
HH-Evolver:
A System for Domain-Specific,

Hyper-Heuristic Evolution

Achiya Elyasaf
Ben-Gurion University of the
Negev, Be’er Sheva, Israel

achiya.e@gmail.com

Moshe Sipper
Ben-Gurion University of the
Negev, Be’er Sheva, Israel

sipper@cs.bgu.ac.il

ABSTRACT

We present HH-Evolver, a tool for domain-specific, hyper-
heuristic evolution. HH-Evolver automates the design of
domain-specific heuristics for planning domains. Hyper-heur-
istics generated by our tool can be used with combinatorial
search algorithms such as A∗ and IDA∗ for solving problems
of a given domain. HH-Evolver has a rich GUI that enables
easy operation, including: running experiments in parallel,
pausing and resuming experiments, and saving them and an-
alyzing the results. Implementing new domains and heuris-
tics with HH-Evolver is easily accomplished.
Workshop: EvoSoft

Categories and Subject Descriptors

D.1.5 [Object-oriented Programming]; I.2.1 [Applicat-
ions and Expert Systems]: Games; I.2.6 [Learning]: Pa-
rameter learning; I.2.8 [Problem Solving, Control Meth-
ods, and Search]: Heuristic methods

Keywords

Genetic Algorithms, Genetic Programming, Heuristics,
Hyper-Heuristic, Single-Agent Search, HeuristicLab,
HH-Evolver

1. INTRODUCTION
One of the main approaches for solving hard problems,

and in particular NP-Complete problems, is using a heuris-
tic search. Heuristic search algorithms are based on the
notion of approximating the distance of a given state to the
problem’s solution (or goal). Such approximations are found
by means of a computationally efficient function, known as
a heuristic function. By applying such a function to states
reachable from the current one considered, it becomes possi-
ble to select more-promising alternatives earlier in the search
process, possibly reducing the amount of search effort (typ-
ically measured in number of nodes expanded) required to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

solve a given problem. The putative reduction is strongly
tied to the quality of the heuristic function used: employ-
ing a perfect function means simply “strolling” onto the so-
lution (i.e., no search de facto), while using a bad func-
tion could render the search less efficient than totally unin-
formed search, such as breadth-first search (BFS) or depth-
first search (DFS).

A heuristic function is said to be admissible if it never
overestimates the distance to the goal. Thus, the higher the
heuristic value, the closer it is to the true distance to goal.
Using an admissible heuristic with an optimal search algo-
rithm (e.g. A* or iterative deepening A*, IDA*) guarantees
that any solution found will be optimal, i.e., with minimal
solution length. Another interesting property of heuristic
functions is that the maximum of several heuristic functions
is an admissible function as well. In our work we do not seek
optimal solutions and therefore we will not need the admis-
sibility property during the evolutionary process, however,
we will use this property in order to initialize our training
set.

Combining several heuristics to get a more accurate one
is considered one of the most difficult problems in contem-
porary heuristics research [5, 31]. Of course, if all of the
heuristic functions are admissible and an optimal solution is
what we are looking for, then we could use the max heuristic
(which takes the heuristic function with the maximal value).
However, when we do not need to guarantee optimality or
when we do not use only admissible heuristics, then there
may well be better combinations.

In this paper we present HH-Evolver, the first evolution-
ary system for the automation of the design of domain-
specific heuristics.

1.1 Hyper-Heuristics
Within combinatorial optimization, the term hyper-heuris-

tics was first used in 2000 [9] to describe heuristics to choose
heuristics. This definition of hyper-heuristics was expanded
later [5] to refer to an automated methodology for selecting
or generating heuristics to solve hard computational search
problems. In the process of hyper-heuristics learning, heuris-
tics are used as building blocks. These heuristics can be of
high level, usually complex and memory-consuming (e.g.,
landmarks and pattern databases), or even low-level heuris-
tics that are usually intuitive and straightforward to imple-
ment and compute.

According to Burke et al [8] and Cowling et al [9] the
idea of hyper-heuristics is also referred to as the problem do-
main barrier, between the low-level heuristics and the hyper-

GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

1285

heuristics. The barrier signifies that the hyper-heuristic
should be the same for any domain encountered while the
heuristics that comprise the hyper-heuristic will be domain
specific. We disagree with this view as elaborated in Section
1.2.2.

Hyper-heuristics have been applied in many research fields,
among them:

• Classical planning [13, 19, 22, 34].

