
The Subsumption Mechanism for
XCS using Code Fragmented Conditions

Hsuan-Ta Lin
Institute of Biomedical Engineering,

National Chiao-Tung University,
Taiwan (R.O.C.).

+886 (3)571 2121#59329

ada19900409@gmail.com

Po-Ming Lee
Institute of Computer Science and
Engineering, National Chiao-Tung

University, Taiwan (R.O.C)
1001 Ta Hsueh Rd., Hsinchu,

Taiwan (R.O.C.)
pmli@cs.nctu.edu.tw

Tzu-Chien Hsiao
Institute of Computer Science and
 Engineering and with Institute of
Biomedical Engineering, National
Chiao-Tung University, Taiwan

(R.O.C.).
labview@cs.nctu.edu.tw

ABSTRACT
By utilizing a code-fragmented representation of Extended
Classifier System (XCS) condition in conjunction with building-
block extraction technique, autonomous scaling has been realized
in the latest work of XCS. The technique substantially reduces the
number of training instances required in various benchmark
problems. However, the subsumption mechanism was not
included in the former report of the technique. Therefore, we
invented the subsumption mechanism for XCS with such
technique, and observed the characteristics of such the system in
multiplexer problems. The finding indicates that our subsumption
mechanism decreased the number of macro-classifiers.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics-Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithms, Performance

Keywords
Extended Classifier System (XCS), Building Blocks, Code
Fragments, Scalability, Pattern Recognition

1. INTRODUCTION
Machine learning techniques are widely used in many fields, such
as data mining and artificial intelligence because of their
capability of extracting previously unknown knowledge from
datasets. One of the research mainstreams is Learning Classifier
Systems (LCSs), especially Extended Classifier System (XCS).
XCS is a Learning Classifier System (LCS) that learns the
problem using a set (called population set [P]) of condition-action
rules called classifiers. Via the learning process, XCS continually
updates [P] to extract useful unknown knowledge from the dataset
[1].

Because of XCS’s excellent performance in a wide range of real
world applications, XCS has been successfully applied to various

areas, including security [2, 3], finance [4-6], medical research [7,
8], and chip design [9]. In the area of finance, XCS is known for
its capability of financial time series forecasting. As a promising
classifier, XCS is also used in applications of personalization and
user context extractions [10, 11]. These studies provide a
comparison of accuracy rates between XCS and other commonly
used traditional machine learning techniques to demonstrate that
XCS is competitive [12].

Traditionally, LCSs use binary representations. Later on, different
types of encoding representation are proposed to solve problems
in different domains. For example, XCSR (see [13]), by adopting
real-value representation, can be applied to continuous variables
such as stock index, temperature, height and weight. Furthermore,
on the path of the attempts of using code-fragment style
representations, Lanzi firstly experimented with two different
ways to represent classifier conditions: a variable length messy
coding [14], and S-expressions [15]. The messy coding scheme
translates environmental inputs into bit strings that have no
positional linking between bits in classifier condition and any
feature of the environmental input [14]. On the other hand,
compare to messy coding, S-expressions is a more complex
representation for general classifier conditions [15]. The
representation methods are complementary and can be used
together, for coping more dynamic types of input variables.

Later, in 2003, Lanzi presented a stack-based genetic
programming mechanism for XCS [16]. Such the technique
represents the condition of XCS by linear sequences of tokens
expressed in Reverse Polish Notation. Each token can be a
function, a variable, or a constant. The set of used functions
includes boolean operators (AND, OR, NOT, EOR), arithmetic
operators (+ and -), and comparisons (> and =). The variables
were represented by the values of sensory inputs. In 2012, Iqbal et.
al, by utilizing a code-fragmented representation of XCS
conditions in conjunction with a building-block extraction
technique, autonomous scaling was demonstrate effective in LCSs
for the first time. The effectiveness and the reduction in the
number of training instances required in large problems of the
proposed technique was reported [17]. Such the genetic
programming (GP) like approach proposed by Iqbal et. al,
would be desirable for researchers in LCS field, because such
approach may allow XCS to cope with high dimension problems.

GP is an evolutionary algorithm-based methodology that
generates the computer programs. These computer programs are
represented by a tree structures that perform a user-defined task.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07...$15.00.

