
EvoSpace-i: A framework for Interactive Evolutionary
Algorithms

Mario García-Valdez
División de Estudios de

Posgrado
Instituto Tecnológico de

Tijuana, México
mario@tectijuana.edu.mx

Juan-J. Merelo
Departamento de Arquitectura

y Tecnología de
Computadores

University of Granada, Spain
jmerelo@geneura.ugr.es

Leonardo Trujillo
División de Estudios de

Posgrado
Instituto Tecnológico de

Tijuana, México
leonardo.trujillo@tectijuana.edu.mx

Francisco
Fernández-de-Vega

Grupo de Evolución Artificial
Universidad de Extremadura,

Spain
fcofdez@unex.es

José C. Romero
División de Estudios de

Posgrado
Instituto Tecnológico de

Tijuana, Mexico
jcromerohdz@gmail.com

Alejandra Mancilla
División de Estudios de

Posgrado
Instituto Tecnológico de

Tijuana, Mexico
alejandra.mancilla@gmail.com

ABSTRACT

Evolutionary art (EvoArt) encompasses a variety of research
devoted to the development of evolutionary systems that
can help produce artistic artifacts in an automated or semi-
automated process. Given the difficulty of evaluating sub-
jective artistic preferences, one of the main approaches used
by EvoArt researchers is interactive evolution where user
input guides the search. However, despite the growth of
EvoArt over recent years the research area still lacks a
comprehensive software tool that can help in the develop-
ment of EvoArt applications. Therefore, this work presents
EvoSpace-i, an open source framework for the development
of collaborative-interactive evolutionary algorithms for art
and design. The main components of the framework are:
(i) Evospace, a population store for the development of
cloud-based evolutionary algorithms, implemented using Re-
dis key-value server; and an (ii) Interactive web application

where end-users collaborate in a social network sharing, col-
lecting, rating and ultimately evolving individuals. Indi-
viduals can be presented as multimedia elements or artis-
tic artifacts (images, animations, sound) using the Process-
ing programming language, a development language specif-
ically aimed at artists. EvoSpace-i is designed to be easy
to use and setup, allowing researchers, and more impor-
tantly artists, to quickly develop distributed and collabo-
rative EvoArt applications. This paper presents the main
details of EvoSpace-i and two example applications to illus-
trate the potential of the tool.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—heuristic methods; D.2.11
[Software]: Software Architectures—domain-specific archi-

tectures

Keywords

Interactive evolutionary computation; Interactive Systems;
Cloud-based platforms

1. INTRODUCTION
Currently, evolutionary computation (EC) techniques are

applied in a wide variety of applications and problem do-
mains. Among them, definitely one of the most intriguing
application areas corresponds to what is broadly referred to
as evolutionary art or EvoArt [1, 16]. EvoArt encompasses
many works that seek to enhance the design abilities of re-
searchers, or even artists, by exploiting the powerful search,
optimization and learning capabilities of EC algorithms. In
other words, EvoArt is an attempt by the EC community
to enhance the creative process of artists and designers, or
in a more ambitious scenario, reproduce a similar creative
process in an autonomous system.

This goal is not trivial, particularly given the difficulty
of modeling and expressing human artistic preferences in a
computational system. Therefore, one important approach
in EvoArt systems is to use interactive evolutionary algo-
rithms (IEAs), where humans interact with the evolving
population in a specific way, particularly in evaluating the
quality of the evolving population [16, 15]. Through the use
of IEAs many EvoArt applications have been successfully
developed and deployed, as local applications or distributed
over the web. Indeed, the promise in EvoArt and the quality
of the research developed thus far is clear, given the large
number of workshops and tutorials that are currently part
of all of the major EC conferences.

However, there is much work and research questions that
still lie in the horizon, issues that are in some instances the-
oretic while in others they are pragmatic. In this paper,

1301

we are concerned with the latter, in particular the current
lack of a complete and integrated software tool for rapid de-
velopment of EvoArt applications. The proposed platform
is called EvoSpace-Interactive or EvoSpace-i for short, it is
aimed at computer scientists who are interested in studying
art and design, or at artists that want to exploit tools from
computer science to enhance their abilities. Furthermore,
EvoSpace-i provides a research and development tool that
addresses the following specific issues within EvoArt.