• Classical NP-Complete domains, e.g., 2D and 3D bin-
packing [6, 7], personnel scheduling [8, 9], traveling sales-
man [27], and vehicle routing [16, 29].

• Classical AI domains and puzzles, e.g., The Rush-Hour
puzzle [17, 18], the game of FreeCell [10, 11, 32], and
the Tile-Puzzle [2, 12].

The growing research interest in techniques for automating
the design of heuristic search methods motivates the search
for automatic systems for generating hyper-heuristics.

1.2 Hyper-Heuristic Systems
There are several hyper-heuristic systems in the literature.

1.2.1 Classical Planning Systems

A planner receives a domain description and a domain
problem (or an instance), and outputs a solution (or a plan)
for the given instance. The input is usually given in the
Planning Domain Definition Language (PDDL) [23]. The
planning community has created domain-independent plan-
ners since 1971 [15]. Traditionally the planners’ heuristics
were domain-independent as they do not know a priori the
domain or the problem. However, many of the Interna-
tional Planning Competitions (IPC) had a special track for
domain-independent planners that are capable of automat-
ically making domain-specific adjustments. Some of these
planners generate hyper-heuristics adjusted for the given do-
main. Yoon et al. [34] improved the FF-Planner ’s heuristic
[19] by extracting domain features from the FF’s relaxed
plan. These features were then used for learning the dis-
tance from the FF-Planner’s heuristic to H∗. Others auto-
matically learned the appropriate heuristic or heuristic com-
bination for the input domain [13, 21, 22].

Since the domain is not known a priori, in all of the
cases the heuristics used as building blocks were domain-
independent heuristics. Thus, important domain-specific
knowledge was being discarded.

1.2.2 Other Systems

Ochoa et al [26] proposed the HyFlex Java system for the
development of cross-domain search methodologies and as a
benchmark tool for research in hyper-heuristics and adap-
tive/autonomous heuristic search. The first Cross-domain
Heuristic Search Challenge (CHeSC 2011) competition [4]
used HyFlex-implemented domains and low-level heuristics
as a benchmark for the competition. The challenge of the
competition was to design a high-level search strategy that
controls a set of problem-specific, low-level heuristics. The
set of low-level heuristics was different for each problem do-
main, but the generated high-level strategy that controls the
heuristics was to remain the same. Thus, domain-specific
heuristics from several different domains were used to cre-
ate domain-independent solvers. It should be noted that

HyFlex was used as a benchmark and as an evaluation func-
tion for the hyper-heuristics generation phase, and it did not
generate hyper-heuristics.

The approaches of HyFlex and CHeSC emanate from the
problem domain-barrier view described in Section 1.1. As
noted before, we find this approach to be problematic for a
number of reasons:

1. The current definition of hyper-heuristic conflates two
different definitions: The main definition—“an auto-
mated methodology for selecting or generating heuris-
tics”; and a secondary definition—“the problem do-
main barrier”—which narrows the main definition to
a sub-field of hyper-heuristics. A hyper-heuristic can
be domain independent (as in Section 1.2.1) and it can
be domain specific (as in [11]), while the “problem do-
main barrier” definition refers to domain independence
alone. We argue that domain independence is not re-
quired where hyper-heuristics are concerned.

2. Assume the existence of n domains along with low-
level heuristics for them. It might make sense to at-
tempt to generate one hyper-heuristic, H , that will
solve problems of any of these domains reasonably well.
In this case we would say that H is domain specific
to these n domains. We fail to see how H can ap-
ply successfully to domains other than the original n.
H is doomed to under-perform in comparison with a
domain-independent planner, since the latter will al-
ways apply strong and domain-independent heuristics
on new domains instead of applying irrelevant, low-
level heuristics that H will apply on problems of these
domains.

There is one exception to this argument: if H has some
online learning mechanism to learn new domains on-
the-fly it can considered as domain independent.

3. Checking the claims of the performance of the“domain-
barrier”hyper-heuristics on hidden domains should ha-
ve been an easy task. It can be achieved by comparing
the performance of the winning CHeSC 2011 hyper-
heuristics with the performance of domain-independent
planners on hidden domains. However, here we face
another problem: the number of hidden domains in
CHeSC was 2, with the number of problem instances
being 5. This is simply too small a test suite. It is also
different than suites commonly used in the literature.