1275

T
te
c
is
w
(
x

H
X
X
s
X
s

T
w
k
a
F
S

Figure 2 An ex

The internal nod
erminal symbols

correct output fo
s the terminal sy

will generate the
4,17),…} as sh

x2+1 [18].

However, the sub
XCS has not bee
XCS results in
specific classifie
XCS with code f
system in multip

The remainder o
will describe the
knowledge and t
and discussion o
Finally, we will d
Section 5.

ample of a typi

des of the tree
s. GP is used to

or each known in
ymbols and {+,-
e program that

hown in Figure

bsumption mech
en proposed. Sin
a small final

ers, we invented
fragments, and o
lexer problems.

of this paper is
brief descriptio

the subsumption
of this research a
describe an expl

cal classifier m

are functions an
seek the program

nput. For instanc
-,*,/} is the func
map the set {(1
3. The express

hanism for the m
nce the subsump
[P] by reducin
d a subsumptio
observed the cha

structured as fo
on of extracting b
n mechanism in
are presented in
licit and abbrevia

F

anaged by XCS

nd the leaves a
m that delivers th
ce, if the set {x,
ction set, then G
1,2), (2,5), (3,10
ion of the tree

modified version
ption technique
g the number

on mechanism f
aracteristics of th

follows: Section
building blocks

n XCS. The resu
n Section 3 and
ated conclusion

Figure 1 The sys

S.

are
he
1}

GP
0),
is

of
in
of

for
he

2
of
ult
4.
in

2. M

2.1 X

2.1.1
XCS is
extract
manner
of clas
system
Genetic
compon
and se
general

A deta
iteratio
XCS d
beginni
the cl
matchin
conditio
each bi
care” b
matche
classifi
the pre
classifi
(i.e., th
random

stem architectu

METHOD A

XCS Classif

XCS Base Sy
s a rule-based o

knowledge fro
r. XCS can also
ssifiers that are

form of "IF
c Algorithm (GA
nent in XCS), th
earch for a set
lity and accuracy

ailed description
on is presented a
detector encode
ing of a typical
lassifier matchi
ng process, XCS
on space repres
it, # indicates a b
bit) includes th
ed classifiers in
iers found durin
edefined criteri
iers to enable th
he environment

m.

ure of XCS.

AND MATER

fier System

ystem
online learning
om an unknow
be regarded as
represented in

state THEN a
A) component

he set of classifie
t of classifiers
y [1].

n on the flow
as follows: first,
es the status o
iteration into a b
ing process.
S searches for cl
sented by its co
bit that should be
he detected curr
nto Match Set
ng classifier mat
ia, XCS applie
heir condition st
tal status), and

RIALS

algorithm which
wn dataset in
a system that m

n the traditional
action". By inte
(also named rul
ers can evolve o
 that yields th

of a typical XC
, as shown in F

of the environm
binary string, an
Second, during
assifiers in [P], i
ondition string
e ignored, also c
rent status, and
(denoted by [

tching process d
es cover to ge
tring to match c
action string is

h is able to
an iterative

manages a set
l production
egrating the
le discovery
occasionally,
he maximal

CS learning
Figure 1, the
ment at the
nd uses it for
g classifier
in which the
(0, 1, # for

called “don’t
d places all
M]). If the
do not meet
enerate new
current input
s chosen at

1276

T
fr
s

A
f
is
p
o
a

T
th
le
E
b
fu
n
u
p
w
o
c
E

Third, XCS calc
from sets of cla
same action strin

After calculating
formed for outpu
s usually set to

predicted payof
occasionally pi
arbitrarily.

The Effectors pe
he selected outp
earning part of X

Effectors perform
by the environm
function predefin
numeric form o
update paramete
process is held o
which represent
of Fig. 1) that
caused by the
Effectors. Last is

Figure

Figu

Figure 5 An

culates the fitn
assifiers that su
ng) after [M] is g

g Pi for each po
ut selection proc
o pick up outp
ff, max (Pi),
cks up an o

erform its action
put. Fourth is th
XCS (on the righ
m action to the
ment is gathered
ned by the use

of payoff, and t
ers (p, , and F
on only the curr
the set of classi
are responsible
classifiers’ sugg
s the Rule (Clas

e 3 An example

re 4 An exampl

n example of a “

ess weighted a
ggest the same

generated.

