6000 iteration. In the 6-bit multiplexer with GA
subsumption on, the average of the performance is 0.99+0.02,
system error is 0.032+0.027, and the population size is 64+13 at
about 12000 iteration. In the 11-bit multiplexer with GA
subsumption off, the average of the performance is 0.98+0.02,
system error is 0.069+0.025, and the population size is 750+13 at
about 15000 iteration. In the 11-bit multiplexer with GA
subsumption on, the average of the performance is 0.97+0.02,
system error is 0.059+0.040, and the population size is 160+22 at
about 36000 iteration.

The statistic t-test is also be used to analyze the results. The t-test
is the most powerful parametric test for calculating the
significance of a small sample mean. The results shows that the
population size in the 6-bit and 11-bit multiplexer reach the
significant differences (p-value < 0.001). The p-value of the
performance and system error are 0.50 and 0.03 in the 6-bit
multiplexer. In the 11-bit multiplexer, the p-value of the
performance and system error are 0.09 and 0.15.

4.2 The Population of Code Fragments

One of the possible reasons that impacts the system performance
may occur in the generation of the population of code fragments.
To define the uniformly random when the system generates the
population of code fragments is very important. The method about
the population of code fragments is not clearly described in the
previous works [17]. Hence, in this section, we provide our
method to generate the population of code fragments. First, the
system randomly selects the number of nodes to generate the tree
(node 1~7). Second, the system will consider all nodes in the tree
and randomly replace the internal node to an appropriate operator
(AND, OR, NAND, NOR, and NOT) and the leaves to terminal
symbols (70, T1, ..., Tn-1). The system repeats the above steps
and generates the trees until it reaches the maximum population
size of the code fragments.

4.3 The Technique for Speeding Up

Twenty-bit or higher dimension multiplexer problem were not
tested in our research due to the major drawback of our proposed
method, that is, speed. Since each time when the function of
determining if a classifier is more general than another classifier is
called, the 2¢ truth table should be traversed. However,
improvements in speed can be done by improvements in
implementation, for example, storing the unmatched input string
of classifier A.

Such the technique for speeding up could be based on the fact that
the most crucial concept of the proposed isMoreGeneral function
showed in the flow diagram in Figure 6 is that, because if any S; is
unmatched by Classifier A but matched by Classifier B, the
function can immediately judge that Classifier A is not more
general than Classifier B and return. Hence, the unmatched S; of
Classifier A is important. So, we can develop speeding up
technique based the fact. We can store the unmatched S; of
Classifier A for future use (not need to go through all S; every
time when an isMoreGeneral function is used). Every time that S;
is established in the isMoreGeneral function, S; that was
previously matched by Classifier A should be ignored (see Figure
11 for illustration).

Table 2 The average and standard deviation of 6-bit and 11-bit multiplexer.

i represents the i iteration and *represents p < 0.001.

The average of 30 runs

Average and standard deviation

performance System error(/0.001) Population size

6-bit multiplexer with the GA subsumption off (60001) 0.9940.02 47.33432.62 314.07+12.87*
6-bit multiplexer with the GA subsumption on (120001) 0.9940.02 32.43427.89 64.90£13.72%
11-bit multiplexer with the GA subsumption off (150001) 0.98+0.02 69.03425.82 750.20+13.85%
11-bit multiplexer with the GA subsumption on (36000i) 0.97+0.02 59.96+40.41 160.90+£22.28%*

Unmatching
Register of S,

A

5, that is
matched by
Classifier A is
skipped

I
1
|
I]
! Fetch the Using S, and Fetch the |
; unmatc?n‘ed S, of Calculating the output unmatchgd Sof i
| Classifier A of Classifier A and B Classifier A i
: A "
|] 1y
| 1 1y
LN F= e e e e I
; Storing the ! !
. e Qutput, =0
: unmatcheq |‘nput (S)i& ST Is last S, ?
i of classifier A !
1
\

A do not
subsume B

rue

‘ A subsume B

Figure 11 The possible speeding up technique that has not yet been implemented in this study.

5. CONCLUSION

The subsumption mechanism in the code fragment representation
of XCS was successfully implemented for low dimensionality
problems. In the results of the experiment using multiplexer
problem from 6-bit to 11-bit, we found that the number of the
macroclassifiers in the final [P] reduced. This work shows that the
benefits of subsumption transferred to code fragment based
systems, but additional work is required to develop a scalable
subsumption mechanism.

