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ABSTRACT 
By utilizing a code-fragmented representation of Extended 
Classifier System (XCS) condition in conjunction with building-
block extraction technique, autonomous scaling has been realized 
in the latest work of XCS. The technique substantially reduces the 
number of training instances required in various benchmark 
problems. However, the subsumption mechanism was not 
included in the former report of the technique. Therefore, we 
invented the subsumption mechanism for XCS with such 
technique, and observed the characteristics of such the system in 
multiplexer problems. The finding indicates that our subsumption 
mechanism decreased the number of macro-classifiers. 

Categories and Subject Descriptors 
F.1.1 [Models of Computation]: Genetics-Based Machine 
Learning, Learning Classifier Systems 

General Terms 
Algorithms, Performance 

Keywords 
Extended Classifier System (XCS), Building Blocks, Code 
Fragments, Scalability, Pattern Recognition 

1. INTRODUCTION 
Machine learning techniques are widely used in many fields, such 
as data mining and artificial intelligence because of their 
capability of extracting previously unknown knowledge from 
datasets. One of the research mainstreams is Learning Classifier 
Systems (LCSs), especially Extended Classifier System (XCS). 
XCS is a Learning Classifier System (LCS) that learns the 
problem using a set (called population set [P]) of condition-action 
rules called classifiers. Via the learning process, XCS continually 
updates [P] to extract useful unknown knowledge from the dataset 
[1]. 

Because of XCS’s excellent performance in a wide range of real 
world applications, XCS has been successfully applied to various 

areas, including security [2, 3], finance [4-6], medical research [7, 
8], and chip design [9]. In the area of finance, XCS is known for 
its capability of financial time series forecasting. As a promising 
classifier, XCS is also used in applications of personalization and 
user context extractions [10, 11]. These studies provide a 
comparison of accuracy rates between XCS and other commonly 
used traditional machine learning techniques to demonstrate that 
XCS is competitive [12]. 

Traditionally, LCSs use binary representations. Later on, different 
types of encoding representation are proposed to solve problems 
in different domains. For example, XCSR (see [13]), by adopting 
real-value representation, can be applied to continuous variables 
such as stock index, temperature, height and weight. Furthermore, 
on the path of the attempts of using code-fragment style 
representations, Lanzi firstly experimented with two different 
ways to represent classifier conditions: a variable length messy 
coding [14], and S-expressions [15]. The messy coding scheme 
translates environmental inputs into bit strings that have no 
positional linking between bits in classifier condition and any 
feature of the environmental input [14]. On the other hand, 
compare to messy coding, S-expressions is a more complex 
representation for general classifier conditions [15]. The 
representation methods are complementary and can be used 
together, for coping more dynamic types of input variables. 

Later, in 2003, Lanzi presented a stack-based genetic 
programming mechanism for XCS [16]. Such the technique 
represents the condition of XCS by linear sequences of tokens 
expressed in Reverse Polish Notation.  Each token can be a 
function, a variable, or a constant. The set of used functions 
includes boolean operators (AND, OR, NOT, EOR), arithmetic 
operators (+ and -), and comparisons (> and =). The variables 
were represented by the values of sensory inputs. In 2012, Iqbal et. 
al, by utilizing a code-fragmented representation of XCS 
conditions in conjunction with a building-block extraction 
technique, autonomous scaling was demonstrate effective in LCSs 
for the first time. The effectiveness and the reduction in the 
number of training instances required in large problems of the 
proposed technique was reported [17]. Such the genetic 
programming (GP) like approach proposed by Iqbal et. al, 
would be desirable for researchers in LCS field, because such 
approach may allow XCS to cope with high dimension problems. 

GP is an evolutionary algorithm-based methodology that 
generates the computer programs. These computer programs are 
represented by a tree structures that perform a user-defined task.  
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Table 1 The simluate question input. 

Simulated  

Question Input (Si)  

Classifier A  Classifier B 

CF1 CF2 CF3 CF4 CF5 CF6 OutputA CF1 CF2 CF3 CF4 CF5 CF6 OutputB 

000000 1 1 1 1 1 1 1 1 1 0 0 1 1 0

000001 1 0 0 0 0 1 0 1 1 1 1 1 1 1

000010 1 1 1 0 1 1 0 0 0 0 1 1 0 0

… 
      

… 
      

111111 1 1 0 0 0 1 0 1 1 1 1 1 1 1

 

 
Figure 7 6-bit multiplexer with the “GA subsumption” off. 

 

 
Figure 8 6-bit multiplexer with the “GA subsumption” on. 

 
Figure 9 11-bit multiplexer with the “GA subsumption” off. 

 

 
Figure 10 11-bit multiplexer with the “GA subsumption” on. 
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2.4 Experiment Design 

2.4.1 L-bit Multiplexer 
The experiment uses L-bit multiplexer to be the testing problem. 
L-bit multiplexer is a simple L-bit Boolean function that inputs 
Boolean strings with length L and outputs with a single bit binary 
output of 0 or 1. The function’s output values are determined by 
regarding the first k bits as an address that indexes the remaining 
2k bits, and returns the indexed bit. For example, in the 6-bit 
multiplexer problem (k = 2), the output corresponds to the input 
string, 100010 is 1, because the “address,” 10, indexes bit 2 of the 
remaining four bits. 