ssible output, Pr
cess. The output
put i, which ow

in the predic
utput for exp

n to the environm
he Q-learning st
ht and the bottom
environment, fe

d by XCS. Pay
er to interpret t
the computed p

F) of each class
rent Action Set
fiers (demonstra
for the environ

gested action p
sifier) Discovery

of a GP tree str

le of a code frag

“don’t care” co

average predictio
output (with th

rediction Array
t selection regim
wns the maxim
ction array, an
ploration purpo

ment according
tyle reinforceme
m of Fig. 1). Aft
eedback generate
off Function is
the feedback in
payoff is used
ifier. The Upda
(denoted by [A

ated in the botto
nmental feedbac
performed by th
y part of XCS (o

ructure.

gment.

ode fragment.

on
he

is
me

mal
nd

ose

to
ent
ter
ed
a

nto
to

ate
]),

om
ck
he
on

the left
triggere
classifi
Update
“Macro
to subs
overlap

As sho
can be
represe
indicate
a binary
classifi
represe
represe
over th
origina
inputs a

The de
deletion

2.1.2
To allo
previou
techniq
XCS.
macroc
in XCS
process
parame
manage
= n is e

When X
at late
macroc
of the n
and act
same c
insertin
is adde
Similar
numero
then an
from th

2.1.3
Subsum
capabil
GA (al
respect
selects
G subs
deleting
accordi
when n
children
well if
Simulta
increme
into [P]
descrip

ft bottom of Fig
ed occasionally
ier (condition-ac
e process and G
o-Classifier” (cla
sume other class
pped classifiers.

own in Figure 2,
e divided into
enting condition
es a bit that shou

ry string represen
ier), and three
ents predicted pa
ents fitness value
he past decade t
al XCS was desi
and a discrete ou

etailed descripti
n will be describ

Macroclassif
ow XCS extra
usly unknown
que to reduce red

By reducing
classifiers techni
S, and also inc
s. The idea of
eter, numerosity
ed in XCS [20],
equivalent to n re

XCS generates
er stages, [P]
classifier exists w
new classifier. If
tion, the numero
condition and a
ng the new class
ed to the populat
rly, when the m
osity is decreme
ny macroclassif
he population.

Subsumption
mption deletion
lity of XCS, and
lso called Actio
tively) [20]. Dur
an experienced

sumes all classif
g them, and
ingly. The XCS
new classifiers
n are compared

f the parent clas
aneously, the n
ented. Otherwis
]. For further de

ption of XCS [20

g. 1). During th
y to search for
ction string rep
GA, Subsumptio
assifiers that are
sifiers to reduce

, a classifier ma
three parts, as
(for certain situa
uld be ignored, a
nting an action (
parameters of
ayoff,  represe
e. Several versio
to suit various ty
igned to perform
utput.

ion of macrocl
bed in Section 2.

ifiers
act generalized

dataset, the us
dundant classifie

redundant cla
ique realizes the
creases the spe
macroclassifier

ty parameter,
, in which a clas
egular classifiers

a new classifier
] is scanned
with the same c
f [P] has classifi

osity of the exist
action is increm
sifier into [P]. O
tion with its own
macroclassifier
ented by one in
fier with numer

n Deletion
is a method to

d occurs after the
on Set Subsump
ring Action Set S
classifier G with

fiers in [A] that
the numerosit

S also operates
(children) are g
to their parent

ssifiers are expe
numerosity of t
e, XCS inserts th
etails of XCS pl
0].

he learning proc
accurate classi

presentation) spa
on is performed
e more general
e the number of

anaged by the or
 follows: a ter
ations. 0, 1, # fo
also called “don
(the output sugg
the classifier,

ents prediction e
ons of XCS wer
ypes of problem
m on datasets w

lassifiers and s
.1.2 and 2.1.3.

rules (classifie
se of the mac
ers is crucial in th
assifiers, the u

generalization o
eed of Classifie

is to obtain an
num, for the

ssifier with num
s.