Firstly, a common problem in IEAs is what is referred to
as user fatigue [16], when an individual gets tired or simply
bored with evaluating a large number of individuals, many
of which will not be interesting at all. EvoSpace-i takes a
collaborative approach, where preferences of multiple users
are considered and integrated into the evolutionary process,
thus EvoSpace-i is a collaborative IEA or C-IEA. This is
done by exploiting the use of social networking and using a
distributed computing model. A noteworthy feature of the
approach taken in EvoSpace-i, is that it attempts to inte-
grate the way creative elements are shared between users,
and how different preferences are integrated into a single
search process. Thus, the term memetic evolution, as origi-
nally defined by Richard Dawkins [3], relying on both minds
and computers could be finally a main component in the de-
velopment of automatic artistic designs. Secondly, the dis-
tributed approach proposed in EvoSpace-i follows current
trends in software and system development, where compu-
tational resources are shared across the web and applica-
tions are available on heterogenous computational devices.
This is known as the Cloud computing model, where infras-
tructure, platforms and applications are shared across the
internet. EvoSpace-i provides a platform that easily inte-
grates into the the Cloud model, and can be used to develop
EvoArt services that reside on the Cloud. Thirdly, an im-
portant aspect of EvoArt is the overlap between artists and
computer science researchers, individuals that usually have
very different academic backgrounds. Therefore, EvoSpace-i
attempts to integrate design tools that can be used by both.

This paper provides a comprehensive presentation of the
EvoSpace-i tool, describing the overall goals of the system
and implementation details. Moreover, two example appli-
cations are reviewed, to illustrate how EvoSpace-i could be
used for the deployment of distributed and collaborative
EvoArt systems. The remainder of the paper proceeds as
follows. Related Work is discussed in Section 2 and the gen-
eral architecture of the framework is presented in Section 3.
Details about the components needed to enable the interac-
tion between users and individuals are presented in Section
4 and collaboration between users is discussed in Section 5.
Finally, two example applications are reviewed in Section 6,
and final conclusions are given in Section 7.

2. RELATED WORK
The most common use of evolutionary algorithms is to

search for solutions that are optimal with respect to a spe-
cific objective or fitness function that can be computed au-
tomatically. Conversely, as stated above, in EvoArt the
goal is to evolve artistic designs where quality evaluation,
almost by definition, will have a large subjective compo-
nent. Therefore, over the years interactive algorithms have
been developed and matured [16, 15]. However, interac-
tive algorithms are not new, indeed some of the earliest EAs
were open-ended interactive systems, such as the well-known

Biomorphs program [4]. In what follows, relevant examples
of interactive systems used in EvoArt are reviewed. In par-
ticular, we give examples of collaborative IEAs (C-IEAs)
where many users interact and evaluate an evolving popu-
lation, where the search is guided based on an aggregate of
subjective preferences and considerations.

Langdon [11] developed one of the first C-IEAs, which
evolves fractal representations of virtual creatures within
a simulated environment. The proposed system is a dis-
tributed EA where the evolving population resides on a cen-
tral server and individuals are distributed to remote web-
clients using Javascript. Users evaluate individuals locally
and preferred individuals are returned to the server, at which
point they can be distributed to other clients.

More recent examples can be found in the work of Sec-
retan et al. [14] and Clune and Lipson [2], both of whom
use a web-based IEAs to evolve artistic artifacts using a
generative encoding. In [14], the system is used to evolve
static images and in [2] evolved objects are 3-D sculptures.
Users of the systems can concentrate their search on spe-
cific artifacts, and collaboration is encouraged by allowing
users to continue an evolutionary lineage created by others
in a sequential manner. Both proposals offer webpages (see
Picbreeder.org and EndlessForms.com), where users can se-
lect or create random individuals and evolve lineages of ar-
tifacts. Therefore, evolved artifacts can be the product of a
collaborative search process. Another feature is that evolved
artifacts can be rated by users, and since users can create in-
dividual accounts, the ratings provide a way to rank users, or
to select previously evolved artifacts based on the particular
style of each user. Furthermore, the collaborative process is
captured by the system, since it is possible to visualize how,
and when, different users influenced a genetic lineage.

Another example is the work of Kowaliw et al. [10], where
ecosystemic models are evolved using a generative encod-
ing based on multi-agent systems that generate high quality
artistic drawings. Users interact with the system through
a website and a Java applet, where they can evolve their
own images and have the option to add evolved images to a
central collection such that other users can see the resulting
images.