4. If we seek a domain-independent solver then, as pre-
sented in Section 1.2.1, it must be based on domain-
independent heuristics only, and it must use a standard
domain-independent language or system (e.g., PDDL,
XCSP [30], JSR-331 [14]). An additional learning pro-
cess can then be performed automatically to adapt
the hyper-heuristic to the new domain encountered.
This way the system will be truly domain indepen-
dent. Currently, the community of hyper-heuristic re-
searchers focuses on Constraint Satisfaction Program-
ming (CSP) domains, though they do not use the afore-
mentioned standards.

Our above arguments notwithstanding, any of the CHeSC
2011 competitors (competition results [3], and the best solver
[24]) can be considered as a hyper-heuristic generation sys-
tem when used together with the HyFlex system.

1286

It should be noted that all of the CHeSC entries generate
hyper-heuristics for local search (i.e., they all improve exist-
ing solutions rather than finding novel ones). HH-Evolver is
the first evolutionary system for designing domain-specific
hyper-heuristics for classical planning domains, to be used
with combinatorial search algorithms such as A∗ and IDA∗.

1.3 HeuristicLab
HeuristicLab [33] is a GUI framework for heuristic and

evolutionary algorithms. HeuristicLab provides a feature-
rich software environment for heuristic optimization research-
ers and practitioners. It is based on a generic and flexible
model layer and offers a graphical algorithm designer that
enables the user to create, apply, and analyze heuristic opti-
mization methods. A powerful experimenter allows Heuris-
ticLab users to design and perform parameter tests even in
parallel. The results of these tests can be stored and ana-
lyzed easily in several configurable charts. HeuristicLab is
available under the GPL license.

HH-Evolver is built as a plug-in for HeuristicLab. HH-
Evolver supplies hyper-heuristics encodings as well as inter-
faces for adding new domains to a system. Thus, executing
experiments and analyzing the results is an easy task.

2. HH-EVOLVER
HH-Evolver is a hyper-heuristic generator for search do-

mains. The HH-Evolver system receives as input: a domain,
several heuristics for the domain, and a dataset of domain
instances to be used partly as training set and partly as test
set. HH-Evolver generates a population of random hyper-
heuristics and trains them over generations against the train-
ing set. When used with a heuristic search algorithm, the
individuals are required to produce near-optimal solutions to
the instances encountered. The search-size (i.e., the number
of nodes encountered during the search) should be small as
well.

In Section 2.1 we describe the theory and the algorithm
behind the system and in Section 2.2 we explain the steps
that need to be taken in order to run HH-Evolver. Finally,
in Section 2.3 we lay the foundations for implementing new
domains for HH-Evolver.

2.1 The HH-Evolver Design

2.1.1 The Hyper-Heuristic-Based Genome

HH-Evolver distinguishes between heuristic functions ac-
cording to their return value:

1. Real number : Heuristics that return a real-number
value that represents an estimation of the distance of
the current state to the goal. It can also estimate the
difficulty or the complexity of the state (a larger value
means a more difficult state).

2. Boolean: Heuristics that return a boolean value sig-
nifying whether a property of the domain exists for a
given state.

The task of combining several heuristics typically involves
solving two major sub-problems:

1. How to combine heuristics by arithmetic means, e.g.,
by summing their values or taking the maximal value.

2. Finding exact conditions (i.e., logic functions) regard-
ing when to apply each heuristic, or combinations
thereof—some heuristics may be more suitable than
others when dealing with specific search states.

In order to properly solve these sub-problems, we designed
three different genomic representations, all of which are thor-
oughly described in [11]. All of these representations use the
heuristics given as input to HH-Evolver.

Standard GA. This type of hyper-heuristic only ad-
dresses the first problem of how to combine heuristics by
arithmetic means. Each individual comprises nr real values
in the range [0, 1], representing a linear combination of all
nr domain real-valued heuristics. Specifically, the heuristic
value, H , designated by an evolving individual, is defined as
H =

∑nr

i=1
wihi, where wi is the ith weight specified by the

genome, and hi is the ith heuristic of the domain real-value
heuristics.

GP. As we want to embody both combinations of esti-
mates and application conditions we use standard GP-trees
as described in [20]. The individual implementation extends
the HeuristicLab SymbolicExpressionTree class and there-
fore it includes the SymbolicExpressionTree functions and
terminals except for the Variables Symbols and the Time

Series Symbols. In addition it includes the domain real-
value and boolean heuristics.