r at the initializa
to examine

condition and ac
iers with the sam
ting macroclassif
mented by one

Otherwise, the ne
n numerosity fiel
experiences a d
stead of being d
osity num = 0

improve the ge
e Update proces
ption and GA S
Subsumption de
h  < 0�first; s
are less genera

ty of G is i
GA Subsumpti

generated throu
classifiers and s
erienced and mo
the subsuming
he generated new
lease see Butz’s

cess, GA is
ifiers in the
ace. During
d to enable
than others)
f redundant,

riginal XCS
rnary string

or each bit, #
’t care” bit),

gested by the
in which p
error, and F
re developed
ms [19]. The
with discrete

subsumption

ers) from a
croclassifiers
he design of
use of the
of classifiers
er Matching
n additional
 classifiers

merosity num

ation step or
whether a

ction as that
me condition
fier with the

e instead of
ew classifier
ld set to one.
deletion, its
deleted, and
is removed

eneralization
s of [A] and

Subsumption
eletion, XCS
subsequently,
al than G by
incremented
ion deletion
gh GA; the

subsumed as
ore general.
classifier is
w classifiers
algorithmic

1277

2
F
r
c
h
a
m
o
in
O
u
w
m
w

T
e
th
c
b
“
0
r

2.2 XCS Us
For the XCS u
epresentation of

code fragment. A
has at most two
and “right”. Each
maximally seven
operands, and th
nclude &, |, d, r,

OR, NAND, NO
uses postfix nota
which postfix no
may be the com
where n is the len

To determine wh
each of the code
he problem inp

condition of clas
by the classifier
“100010” then th
0 as the output v
eplaced by 1, 0,

Figure 6 The fl

sing Code F
using code fra
f each condition
A code fragmen
child nodes, wh
h binary tree has
n nodes. The le
he other nodes
, and ~ that deno
OR, and NOT
ation. Figure 4 i
otation is “T0T1&
mbination of the
ngth of the class

hether a problem
e fragments in a
put matches it.
ssifier has outpu
. For example,
he code fragmen
value (not match
0, and 0 respect

low diagram of

Fragmented
gmented condit
bit of a classifi

nt is a binary tre
hich can be distin
s depth up to tw
aves of each co
contain operato

otes the boolean
respectively. Th
is an example of
&T2T3&|”. The
e symbol set {T
ifier rule.

m input is match
classifier will d
 If each code

ut 1, the problem
consider the pr

nt shown in Figu
hed). Because T
tively.

the mechanism

Conditions
tions, the bina
er is changed to

ee. Each tree nod
nguished as “lef
o and so can hav
ode fragments a
ors. The operat
operators of AN
he code fragme
f a code fragme
 terminal symbo

T0, T1, …, Tn-

hed by a classifie
determine wheth

fragment in th
m input is matche

oblem instance
ure 4 will genera
T1, T2, T3, T4 a

m of subsumptio

s
ary
o a
de
ft”
ve

are
tor

ND,
ent
ent
ols
1}

er,
her
he
ed
is

ate
are

XCS ra
populat
mechan
can oc
operato
(same a
2.1.1).
in Figu
1.

The bu
the pop
more c
termina
choosin
fragme

Each c
Equatio
fragme
code fr
the clas
classifi

The sy
hence i

2.3 T
In this
invente
a classi
the flow

The fol
general
classifi
classifi
an inpu
must m
B does
matche

Based
general
generat
called s
represe
6, Si wi
such as
the clas
CFi (i =
value (
value o
CFA3 ^
CFB4 ^
return f
next Si

until Si

on.

andomly choose
tion to generate
nism. The Genet
ccur between a
or will check w
as “#” used in t
If not, change th

ure 5, the output

uilding blocks o
pulation of the co
complex. The fit
al symbol of th
ng a code frag
ents is set to 0.5.

code fragment h
on 1, where s
ents cf in the cla
ragment is equa
ssifier fitness, th
ier condition is a

ystem will obser
identify the fitter

 cf.fitness = cf

The Mechan
section, we de

ed. The main pri
ifier is more gen
w chart of our pr

llowing steps sh
l than classifier
ier B, for all
ier B must follow
ut (all code frag

matches the input
s not match an
es the input or no

on such the prin
l than classifie
ted, called the ta
simulate questio

entation. For exa
ill set to “00000
s T0, T1, T2, …
ssifier rule. Eac
= 0~5) as shown
(CFi) will use t
of output. For ex
^ CFA4 ^ CFA5 a
^ CFB5. If class
false. Otherwise
i. Having the ne
i = 1 in binary re

es the code fragm
e classifier cond
tic Algorithm (G
any two code

whether the cod
the ternary repr
he code fragmen
of the “don’t ca

of knowledge fro
ode fragments u
tter code fragme
he next level pr
gment from the

has a fitness v
specificness is
assifier clfr. Initi
al to 0. By Equa
hen the fitness o
also updated too.