The present work builds on previous proposals and ex-
tends the C-IEA approach. First, it promotes collaborative
evaluations of artistic artifacts in a dynamic and parallel
manner, instead of the sequential approach followed in [14,
2]. Second, it incorporates explicit user interactions by en-
couraging the use of social networking. Third, by exploiting
the Processing programming language for graphics program-
ming, it facilitates rapid development for artists with a lim-
ited computer science background. Fourth, it focuses on the
evolution of artistic animations, not static pictures or paint-
ings; another feature facilitated by the use of Processing.
Fifth, it facilitates the ability to save and share promising
artifacts. Finally, it emphasizes the use of a distributed
model, to exploit current trends in software and hardware
technology.

3. ARCHITECTURE
The goal of this work is to develop an open source frame-

work for web and cloud-based C-IEAs, using current web
standards and libraries for desktop and mobile devices. De-
velopers of C-IEA applications are liberated from the need
to design and program a platform for distributed user collab-

1302

Client-Side
Computing
Resources

Web Application
Server

 django framework

Network of
End Users

DOM

JQuery

EvoSpace
Population

Store

Redis

Facebook
OpenGraph API

Facebook
OAuth2

Authentication

Tablets
PhonesDesktop

Skeleton -
Bootstrap

Framework

PostgreSQL

processingjs

Canvas
HTML Element

Static
Server Processing

Script

IndividualEvolution
Worker

Figure 1: Main components of EvoSpace-i.

oration. Only three components of the framework must to
be defined for each application (marked with double lines in
Figure 1), namely: an individual representation; a Process-

ing script that renders each individual; and a worker script
that encodes the evolutionary operators. However, in future
versions of the framework much of this work could be pre-
defined, but also left open for advanced users to change as
they require. What the framework offers for free is: a central
repository for the population implemented as an EvoSpace
service; and a Web Application script implemented using
Django, a mature full stack Web Framework with a BSD
license developed in Python. The EvoSpace-i django ap-
plication is available with a Simplified BSD License from
https://github.com/mariosky/evospacei.

The main components of the EvoSpace-i are shown in
Figure 1. The Interactive part is a Django [9] web-based
application, together with a client-side component imple-
mented using JQuery and processingjs Javascript libraries.
This application shows users a number of multimedia ob-
jects rendered in HTML5 Canvas elements. These multime-
dia objects are the phenotypes of individuals drawn from
the Evospace population store. Evospace is responsible for
storing and retrieving the data of each individual. An Evo-
lution Worker is responsible for generating new individuals
from a sample taken from EvoSpace. The evolution process
is decoupled from the interactive application; thus giving
designers the opportunity to define their own variations of
the algorithm. The architecture can be deployed in a cloud
based platform. For instance, the web base Django Appli-
cation could be deployed in a Platform as a Service compo-
nent, and the EvoSpace store in another. In the following
sections each component is described in detail, starting with

the population store Evospace, and then the interactive and
collaborative components.

4. EVOSPACE INTERACTIVE EVOLU-

TION
In this section, the components needed to enable the

interaction between users and individuals are presented.
EvoSpace is presented first, then the rendering and repre-
sentation of individuals. Finally, the assignment of fitness
to individuals and the current breeding process is described.

4.1 EvoSpace
The EvoSpace model is presented in detail in [6], only a

brief description of the functionality related to this work is
given next. EvoSpace is inspired on the Linda language by
Gelernter and Carriero [7]; Linda is a model of coordination
and communication among several parallel processes operat-
ing upon objects stored in and retrieved from a shared, vir-
tual, associative memory called tuplespace. In a tuplespace,
tuples are read and removed by processes; once a tuple is
taken, no other process can read it until it is written back.
Similarly EvoSpace consists of two main components (see
figure 3):

• The EvoSpace container that stores the evolving pop-
ulation and

• Remote clients called EvoWorkers, which execute the
actual evolutionary process, while EvoSpace acts only
as a population repository.

Figure 3 illustrates the main components and dataflow
within EvoSpace. In a basic configuration, EvoWorkers take

1303

mom

id
chromosome
views
geneticOperator

Individual

dad

currentFitness
Fitness

user_id
time_stamp

Like

Figure 2: Dictionary representation of an individual,

entities and properties are keys in the dictionary.

a random population sample from EvoSpace, and use it as
the initial population for a local EA executed on the client
machine. After a certain number of local generations, the
evolved population is returned to EvoSpace to replace the
sample. When taken by an EvoWorker, individuals remain
in a phantom state until their sample is returned. When
individuals are in this phantom state, they cannot be taken
by other workers. If an EvoWorker does not returns a sam-
ple in a certain amount of time, for instance because of a
lost connection; individuals are re-spawned (re-inserted) by
the ReInsertionManager. Similar to video games in which
characters once killed are re-spawned after a certain time.
This can also happen when the EvoSpace container starves
or the population size is below some threshold.