2.4.2 Parameter Setup 
XCS parameters use as follows: fall of rate of the fitness α = 0.1, 
learning rate β = 0.2, the threshold of prediction error ε0 = 10, 
fitness exponent v = 5, the threshold for GA application in the 
action set θGA = 25, the threshold for subsumption θsub = 20, the 
fraction of mean fitness δ = 0.1, the probability of mutation μ = 
0.04, the probability of crossover x = 0.8, the probability of using 
don’t care symbol when covering P# = 0.5, N = 500, 1000, and 
2500 for 6-, 11-, and 20-bit multiplexer respectively. The number 
of the code fragments used is twice the number of classifiers. The 
number of the fitter code fragments from 6- to 11-bis multiplexer 
is 22, and from 11- to 20-bit multiplexer is 40. Only “GA 
subsumption” which occurs in the mechanism of GA is turned on 
in our experiment. 

3. RESULT 
The result of the experiment is discussed in this section. We 
divided the experiment into three parts, as follows: 6-bit, 11-bit, 
and 20-bit multiplexer problems. Figure 7 shows the average of 
30 runs, the population size of 6-bit multiplexer with the GA 
subsumption off is approximately 300. Performance reaches its 
maximum approximately 99% at about 6000 problems. System 
error reaches a minimum at a similar point. Figure 8 shows the 
multiplexer with the GA subsumption on, we observe that the 
population size reduces to about 60. Performance reaches its 
maximum approximately 99% at about 12000 problems. System 
error reaches a minimum at a similar point.  

Figure 9 shows the average of 30 runs, the population size of 11-
bit multiplexer with the GA subsumption off is approximately 750. 
Performance reaches its maximum approximately 99% at about 
15000 problems. System error reaches a minimum at a similar 
point. Figure 10 shows the multiplexer with GA subsumption on, 
we observe that the population size reduces to about 160. 
Performance reaches its maximum approximately 99% at about 
36000 problems. System error reaches a minimum at a similar 
point. 

4. DISCUSSION 

4.1 The Performance of Experiments 
In our experiments (6-bit, 11-bit multiplexer), the performance do 
not reach 100% occasionally, so the average of the accuracy 
reached in 6000 iteration (6-bit multiplexer) was provided in the 
result section as 99%. The average and standard deviation of 
performance, system error, and population size are provided in 
Table 2. 

Table 2 shows the average of the experiment after 30 runs and the 
standard deviation indicates how much variation or dispersion 

exists from the average. In the 6-bit multiplexer with GA 
subsumption off, the average of the performance is 0.99±0.02, 
system error is 0.047±0.032, and the population size is 314±12 at 
about 6000 iteration. In the 6-bit multiplexer with GA 
subsumption on, the average of the performance is 0.99±0.02, 
system error is 0.032±0.027, and the population size is 64±13 at 
about 12000 iteration. In the 11-bit multiplexer with GA 
subsumption off, the average of the performance is 0.98±0.02, 
system error is 0.069±0.025, and the population size is 750±13 at 
about 15000 iteration. In the 11-bit multiplexer with GA 
subsumption on, the average of the performance is 0.97±0.02, 
system error is 0.059±0.040, and the population size is 160±22 at 
about 36000 iteration. 

The statistic t-test is also be used to analyze the results. The t-test 
is the most powerful parametric test for calculating the 
significance of a small sample mean. The results shows that the 
population size in the 6-bit and 11-bit multiplexer reach the 
significant differences (p-value < 0.001). The p-value of the 
performance and system error are 0.50 and 0.03 in the 6-bit 
multiplexer. In the 11-bit multiplexer, the p-value of the 
performance and system error are 0.09 and 0.15. 

4.2 The Population of Code Fragments 
One of the possible reasons that impacts the system performance 
may occur in the generation of the population of code fragments. 
To define the uniformly random when the system generates the 
population of code fragments is very important. The method about 
the population of code fragments is not clearly described in the 
previous works [17]. Hence, in this section, we provide our 
method to generate the population of code fragments. First, the 
system randomly selects the number of nodes to generate the tree 
(node 1~7). Second, the system will consider all nodes in the tree 
and randomly replace the internal node to an appropriate operator 
(AND, OR, NAND, NOR, and NOT) and the leaves to terminal 
symbols (T0, T1, …, Tn-1). The system repeats the above steps 
and generates the trees until it reaches the maximum population 
size of the code fragments. 

4.3 The Technique for Speeding Up 
Twenty-bit or higher dimension multiplexer problem were not 
tested in our research due to the major drawback of our proposed 
method, that is, speed. Since each time when the function of 
determining if a classifier is more general than another classifier is 
called, the 2L truth table should be traversed. However, 
improvements in speed can be done by improvements in 
implementation, for example, storing the unmatched input string 
of classifier A.  

Such the technique for speeding up could be based on the fact that 
the most crucial concept of the proposed isMoreGeneral function 
showed in the flow diagram in Figure 6 is that, because if any Si is 
unmatched by Classifier A but matched by Classifier B, the 
function can immediately judge that Classifier A is not more 
general than Classifier B and return. Hence, the unmatched Si of 
Classifier A is important. So, we can develop speeding up 
technique based the fact. We can store the unmatched Si of 
Classifier A for future use (not need to go through all Si every 
time when an isMoreGeneral function is used). Every time that Si 
is established in the isMoreGeneral function, Si that was 
previously matched by Classifier A should be ignored (see Figure 
11 for illustration).  
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