rve the fitness o
r and useful buil

f.fitness + (clfr.sp

nism of Sub
escribe the mech
inciple of our m
neral than anothe
roposed mechan

how how we det
r B. If classifie

environmental
wed the rule tha
gments in this
t as well. On the
input, we don’

ot.

nciple, to determ
er B, a truth ta
able of simulati
on input (Si). In
ample, if the cla
0”. Then Si repl

…, T5 respectivel
ch code fragmen
n in Table 1. Fin
the boolean ope
xample, outputA

and outputB = CF
sifier A does no
e, Si will do the
ext iteration and
epresentation.

ments from a co
ditions during th
GA) and the cro

fragments. Th
e fragment is “
esentation stated

nt to “don’t care”
are” code fragme

om a smaller pr
used in the probl
ents are used to
roblem. The pr

e population of

value which is
the number o

ially the fitness
ation 1, when X
of the code fragm
.

of each code fra
lding blocks of k

specificness)-v

bsumption
hanism of subsu

method is a way t
er classifier. Fig

nism of subsump

termine classifie
er A is more g

inputs, classif
at when classifie
classifier rule o

e other hand, wh
t care whether

mine if classifie
able of all inp
ons. The simula

nitially, Si set to
assifier’s conditi
aces each termin
ly of each code

nt will generate t
nally, each code
erator AND to g
A = CFA0 ^ CFA

FB0 ^ CFB1 ^ CF
ot subsume B,
action i = i + 1

d generating the

de fragment
he covering
ssover point

he mutation
“don’t care”
d in Section
”. As shown
ent is always

roblem seed
ems that are

o replace the
robability of
f fitter code

updated by
of the code
value of the

XCS updates
ments in the

agment, and
knowledge.

 (1)

umption we
to determine

gure 6 shows
tion.

er A is more
general than
fier A and
r B matches

output 1), A
hen classifier

classifier A

r A is more
puts can be
ated input is

0 in binary
ion length is
nal symbols,
fragment in
the value of

e fragmented
generate the

A1 ^ CFA2 ^
FB2 ^ CFB3 ^

system will
 and get the
next output

1278

Table 1 The simluate question input.

Simulated

Question Input (Si)

Classifier A Classifier B

CF1 CF2 CF3 CF4 CF5 CF6 OutputA CF1 CF2 CF3 CF4 CF5 CF6 OutputB

000000 1 1 1 1 1 1 1 1 1 0 0 1 1 0

000001 1 0 0 0 0 1 0 1 1 1 1 1 1 1

000010 1 1 1 0 1 1 0 0 0 0 1 1 0 0

…

…

111111 1 1 0 0 0 1 0 1 1 1 1 1 1 1

Figure 7 6-bit multiplexer with the “GA subsumption” off.

Figure 8 6-bit multiplexer with the “GA subsumption” on.

Figure 9 11-bit multiplexer with the “GA subsumption” off.

Figure 10 11-bit multiplexer with the “GA subsumption” on.

0

0.2

0.4

0.6

0.8

1

5
0

1
3
0
0

2
5
5
0

3
8
0
0

5
0
5
0

6
3
0
0

7
5
5
0

8
8
0
0

1
0
0
5
0

1
1
3
0
0

1
2
5
5
0

1
3
8
0
0

1
5
0
5
0

1
6
3
0
0

1
7
5
5
0

1
8
8
0
0

Performance System error Population size(/1000)

0

0.2

0.4

0.6

0.8

1

5
0

1
3
0
0

2
5
5
0

3
8
0
0

5
0
5
0

6
3
0
0

7
5
5
0

8
8
0
0

1
0
0
5
0

1
1
3
0
0

1
2
5
5
0

1
3
8
0
0

1
5
0
5
0

1
6
3
0
0

1
7
5
5
0

1
8
8
0
0

Performance System error Population size(/1000)

0

0.2

0.4

0.6

0.8

1

5
0

3
2
0
0

6
3
5
0

9
5
0
0

1
2
6
5
0

1
5
8
0
0

1
8
9
5
0

2
2
1
0
0

2
5
2
5
0

2
8
4
0
0

3
1
5
5
0

3
4
7
0
0

3
7
8
5
0

4
1
0
0
0

4
4
1
5
0

4
7
3
0
0

Performance System error Population size(/1000)