For this version of EvoSpace-i, a new type of Worker is
needed: Human users. Users are responsible for evaluating
the quality of individuals, the process is depicted in Fig-
ure 4: (i) first a random sample of six individuals are taken
from EvoSpace, (ii) the chromosome of each individual pa-
rameterizes a Processing script, that renders to the user,
(iii) users select those individuals they like, this is stored in
each individual’s data, (iv) finally the sample is returned to
EvoSpace. The fitness assigned to each individual can de-
pend on the ratings given by a certain number of users. In
this case the Evo Worker process is replaced by an Evolve()

method, that is executed after a certain number of sam-
ples have been returned. Unlike the normal operation of
EvoSpace, when a user takes a sample of individuals, these
are returned with their identity unchanged, other than the
rating added by the current user. The internal representa-
tion of individuals is presented next.

4.2 Individuals
As stated above, the objects stored in EvoSpace are indi-

viduals in an EA. Explicitly, individuals are stored as dictio-
naries, an abstract data type that represents a collection of
unique keys and values with a one to one association. In this
case, keys represent specific properties of each object and the
values can be of different types, such as numbers, strings,
lists, tuples or other dictionaries. In the current implemen-
tation, individuals are described by the following basic fields

Remote
Clients

EvoWorker

EA
Loop

Evolution
Operators

ReInsertion
Manager

EvoSpace

Random

population

sample

Newly

Evolved

Individuals
Copy

Stored in

ReInsertion

Queue

ReInsert

Sample

Server

Figure 3: Main components and dataflow within

EvoSpace.

Remote
Clients

EvoWorker

EvoSpace Re-Insertion
Manager

Server

Get Sample1

Feed to
Processing Script

2User evaluates
Representations

3

Put Sample
Back

4

After n evaluations
Evolve a sample

5

Figure 4: Evaluation process in EvoSpace-i.

presented in Figure 2. An id string that represents a unique
identifier for each object. A chromosome string, which de-
pends on the EA and the representation used. The fitness

dictionary for each individual; In EvoSpace-i it stores pairs
of user’s ids and timestamp values, which represent that a
user has rated the individual with a like. Currently a user
can rate each individual more than one time. The views

The number of times the individual has been presented to a
user. If a user has seen an individual and did not assigned
it a like, this can be used as a probable not-like rating. A
mom, dad keys with identifiers of the individual(s) from
which it was produced. Finally, a GeneticOperator string
that specifies the operator that produced it.

Individuals are stored in-memory, using the Redis key-
value database. Redis was chosen over a SQL-based man-
agement system, or other non-SQL alternatives, because it
provides a hash based implementation of sets and queues
which are natural data structures for the EvoSpace model.
EvoSpace is implemented as a python module exposed
as a Web Service by the same Django framework. The
EvoSpace module is available with a Simplified BSD License
from https://github.com/mariosky/evospace. The com-
ponents required for the interaction between individuals and
users are presented next.

1304

4.3 Processing Scripts
Processing is a programming language and development

environment initially created to serve as a software sketch-
book and as a tool to teach fundamentals of computer pro-
gramming within a visual context. Currently is used by
artists, designers, architects, and researchers for visualiza-
tion applications, games and interactive animations projects
[13]. Processing is a subset of Java directed to novice pro-
grammers and generative artists [12], which are the intended
users of the EvoSpace-i framework. As a complement there
is a javascript library processingjs that allows Processing
scripts to be run by any HTML5 compatible browser. Pro-
cessing scripts are responsible of rendering individuals which
can involve animations, sound or even interactive artifacts.
Before calling the draw() method of the processing script
a local array of parameters are replaced with those of each
individual’s chromosome. Each individual’s script has its
own Canvas entity; Although the combination of an HTML5
Canvas element and a Processing script is supported by de-
fault, other combinations could be used. For instance, im-
ages, embedded audio, or other libraries capable of drawing
in the Canvas. Also, a fallback implementation must be con-
sidered for applications intended for non-HTML5 capable
browsers. To create a new C-IEC application, the render-
ing script must be defined, and its parameters encoded as a
chromosome.