Policies. The last genome also combines estimates and
application conditions, using ordered sets of control rules, or
policies. Policies have been evolved successfully with GP to
solve search problems (e.g., [1] and [11, 18]).

The structure of our policies is the same as the one in [11]:

RULE1: IF Condition1 THEN Value1
.
.
.

RULEN : IF ConditionN THEN ValueN
DEFAULT: ValueN+1

where Conditioni and Valuei represent conditions and es-
timates, respectively.

Policies are used by the search algorithm in the follow-
ing manner: The rules are ordered such that we apply the
first rule that “fires” (meaning its condition is true for the
current state being evaluated), returning its Value part. If
no rule fires, the value is taken from the last (default) rule:
ValueN+1.

Thus, with N being the number of rules used, each indi-
vidual in the evolving population contains N Condition GP
trees and N + 1 Value sets of weights used for computing
linear combinations of heuristic values. The number of rules
is a user parameter, though our experience with different
domains has shown that 5 rules suffice.

For Condition we used the GP trees described above, and
for Value we used the Standard GA also described above.

2.1.2 Genetic Operators

HeuristicLab differentiates between the algorithm used
(i.e., the order of the genetic operators used) and the indi-
vidual representation (i.e., GP-tree or GA). HH-Evolver uses
the HeuristicLab standard genetic algorithm for the algo-
rithmic part and the individuals’ representations described
in Section 2.1.1.

Since standard GA individuals extend the HeuristicLab

1287

RealVector representation, any of the RealVector crossover
or mutator operators can be used. GP individuals extend
the HeuristicLab SymbolicExpressionTree and thus any of
the SymbolicExpressionTree crossover or mutator opera-
tors can be used.

For policies, there are 6 operators for crossover and mu-
tation, all described in [11].

For both GP-trees and policies, crossover can be per-
formed between nodes of the same type (using Strongly Typed
Genetic Programming [25]).

2.1.3 Training and Test Sets

The DomainData parameter, which is defined in the do-
main, defines a dataset of domain instances to be used and
the size of the training and test sets. The dataset can be
written in code and compiled or it can be imported as a csv
(comma-separated values) file. The file is in the following
format:
Dataset Name
Dataset Description
Instance1, h

∗

1, h1,1, . . . , h1,n

...
Instancem, h∗

m, hm,1, . . . , hm,n

where Instancei is the representation of instance i; hi,j is
the value of heuristic j when applied to instance i; and h∗

i

is the true distance of instance i to the solution. If the true
distance is not known an estimation can be used (e.g., the
maximum of all admissible heuristics).

HH-Evolver includes an automatic dataset generator.

2.1.4 Fitness

HH-Evolver currently includes the following fitness evalu-
ators:

1. Least-square evaluator.

2. Complete heuristic-search evaluator.

3. Multi-Evaluator, which includes the previous ones.

The least-square evaluator calculates the least-square dis-
tance from the hyper-heuristic value to the h∗ value for the
training set instances. The lower the distance, the better
the hyper-heuristic.

The complete heuristic-search evaluator tries to solve K >

1 training set instances with a time limit of S seconds for
each instance (K and S are user parameters). The individ-
ual’s fitness then equals:

fs = 1

K

∑K

i=1
(wL ∗ SolutionLength+ wS ∗ SearchSize)

+w#(1− #SolvedInstances

K
).

Where wL, wS and w# are the components’ weights in
the final score.

Finally, the multi-evaluator executes a different evaluator
according to a given probability.

There is a known tradeoff between the quality of the so-
lution (i.e., the solution length) and the amount of search
effort (i.e., the search size) [28]. This tradeoff is given as a
parameter for the user to define. The least-square evaluator
pushes towards a more-precise heuristic function that will
lead to a larger search size. The complete heuristic search
evaluator includes parameters to control this tradeoff more

precisely. Since running a complete search for all individ-
uals may be too long, we suggest running the least-square
evaluator more often than the complete search evaluator.

2.2 Executing HH-Evolver
HH-Evolver source and compiled dll files can be found at

http://achiya.elyasaf.net/research/HH-Evolver. The
dll files should be placed inside the HeuristicLab folder.
Once HeuristicLab is running, a new hyper-heuristic genetic
algorithm should be created with a hyper-heuristic problem
loaded. The following parameters should be initialized be-
fore starting the evolutionary process:

1. The Domain parameter, with one of the existing do-
mains (currently, the 15-Puzzle and the game of Free-
Cell).

2. The Dataset parameter, which is defined in the Do-

mainData parameter, inside the Domain parameter (see
Figure 1).