0

0.2

0.4

0.6

0.8

1

5
0

3
2
0
0

6
3
5
0

9
5
0
0

1
2
6
5
0

1
5
8
0
0

1
8
9
5
0

2
2
1
0
0

2
5
2
5
0

2
8
4
0
0

3
1
5
5
0

3
4
7
0
0

3
7
8
5
0

4
1
0
0
0

4
4
1
5
0

4
7
3
0
0

Performance System error Population size(/1000)

1279

2.4 Experiment Design

2.4.1 L-bit Multiplexer
The experiment uses L-bit multiplexer to be the testing problem.
L-bit multiplexer is a simple L-bit Boolean function that inputs
Boolean strings with length L and outputs with a single bit binary
output of 0 or 1. The function’s output values are determined by
regarding the first k bits as an address that indexes the remaining
2k bits, and returns the indexed bit. For example, in the 6-bit
multiplexer problem (k = 2), the output corresponds to the input
string, 100010 is 1, because the “address,” 10, indexes bit 2 of the
remaining four bits.

2.4.2 Parameter Setup
XCS parameters use as follows: fall of rate of the fitness α = 0.1,
learning rate β = 0.2, the threshold of prediction error ε0 = 10,
fitness exponent v = 5, the threshold for GA application in the
action set θGA = 25, the threshold for subsumption θsub = 20, the
fraction of mean fitness δ = 0.1, the probability of mutation μ =
0.04, the probability of crossover x = 0.8, the probability of using
don’t care symbol when covering P# = 0.5, N = 500, 1000, and
2500 for 6-, 11-, and 20-bit multiplexer respectively. The number
of the code fragments used is twice the number of classifiers. The
number of the fitter code fragments from 6- to 11-bis multiplexer
is 22, and from 11- to 20-bit multiplexer is 40. Only “GA
subsumption” which occurs in the mechanism of GA is turned on
in our experiment.

3. RESULT
The result of the experiment is discussed in this section. We
divided the experiment into three parts, as follows: 6-bit, 11-bit,
and 20-bit multiplexer problems. Figure 7 shows the average of
30 runs, the population size of 6-bit multiplexer with the GA
subsumption off is approximately 300. Performance reaches its
maximum approximately 99% at about 6000 problems. System
error reaches a minimum at a similar point. Figure 8 shows the
multiplexer with the GA subsumption on, we observe that the
population size reduces to about 60. Performance reaches its
maximum approximately 99% at about 12000 problems. System
error reaches a minimum at a similar point.

Figure 9 shows the average of 30 runs, the population size of 11-
bit multiplexer with the GA subsumption off is approximately 750.
Performance reaches its maximum approximately 99% at about
15000 problems. System error reaches a minimum at a similar
point. Figure 10 shows the multiplexer with GA subsumption on,
we observe that the population size reduces to about 160.
Performance reaches its maximum approximately 99% at about
36000 problems. System error reaches a minimum at a similar
point.

4. DISCUSSION

4.1 The Performance of Experiments
In our experiments (6-bit, 11-bit multiplexer), the performance do
not reach 100% occasionally, so the average of the accuracy
reached in 6000 iteration (6-bit multiplexer) was provided in the
result section as 99%. The average and standard deviation of
performance, system error, and population size are provided in
Table 2.

Table 2 shows the average of the experiment after 30 runs and the
standard deviation indicates how much variation or dispersion

exists from the average. In the 6-bit multiplexer with GA
subsumption off, the average of the performance is 0.99±0.02,
system error is 0.047±0.032, and the population size is 314±12 at
about 6000 iteration. In the 6-bit multiplexer with GA
subsumption on, the average of the performance is 0.99±0.02,
system error is 0.032±0.027, and the population size is 64±13 at
about 12000 iteration. In the 11-bit multiplexer with GA
subsumption off, the average of the performance is 0.98±0.02,
system error is 0.069±0.025, and the population size is 750±13 at
about 15000 iteration. In the 11-bit multiplexer with GA
subsumption on, the average of the performance is 0.97±0.02,
system error is 0.059±0.040, and the population size is 160±22 at
about 36000 iteration.