4.4 Fitness
As stated before, the assignment of the fitness for each in-

dividual takes into account the evaluation given by several
users. In this version of EvoSpace-i users can only give pos-
itive evaluations explicitly when they select an individual,
giving it a rating of Like. When a user evaluates a sample
of individuals, some (or all) of them will not receive a Like, in
each case the views property will be incremented by 1. For
instance, if an individual has a high number of views with
only two likes, he is considered to be worse than an individ-
ual with two views and two likes. The ratio Likes/V iews
is more informative, but it does not distinguish between
an individual with many views and another with only one
view if they both have zero likes; also views must be >=1
to avoid dividing by zero. Fitness, therefore, is given by
(Likes + 1)/(V iews + 1). As a future work more options
can be defined, for instance taking into account the number
of “shares” or the times an individual has been stored in a
collection.

4.5 Breeding Process
Once individuals have been evaluated by a minimum num-

ber of users, they can participate in the breeding process.
Since the genetic operators of the evolutionary process will
depend on the particular application, they must be imple-
mented by the application designer. For this purpose, in
the current version they are implemented in Python, allow-
ing users to use libraries such as DEAP or PyEvolve. For
example, both examples presented in this work were imple-
mented using only the NumPy library for array operations.
As this process is executed in the server, the communica-
tion with EvoSpace-Redis is done directly through a library.
There are a few additional parameters that are used for the
Evolve() method: EVOLUTION-INTERVAL indicates the num-
ber of samples that must returned to trigger an Evolve()

call; the SAMPLE-SIZE parameter indicates how many indi-

viduals are taken from EvoSpace to participate in Evolve(),
MINIMUM-VIEWS is the minimum views needed for each indi-
vidual to participate in the breeding process.

5. COLLABORATION
Using their Facebook account, users can collaborate with

their Facebook friends, sharing those individuals they like,
or by taking individuals from the collections of friends. As
an introduction to this section the general user experience
is described next.

5.1 User Interface.
Users interact with the web interface depicted in Figure 5,

which is composed of five elements. First, at the top left cor-
ner user login and authentication. Users can login with their
Facebook account or participate as anonymous users. Sec-
ond, if a user chooses to login a list of Facebook friends that
have also linked their account with the C-IEA application is
presented on the left, to encourage users to interact with the
system. The third element is a central Wall area, where
a population sample of n individuals is shown to the user.
These are n random individuals taken from the EvoSpace
server. Here, the user can interact with the system in two
ways. He can click on the individuals he prefers, a clicked
image is highlighted and this counts as a “like” for the indi-
vidual. Additionally, a user can choose to add an image to
one of their Collections. A collection is a special directory to
store individuals a user prefers and wishes to save. After the
user finishes interacting with the current crop of individuals
on the Wall, he can choose to retrieve a new sample from
EvoSpace. This is done with the fourth element of the inter-
face, located at the top of the screen, the GetMore button.
The button first returns the current group of individuals to
EvoSpace, and brings back a new one. Each time a user
performs a GetMore click, it increments the number of sam-
ples returned, and this could trigger a server-side Evolve()

method. The fifth element of the interface is shown at the
bottom left corner, the Collections section. The user can
create several collections, to group and organize his favorite
artifacts. Moreover, a user can browse the content of each
collection and from there share images through the social
network. When a user browses over an individual a detail
pane shows how many users have liked the individual. The
pane also includes a link to the individual’s details, the par-
ents, genetic operators that created it, and genealogy infor-
mation.

5.2 Facebook API and OAuth 2.0
Applications developed with the EvoSpace-i framework

must be defined as Facebook Web Applications. Other social
networks are going to be enabled in further versions of the
framework; but initially Facebook was selected as a Social
Network platform for the following reasons:

• Popularity. Facebook is currently the social network
with most active users, with more than 1 billion.

• Applications. Facebook applications are also common,
popular applications like Youtube, Pinterest, Netflix,
XBOX Live and Spotify allow users to share their ac-
tivities.

In order to enable the application’s collaborative function-
ality, end-users must be authenticated with their Facebook

1305

Figure 5: Current user interface of EvoSpace-i.

account. This is done using the OAuth2.0 protocol [8]. The
OAuth 2.0 login flow generates an access token, which al-
lows the application to make API calls on behalf of a user.
As part of this flow, users also give certain permissions to
the application, so it can access their private data. Currently
the framework uses the most basic permission, having access
only to their public profile and list of friends. The public
profile includes their profile picture, username, gender and
locale. An important information is the list of friends, that
includes which friends also have the application installed.