3. The search algorithm, with one of the existing heuristic
search algorithms (currently, Weighted A∗ and
WeightedIDA∗).

Figure 1 shows a screenshot of HeuristicLab loaded with a
hyper-heuristic GP-tree generator for the game of FreeCell.
The reader is welcome to test this setting and learn from it
by downloading and opening the saved configuration file at
http://achiya.elyasaf.net/research/HH-Evolver.

2.3 Implementing New Domains for
HH-Evolver

A domain definition comprises information regarding: 1)
How to represent a state in the domain; 2)how to get the
neighbors of a domain state; and 3) the domain heuristics.
Thus, there are four classes that must be inherited in order
to implement a new domain for HH-Evolver (depicted in
Figures 2 and 3):

• DomainState: Represents a state in the domain.

• Domain: Represents the domain. This class contains
all information regarding the domain (e.g., possible
heuristics, possible actions).

• Action: Represents an action in the domain. An ac-
tion transforms one domain state to another (e.g., se-
lecting a route in the vehicle routing problem).

• RealValueHeuristic / ConditionalHeuristic: Rep-
resents a domain heuristic that returns a real-value
number or a boolean value.

The HyperHeuristicDomains project contains full exam-
ples for implementing new domains.

2.3.1 Inheriting the DomainState Class

The DomainState class represents a state in the domain.
Any class that inherits this class must implement the follow-
ing functions for the heuristic search algorithm to work:

• bool isGoal(): Returns true if the state is a goal state
and false otherwise.

• bool Equals(object obj).

• int GetHashCode(): A hash code for states. The
hash code should be a bijection, though it is not an
obligation.

1288

Figure 1: HeuristicLab loaded with a Hyper-Heuristic GP-tree Creator for the game of FreeCell

Figure 2: Domain and DomainState abstract classes.

Figure 3: Action and Heuristics abstract classes.

1289

2.3.2 Inheriting the Domain Class

The Domain class holds two heuristics lists—one for Real-
ValueHeuristics and one for ConditionalHeuristics. In-
heriting the Domain class requires implementing these getters
as well as a domain state generator function. The function
receives an encoding of a domain state and returns an in-
stance of a DomainState.

2.3.3 Inheriting the Action Class

The Action class represents an action that takes one Do-

mainState and transforms it to another. The following func-
tions need to be implemented when inheriting the class:

• void apply(T state): Applies the action to a state.

• void OppositeAction(): Returns the opposite ac-
tion of the current action. The opposite action is re-
quired for backtracking during the search process.

• void applyOppositeAction(T state): Applies the
opposite action to a state.

2.3.4 Inheriting the RealValueHeuristic and the
ConditionalHeuristic Classes

Any heuristic function should be implemented as a class
that inherits the RealValueHeuristic or the Condition-

alHeuristic classes. These abstract classes require imple-
menting the double calcHeuristic(T state). The func-
tion receives a DomainState instance and returns the heuris-
tic value for that state. In case the heuristic class inherits
the ConditionalHeuristic class, it should return a positive
value if the heuristic value for the given state is true, and a
negative value otherwise.

3. DISCUSSION AND FUTURE WORK
We presented HH-Evolver, the first evolutionary system

for designing domain-specific hyper-heuristics for classical
planning domains. These hyper-heuristics can be used by
combinatorial search algorithms such as A∗ and IDA∗ for
solving domain problems.

HH-Evolver has a rich GUI that enables easy operation,
including: running experiments in parallel, pausing and re-
suming experiments, saving them and analyzing the results.
Implementing new domains and heuristics with HH-Evolver
is done by inheriting four classes.

There are several possible extensions to our work, includ-
ing:

1. Add classical planning domains to HH-Evolver (i.e.,
domains from the International Planning Competitions
(IPC)).

2. Publish HH-Evolver results for experiments in these
domains.

3. Extend HH-Evolver to support local-search, constraint-
satisfaction domains such as bin packing, personnel
scheduling, traveling salesman, and vehicle routing.

4. Extend HH-Evolver to the field of domain-independent
planning.

We wish to end by encouraging the reader to experience
HH-Evolver firsthand by pointing their browser to
http://achiya.elyasaf.net/research/HH-Evolver.

Acknowledgments

Achiya Elyasaf is partially supported by the Lynn andWilliam
Frankel Center for Computer Sciences. This research was
supported by the Israel Science Foundation (grant no. 123/11).