6. ACKNOWLEDGEMENTS

This work was fully supported by the Taiwan National Science
Council under grant numbers NSC-101-2220-E-009-039 and
NSC-101-2627-E-010-001. This work was also supported in part
by the UST-UCSD International Center of Excellence in
Advanced Bioengineering sponsored by the Taiwan National
Science Council I-RiCE Program under grant number NSC-101-
2911-1-009-101.

7. REFERENCES

[1] Wilson, S. W. Classifier fitness based on accuracy. Evol.
Comput., 3,2 1995), 149-175.

[2] Akbar, M. A. and Farooq, M. Application of evolutionary
algorithms in detection of SIP based flooding attacks. In
Proceedings of the 11th Annual conference on Genetic and
evolutionary computation (Montreal, Canada, 2009). ACM.

[3] Gandhe, A., Yu, S.-H., Mehra, R. and Smith, R. XCS for
Fusing Multi-Spectral Data in Automatic Target Recognition.
Springer Berlin / Heidelberg, 2008.

[4] Armano, G., Murru, A. and Roli, F. Stock Market Prediction
by a Mixture of Genetic-Neural Experts. International

Journal of Pattern Recognition and Artificial Intelligence
(IJPRAI), 16, 5 2002), 501-526.

[5] Chen, A.-P., Hsu, Y.-C. and Chang, J.-H. Applying Extensible
Classifier System to Inter-market Arbitrage with High-

1281

Frequency Financial Data. In Proceedings of the 2007
International Conference on Convergence Information
Technology (2007). IEEE Computer Society.

[6] Tsai, W.-C. and Chen, A.-P. Global Asset Allocation Using
XCS Experts in Country-Specific ETFs.2008.

[7] Passaro, A., Baronti, F. and Maggini, V. Exploring
relationships between genotype and oral cancer development
through XCS. In Proceedings of the 2005 workshops on
Genetic and evolutionary computation (Washington, D.C.,
2005). ACM.

[8] Baronti, F., Micheli, A., Passaro, A. and Starita, A. Machine
learning contribution to solve prognostic medical. Elsevier,
2007.

[9] Bernauer, A., Arndt, G., Bringmann, O. and Rosenstiel, W.
Autonomous multi-processor-SoC optimization with
distributed learning classifier systems XCS. In Proceedings
of the 8th ACM international conference on Autonomic
computing (Karlsruhe, Germany, 2011). ACM.

[10] Shankar, A. and Louis, S. Learning classifier systems for
user context learning.2005.

[11] Shankar, A. and Louis, S. J. XCS for Personalizing Desktop
Interfaces. Evolutionary Computation, IEEE Transactions on,
14, 4 2010), 547-560.

[12] Orriols-Puig, A., Casillas, J. and Bernad6-Mansilla, E.
Genetic-based machine learning systems are competitive for
pattern recognition. Evolutionary Intelligence, 1, 3 2008),
209-232.

1282

[13] Wilson, S. W. Get real! XCS with continuous-valued inputs.
Learning Classifier Systems2000), 209-219.

[14] Lanzi, P. L. Extending the Representation of Classifier
Conditions Part I: From Binary to Messy Coding. In
Proceedings of the genetic and evolutionary computation
conference (1999).

[15] Lanzi, P. L. and Perrucci, A. Extending the Representation of
Classifier Conditions Part II: from messy coding to S-
Expressions. In Proceedings of the genetic and evolutionary
computation conference (1999).

[16] Lanzi, P. L. XCS with Stack-Based Genetic Programming,
2003.

[17] Igbal, M., Browne, W. N. and Zhang, M. Extracting and
using building blocks of knowledge in learning classifier
systems. In Proceedings of the fourteenth international
conference on Genetic and evolutionary computation
conference (Philadelphia, July 7-11, 2012). ACM.

[18] Koza, J. Genetic programming as a means for programming
computers by natural selection. Stat Comput, 4, 2
(1994/06/01 1994), 87-112.

[19] Wilson, S. W. Mining oblique data with XCS. Advances in
Learning Classifier Systems. Third International Workshop,
IWLCS 2000. Revised Papers (Lecture Notes in Artificial
Intelligence Vol.1996)(2001), 158-174.

[20] Butz, M. and Wilson, S. An Algorithmic Description of XCS.
Springer Berlin / Heidelberg, 2001.