5.3 Django Framework Application
The Django web development framework [9], is a set

of Python libraries, that provide high-level abstractions of
common web development patterns. In Django a web appli-
cation consists of different python scripts following a Model-
View-Controller (MVC) design pattern.

In Django, a project can be an aggregation of multiple
reusable applications, each incorporating a particular func-
tionality. Each application has its own model and views.
For EvoSpace-i the database model is presented in Figure 6,
this is stored in a PostgreSQL database system. There is
a many to one relationship between Facebook sessions and
users, this is because sessions and access tokens can expire.
The Collections data model is discussed in the following sec-
tion. Individuals are not stored in this database, they are
stored in a Redis server as JSON text strings.

The main Django views for the web application are:

evospace() This function receives JSON-RPC requests
from JQuery code in the client. Main methods are
getSample() and putSample().

home() This view is for the main page, if the user is authen-
ticated the list of friends and profile data is retrieved.

individual_view() This view returns the details of Indi-
viduals.

facebook_login() Initializes the OAuth 2.0 flow. The
facebook_get_login is also related.

dashboard() Returns a JQuery dashboard page, for admin-
istration of EvoSpace.

from_user

added_from

Figure 6: Django data model.

Client-side scripting is used extensively by the framework.
As mentioned earlier, JQuery is used to implement the eval-
uation of individuals as shown earlier in Figure 4, send-
ing getSample() and putSample() requests. Other con-
trols such as Modal Windows, Lists, Buttons are also im-
plemented using JQuery-UI library.

5.4 Collections
An important feature of the framework, is that authenti-

cated users can create collections where they can store indi-
viduals. These collections can be private or public. Public
collections can be visited by Facebook friends and if they
wish, they can save individuals to their own collections. In
future versions, users could also publish individuals to their
Facebook Timeline or Photo Albums. Giving a sense of
ownership (or in future versions authorship) to users, could
be considered as a reward to their effort. And could also
increase the voluntary participation of users. Information
about how an individual is stored and shared, could be con-
sidered in the assignment of fitness. This way sharing can be
part of the evolution. Collections are implemented as part
of the web application, the database model is presented in
Figure 6, there is a many to many relationship between users
and collections, this way there can be shared collections, this
is not yet implemented in the current version. A collection
can have many individuals, if the individual comes from an-
other collection there is a relation with that collection.

6. EXAMPLE APPLICATIONS
As a proof of concept a C-EIA application was imple-

mented with the EvoSpace-i framework, this application is
detailed in [5]. The application is called Shapes. In Shapes,
individuals represent a two dimensional 11 by 6 array of equi-
lateral triangles, these arrays were inspired by Op-Art style
paintings. Each triangle has a color drawn from a twelve
color palette. The array is represented by a 66 element

1306

chromosome vector v = (v1, ..v66), with vi ∈ {1, 2, ..11}.
The background of the painting is Light Gray, this can give
the effect of a missing triangle when it has the same color.
A processing script is used to render a static version of the
image. The breeding process uses tournament selection of
size 6 to select two individuals from EvoSpace, and gener-
ates two offspring. The offspring replace the worst individ-
uals from both tournament groups. Crossover operators are
used with crossover rate of 1, these are vertical and horizon-
tal one-point crossovers. Several mutations are used with a
mutation rate of 0.3, these are: (1) single point mutation;
(2) vertical and horizontal mirrors at a random point; (3)
shuffle that gives a new permutation of the chromosome. In
nearly two weeks of operation, there was a total of 70 active
users, users who gave permissions to the Shapes application
and haven’t removed it from their Facebook account. Face-
book dashboard reports that 74 percent of users accepted
the permission request to use their credentials to login onto
Shapes. Participation of anonymous users was permitted,
but their number was not recorded. Basic instructions we’re
shown in the landing page, but part of the functionality was
left to be explored by users. An auto-increment id was as-
signed to each individual, after two weeks the highest id
number is 8379. A total of 17449 samples were taken from
the EvoSpace server after the two week trial. A sample of
artistic artifacts in a collection is depicted in Figure 7.