4. REFERENCES

[1] R. Aler, D. Borrajo, and P. Isasi. Using genetic
programming to learn and improve knowledge.
Artificial Intelligence, 141(1–2):29–56, 2002.

[2] S. J. Arfaee, S. Zilles, and R. C. Holte. Bootstrap
learning of heuristic functions. In Proceedings of the
3rd International Symposium on Combinatorial Search
(SoCS2010), pages 52–59, 2010.

[3] Automated Scheduling, Optimisation and Planning
(ASAP) research group. The first cross-domain
heuristic search challenge results.
http://www.asap.cs.nott.ac.uk/external/

chesc2011/results.html\#Detailed_Explanation,
2011.

[4] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall,
B. McCollum, G. Ochoa, A. J. Parkes, and
S. Petrovic. The cross-domain heuristic search
challenge – an international research competition. In
Proceedings of the 5th international conference on
Learning and Intelligent Optimization, LION’05, pages
631–634, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,
E. Ozcan, and J. R. Woodward. A classification of
hyper-heuristic approaches. In M. Gendreau and
J. Potvin, editors, Handbook of Meta-Heuristics 2nd
Edition, pages 449–468. Springer, 2010.

[6] E. K. Burke, M. R. Hyde, G. Kendall, and
J. Woodward. A genetic programming hyper-heuristic
approach for evolving 2-D strip packing heuristics.
IEEE Trans. Evolutionary Computation,
14(6):942–958, 2010.

[7] E. K. Burke, M. R. Hyde, G. Kendall, and
J. Woodward. Automating the packing heuristic
design process with genetic programming.
Evolutionary Computation, 20(1):63–89, 2012.

[8] E. K. Burke, G. Kendall, and E. Soubeiga. A
tabu-search hyperheuristic for timetabling and
rostering. J. Heuristics, 9(6):451–470, 2003.

[9] P. I. Cowling, G. Kendall, and E. Soubeiga. A
hyperheuristic approach to scheduling a sales summit.
In E. K. Burke and W. Erben, editors, PATAT,
volume 2079 of Lecture Notes in Computer Science,
pages 176–190. Springer, 2000.

[10] A. Elyasaf, A. Hauptman, and M. Sipper.
GA-FreeCell: Evolving Solvers for the Game of
FreeCell. In N. Krasnogor et al., editors, GECCO ’11:
Proceedings of the 13th annual conference on Genetic
and evolutionary computation, pages 1931–1938,
Dublin, Ireland, 12-16 July 2011. ACM.

[11] A. Elyasaf, A. Hauptman, and M. Sipper.
Evolutionary design of FreeCell solvers. Computational
Intelligence and AI in Games, IEEE Transactions on,
4(4):270 –281, Dec. 2012.

[12] A. Elyasaf, Y. Zaritsky, A. Hauptman, and M. Sipper.
Evolving solvers for FreeCell and the sliding-tile
puzzle. In D. Borrajo, M. Likhachev, and C. L. López,

1290

editors, Proceedings of the Fourth Annual Symposium
on Combinatorial Search, SoCS 2011, Castell de
Cardona, Barcelona, Spain, July 15-16, 2011. AAAI
Press, 15-16 July 2011.

[13] C. Fawcett, E. Karpas, M. Helmert, G. Roger, and
H. Hoos. Fd-autotune: Domain-specific configuration
using fast-downward. In Proceedings of ICAPS-PAL
2011, 2011.

[14] J. Feldman et al. JSR-331: Constraint programming
API website.
http://jcp.org/en/jsr/summary?id=331.

[15] R. E. Fikes and N. J. Nilsson. Strips: a new approach
to the application of theorem proving to problem
solving. In Proceedings of the 2nd international joint
conference on Artificial intelligence, IJCAI’71, pages
608–620, San Francisco, CA, USA, 1971. Morgan
Kaufmann Publishers Inc.

[16] P. Garrido and M. C. R. Rojas. DVRP: a hard
dynamic combinatorial optimisation problem tackled
by an evolutionary hyper-heuristic. J. Heuristics,
16(6):795–834, 2010.

[17] A. Hauptman, A. Elyasaf, and M. Sipper. Evolving
hyper heuristic-based solvers for Rush Hour and
FreeCell. In A. Felner and N. R. Sturtevant, editors,
Proceedings of the 3rd Annual Symposium on
Combinatorial Search, SoCS 2010, Stone Mountain,
Atlanta, Georgia, USA, July 8-10, 2010, pages
149–150. AAAI Press, 8-10 July 2010.