The statistic t-test is also be used to analyze the results. The t-test
is the most powerful parametric test for calculating the
significance of a small sample mean. The results shows that the
population size in the 6-bit and 11-bit multiplexer reach the
significant differences (p-value < 0.001). The p-value of the
performance and system error are 0.50 and 0.03 in the 6-bit
multiplexer. In the 11-bit multiplexer, the p-value of the
performance and system error are 0.09 and 0.15.

4.2 The Population of Code Fragments
One of the possible reasons that impacts the system performance
may occur in the generation of the population of code fragments.
To define the uniformly random when the system generates the
population of code fragments is very important. The method about
the population of code fragments is not clearly described in the
previous works [17]. Hence, in this section, we provide our
method to generate the population of code fragments. First, the
system randomly selects the number of nodes to generate the tree
(node 1~7). Second, the system will consider all nodes in the tree
and randomly replace the internal node to an appropriate operator
(AND, OR, NAND, NOR, and NOT) and the leaves to terminal
symbols (T0, T1, …, Tn-1). The system repeats the above steps
and generates the trees until it reaches the maximum population
size of the code fragments.

4.3 The Technique for Speeding Up
Twenty-bit or higher dimension multiplexer problem were not
tested in our research due to the major drawback of our proposed
method, that is, speed. Since each time when the function of
determining if a classifier is more general than another classifier is
called, the 2L truth table should be traversed. However,
improvements in speed can be done by improvements in
implementation, for example, storing the unmatched input string
of classifier A.

Such the technique for speeding up could be based on the fact that
the most crucial concept of the proposed isMoreGeneral function
showed in the flow diagram in Figure 6 is that, because if any Si is
unmatched by Classifier A but matched by Classifier B, the
function can immediately judge that Classifier A is not more
general than Classifier B and return. Hence, the unmatched Si of
Classifier A is important. So, we can develop speeding up
technique based the fact. We can store the unmatched Si of
Classifier A for future use (not need to go through all Si every
time when an isMoreGeneral function is used). Every time that Si
is established in the isMoreGeneral function, Si that was
previously matched by Classifier A should be ignored (see Figure
11 for illustration).

1280

5
T
o
p
p
m
b
s
s

6
T
C
N
b
A
S
2

6-bit

6-bit

11-bit

11-bit

5. CONCLU
The subsumption
of XCS was su
problems. In th
problem from 6-
macroclassifiers
benefits of sub
systems, but add
subsumption mec

6. ACKNO
This work was f
Council under
NSC-101-2627-E
by the UST-U
Advanced Bioen
Science Council
2911-I-009-101.

Ta

The

t multiplexer wit

multiplexer with

t multiplexer wit

t multiplexer wit

Figure 11 Th

USION
n mechanism in
uccessfully impl
he results of th
-bit to 11-bit, w
in the final [P] r
sumption trans
ditional work is
chanism.

OWLEDGEM
fully supported
grant numbers

E-010-001. This
UCSD Internatio
ngineering spon
I-RiCE Program

ble 2 The avera

i

average of 30 ru

th the GA subsum

h the GA subsum

th the GA subsum

th the GA subsu

he possible spee

the code fragm
lemented for lo
he experiment u
we found that th
reduced. This wo
ferred to code
s required to d

MENTS
by the Taiwan
 NSC-101-222
 work was also
onal Center o
nsored by the
m under grant n

age and standar

represents the

uns

mption off (6000

mption on (1200

mption off (1500

mption on (3600

eding up techni

ment representatio
ow dimensionali
using multiplex
he number of th
ork shows that th
 fragment base
evelop a scalab

National Scien
0-E-009-039 an
supported in pa

of Excellence
Taiwan Nation

number NSC-10

rd deviation of 6

ith iteration and

perform

0i) 0.99±0

00i) 0.99±0

00i) 0.98±0

00i) 0.97±0

ique that has no

on
ity
xer
he
he
ed

ble

ce
nd
art
in

nal
01-

7. RE
[1] Wil

Co

[2] Akb
alg
Pr
ev

[3] Gan
Fu
Sp

[4] Arm
by
Jo
(IJ

[5] Che
Cl

6-bit and 11-bit

d *represents p

Average an

mance System

0.02 47.

0.02 32.

0.02 69.