Another example application is called Fireworks. The
goal of the Fireworks C-IEA is to evolve artistic anima-
tions of particle swarms in 3D. The animations are based
on the open-source Processing script developed by Clau-
dio Gonzales called Galactic Dust available at http://www.
openprocessing.org/sketch/8062 and licensed under Cre-
ative Commons Attribution-Share Alike 3.0 and GNU GPL
license. The Galactic Dust script presents a virtual 3D can-
vas where a set of N particles can move about. In the orig-
inal version of the script the particles are randomly posi-
tioned within the 3D canvas (or placed in an a priori pat-
tern) and remain static. Then, when the user left clicks
on a point within the canvas this specifies the position of
a gravitational point P on the canvas and produces an at-
tractive force on all of the particles towards P, proportional
to their distance to P and mass which is also specified ini-
tially. Similarly, when a user right-clicks on the canvas a
repulsive force is produced. Moreover, the particles contin-
uously change color using small random steps and the user
can toggle a tracing effect on or off, in which each particle
leaves a visual trail of its movements that gradually disap-
pears with time. The Galactic Dust script is the inspiration
and basis for the artistic animations evolved by the Fire-
works application. In particular, the goal of Fireworks is to
begin with randomly placed particles and to evolve a pat-
tern of movements and behaviors, searching for interesting
visual animations. These animations are similar to popular
screen savers or background visualizations for music players,
however the authors feel that an illustrative description is
to say that they resemble elaborate fireworks displays, thus
the name.

Fireworks is based on a linear genetic programming al-
gorithm, where the chromosome of each individual is en-
coded as a variable-length list. Each element, or gene, of the
chromosome represents one of five basic operations, these
are: Attractflag, Moveflag, Traceflag, ForwardXflag,
ForwardYflag and Stepm. The first four instructions are

individual:3743

individual:110

individual:4042

individual:3889individual:4006

individual:4017
individual:4123individual:1383

individual:948 individual:1204individual:1882

Figure 7: Artistic artifacts in a collection

Figure 8: Sample frames of of an evolved animation.

toggle operations for different script parameters that deter-
mine the characteristics of particle movements. Attractflag
instructs the script to toggle between attraction or repul-
sion towards P. Moveflag toggles between particle move-
ment or particle deceleration at each frame of the animation.
Traceflag determines if particle movement will produce trac-
ing or if it will not. ForwardXflag and ForwardYflag flags
determines the orientation of particle movements in the hor-
izontal and vertical axis respectively. Finally, the Stepm
function determines the magnitude of step movements in
each direction given by m pixels, with a random decision
uniformly chooses from u ∈ [1, 13].

Currently, the Fireworks applications has been evolving
individuals for over three weeks, progressively generating
novel animations. In general, it is clear that the genetic rep-
resentation and evaluation criteria has allowed the algorithm
to progressively incorporate the preferences of several users.
There is no time-table to halt the open-ended evolutionary
process, and the system is expected to run for at least one
more month. It is now possible to access the application
and interact with it at http://app.evospace.org/. It is
important to point out that the Processing scripts evolved
in this work are computationally costly, and push browser
resources to the limit. Only the Chrome web browser offers
an acceptable frame rate, using 200 swarm particles within
each animation with canvas elements of 200 by 200 pixels in
size.Figure 8 shows a series of frames from a singled evolved
animation.

7. CONCLUSIONS
EvoArt is growing and expanding as a sub-field of EC,

with dedicated workshops and tracks in all major EC con-
ferences. It differentiates itself from other areas by incor-
porating truly varied perspectives, from subjective artists
and designers and objective computer scientists. Moreover,
EvoArt is more than just an intriguing application area of
EC, it might be able to offer insights regarding how best
to aid, model, and perhaps reproduce, probably one of the
most studied and least understood human abilities: artistic
creativity. Through EvoArt systems, it might become possi-
ble to develop systems where mental memes are distributed
and reproduce in an artificial substrate.

This paper presents EvoSpace-i, the first computational
tool specifically aimed at the EvoArt community, particu-

1307

larly those interested in C-IEAs. EvoSpace-i offers several
general features that are desirable in an EvoArt system;
such as: an interactive approach towards evaluation; a dis-
tributed system that exploits the web and can be integrates
with current Cloud-based approaches towards computing; a
collaborative system where evolution is guided by the pref-
erences of all users, and where collaboration is encouraged
by integrating social networking; finally, EvoSpace-i ren-
ders artistic artifacts using the Processing programming lan-
guage, that reduces the steepness of the learning curve for
non-programmers, since the tool is meant to promote and
establish collaborative work between artists, designers and
computer scientists.