[18] A. Hauptman, A. Elyasaf, M. Sipper, and A. Karmon.
GP-Rush: using genetic programming to evolve
solvers for the Rush Hour puzzle. In G. Raidl,
F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle,
M. Birattari, C. B. Congdon, M. Middendorf,
C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles,
D. Corne, H.-G. Beyer, K. Stanley, J. F. Miller, J. van
Hemert, T. Lenaerts, M. Ebner, J. Bacardit,
M. O’Neill, M. D. Penta, B. Doerr, T. Jansen, R. Poli,
and E. Alba, editors, GECCO’09: Proceedings of 11th
Annual Conference on Genetic and Evolutionary
Computation Conference, pages 955–962, New York,
NY, USA, 2009. ACM.

[19] J. Hoffmann and B. Nebel. The FF planning system:
fast plan generation through heuristic search. J. Artif.
Int. Res., 14(1):253–302, May 2001.

[20] J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press,
Cambridge Massachusetts, May 1994.

[21] J. Levine and D. Humphreys. Learning action
strategies for planning domains using genetic
programming. In G. R. Raidl, J.-A. Meyer,
M. Middendorf, S. Cagnoni, J. J. R. Cardalda,
D. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G.
Johnson, and E. Marchiori, editors, EvoWorkshops,
volume 2611 of Lecture Notes in Computer Science,
pages 684–695. Springer, 2003.

[22] J. Levine, H. Westerberg, M. Galea, and
D. Humphreys. Evolutionary-based learning of
generalised policies for AI planning domains. In
F. Rothlauf, editor, Proceedings of the 11th Annual
conference on Genetic and Evolutionary Computation
(GECCO 2009), pages 1195–1202, New York, NY,
USA, 2009. ACM.

[23] D. McDermott, M. Ghallab, A. Howe, C. Knoblock,
A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL -
the planning domain definition language. Technical
report, New Haven, CT: Yale Center for
Computational Vision and Control, July 1998.

[24] M. Misir, K. Verbeeck, P. D. Causmaecker, and G. V.
Berghe. An intelligent hyper-heuristic framework for
chesc 2011. In Proceedings of the 6th international
conference on Learning and Intelligent Optimization,
LION’12, pages 461–466, Berlin, Heidelberg, 2012.
Springer-Verlag.

[25] D. J. Montana. Strongly typed genetic programming.
Evolutionary Computation, 3(2):199–230, 1995.

[26] G. Ochoa, M. R. Hyde, T. Curtois, J. A. V. Rodŕıguez,
J. D. Walker, M. Gendreau, G. Kendall, B. McCollum,
A. J. Parkes, S. Petrovic, and E. K. Burke. Hyflex: A
benchmark framework for cross-domain heuristic
search. In J.-K. Hao and M. Middendorf, editors,
European Conference on Evolutionary Computation in
Combinatorial Optimisation (EvoCOP 2012), LNCS,
pages 136–147, Heidelberg, 2012. Springer.

[27] M. Oltean. Evolving evolutionary algorithms using
linear genetic programming. Evolutionary
Computation, 13(3):387–410, 2005.

[28] J. Pearl. Heuristics. Addison–Wesley, Reading,
Massachusetts, 1984.

[29] D. Pisinger and S. Ropke. A general heuristic for
vehicle routing problems. Computers & OR,
34(8):2403–2435, 2007.

[30] O. Roussel and C. Lecoutre. XML representation of
constraint networks: Format XCSP 2.1. CoRR,
abs/0902.2362, feb 2009.

[31] M. Samadi, A. Felner, and J. Schaeffer. Learning from
multiple heuristics. In D. Fox and C. P. Gomes,
editors, Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008),
pages 357–362. AAAI Press, 2008.

[32] M. Sipper. Evolved to Win. Lulu, 2011. available at
http://www.lulu.com/.

[33] S. Wagner. Heuristic Optimization Software Systems -
Modeling of Heuristic Optimization Algorithms in the
HeuristicLab Software Environment. PhD thesis,
Johannes Kepler University, Linz, Austria, 2009.

[34] S. W. Yoon, A. Fern, and R. Givan. Learning control
knowledge for forward search planning. Journal of
Machine Learning Research, 9:683–718, 2008.

1291