0.02 59.

ot yet been impl

EFERENC
lson, S. W. Class
omput., 3, 2 199

bar, M. A. and F
gorithms in dete
roceedings of the
volutionary comp

ndhe, A., Yu, S.-
using Multi-Spec
pringer Berlin / H

mano, G., Murru
y a Mixture of G
ournal of Patter
JPRAI), 16, 5 20

en, A.-P., Hsu, Y
lassifier System

t multiplexer.

 < 0.001.

nd standard devia

m error(/0.001)

33±32.62

43±27.89

03±25.82

96±40.41

lemented in thi

ES
sifier fitness bas

95), 149-175.

Farooq, M. Appl
ection of SIP bas
e 11th Annual co
putation (Montre

-H., Mehra, R. a
ctral Data in Au
Heidelberg, 200

u, A. and Roli, F
Genetic-Neural E
rn Recognition a
002), 501-526.

Y.-C. and Chang
to Inter-market

ation

Population siz

314.07±12.87

64.90±13.72*

750.20±13.85

160.90±22.28

s study.

sed on accuracy.

ication of evolut
sed flooding atta
onference on Ge
eal, Canada, 200

and Smith, R. XC
utomatic Target
8.

. Stock Market P
Experts. Internati

nd Artificial Inte

g, J.-H. Applying
Arbitrage with H

ze

*

*

*

*

 Evol.

tionary
acks. In
enetic and
09). ACM.

CS for
Recognition.

Prediction
ional
elligence

g Extensible
High-

1281

Frequency Financial Data. In Proceedings of the 2007
International Conference on Convergence Information
Technology (2007). IEEE Computer Society.

[6] Tsai, W.-C. and Chen, A.-P. Global Asset Allocation Using
XCS Experts in Country-Specific ETFs.2008.

[7] Passaro, A., Baronti, F. and Maggini, V. Exploring
relationships between genotype and oral cancer development
through XCS. In Proceedings of the 2005 workshops on
Genetic and evolutionary computation (Washington, D.C.,
2005). ACM.

[8] Baronti, F., Micheli, A., Passaro, A. and Starita, A. Machine
learning contribution to solve prognostic medical. Elsevier,
2007.

[9] Bernauer, A., Arndt, G., Bringmann, O. and Rosenstiel, W.
Autonomous multi-processor-SoC optimization with
distributed learning classifier systems XCS. In Proceedings
of the 8th ACM international conference on Autonomic
computing (Karlsruhe, Germany, 2011). ACM.

[10] Shankar, A. and Louis, S. Learning classifier systems for
user context learning.2005.

[11] Shankar, A. and Louis, S. J. XCS for Personalizing Desktop
Interfaces. Evolutionary Computation, IEEE Transactions on,
14, 4 2010), 547-560.

[12] Orriols-Puig, A., Casillas, J. and Bernadó-Mansilla, E.
Genetic-based machine learning systems are competitive for
pattern recognition. Evolutionary Intelligence, 1, 3 2008),
209-232.

[13] Wilson, S. W. Get real! XCS with continuous-valued inputs.
Learning Classifier Systems2000), 209-219.

[14] Lanzi, P. L. Extending the Representation of Classifier
Conditions Part I: From Binary to Messy Coding. In
Proceedings of the genetic and evolutionary computation
conference (1999).

[15] Lanzi, P. L. and Perrucci, A. Extending the Representation of
Classifier Conditions Part II: from messy coding to S-
Expressions. In Proceedings of the genetic and evolutionary
computation conference (1999).

[16] Lanzi, P. L. XCS with Stack-Based Genetic Programming,
2003.

[17] Iqbal, M., Browne, W. N. and Zhang, M. Extracting and
using building blocks of knowledge in learning classifier
systems. In Proceedings of the fourteenth international
conference on Genetic and evolutionary computation
conference (Philadelphia, July 7-11, 2012). ACM.

[18] Koza, J. Genetic programming as a means for programming
computers by natural selection. Stat Comput, 4, 2
(1994/06/01 1994), 87-112.

[19] Wilson, S. W. Mining oblique data with XCS. Advances in
Learning Classifier Systems. Third International Workshop,
IWLCS 2000. Revised Papers (Lecture Notes in Artificial
Intelligence Vol.1996)(2001), 158-174.

[20] Butz, M. and Wilson, S. An Algorithmic Description of XCS.
Springer Berlin / Heidelberg, 2001.

1282