Initial results are encouraging, the EvoSpace-i framework
was successfully used to deploy two C-IEAs that users ac-
cepted and used to design artistic artifacts. However, the
true possibilities have not been pushed to the limit by the
Shapes or Fireworks applications described here, one of the
main areas of future work and research. Nonetheless, the
paper presents the first attempt to build a tool specifically
for the development of C-IEAs for evolutionary art.

8. ACKNOWLEDGMENTS
This work is supported by projects 4616.12-P and 4617.12-

P awarded by DEGEST-ProIFOPEP (Mexico), TIN2011-
28627-C04-03 and -02 (ANYSELF), awarded by the Spanish
Ministry of Science and Innovation, P08-TIC-03903 (EvOrq)
awarded by the Andalusian Regional Government, project
83 (CANUBE) awarded by the CEI-BioTIC UGR (http:
//biotic.ugr.es) and CONACYT (Mexico) Basic Science
Research Project No. 178323 and DGEST (Mexico) Re-
search Project No. TIJ-ING-2012-110.

9. REFERENCES
[1] P. Bentley. An introduction to evolutionary design by

computers. In P. J. Bentley, editor, Evolutionary
Design by Computers, chapter 1, pages 1–73. Morgan
Kaufman, San Francisco, USA, 1999.

[2] J. Clune and H. Lipson. Evolving three-dimensional
objects with a generative encoding inspired by
developmental biology. In Proceedings of the European

Conference on Artificial Life, pages 144–148, 2011.

[3] R. Dawkins. The Selfish Gene. Oxford University
Press, Oxford, UK, 1976.

[4] R. Dawkins. Climbing Mount Improbable. W.W.
Norton & Company, 1996.

[5] M. Garcia-Valdez, L. Trujillo, F. Fernández de Vega,
J. Merelo Guervós, and G. Olague.
EvoSpace-Interactive: A Framework to Develop

Distributed Collaborative-Interactive Evolutionary
Algorithms for Artistic Design. In P. M., M. J., and
C. A., editors, Evolutionary and Biologically Inspired

Music, Sound, Art and Design, volume 7834 of Lecture
Notes in Computer Science, pages 121–130. Springer
Berlin Heidelberg, 2013.

[6] M. Garćıa-Valdez, L. Trujillo, F. Fernández de Vega,
J. J. Merelo Guervós, and G. Olague. EvoSpace: A
Distributed Evolutionary Platform Based on the Tuple
Space Model. In A. Esparcia-Alcázar, editor,
Applications of Evolutionary Computation, volume
7835 of Lecture Notes in Computer Science, pages
499–508. Springer Berlin Heidelberg, 2013.

[7] D. Gelernter. Generative communication in linda.
ACM Trans. Program. Lang. Syst., 7(1):80–112, Jan.
1985.

[8] E. Hammer-Lahav, D. Recordon, and D. Hardt. The
oauth 2.0 authorization protocol.
draft-ietf-oauth-v2-18, 8, 2011.

[9] A. Holovaty and J. Kaplan-Moss. Introduction to
django. In The Definitive Guide to Django, pages 3–9.
Apress, 2008.

[10] T. Kowaliw, A. Dorin, and J. McCormack. Promoting
creative design in interactive evolutionary
computation. Evolutionary Computation, IEEE

Transactions on, 16(4):523 –536, 2012.

[11] W. B. Langdon. Global distributed evolution of
l-systems fractals. In M. Keijzer, U.-M. O’Reilly, S. M.
Lucas, E. Costa, and T. Soule, editors, Genetic

Programming, Proceedings of EuroGP’2004, volume
3003 of LNCS, pages 349–358. Springer-Verlag, 5-7
April 2004.

[12] M. Pearson. Generative Art. Manning Publications,
pap/psc edition, July 2011.

[13] C. Reas and B. Fry. A programming handbook for

visual designers and artists. The MIT Press, 2007.

[14] J. Secretan, N. Beato, D. B. D’Ambrosio,
A. Rodriguez, A. Campbell, J. T. Folsom-Kovarik,
and K. O. Stanley. Picbreeder: A case study in
collaborative evolutionary exploration of design space.
Evol. Comput., 19(3):373–403, Sept. 2011.

[15] Y. Semet. Evolutionary computation: a survey of
existing theory. Technical report, University of Illinois

,

2002.

[16] H. Takagi. Interactive evolutionary computation:
fusion of the capabilities of ec optimization and
human evaluation. Proceedings of IEEE,
89(9):1275–1296, 2001.

1308

