
Event-based Graphical Monitoring in the EpochX Genetic
Programming Framework

Loïc Vaseux
INSA Rouen

Haute-Normandie
France

loic.vaseux@insa-rouen.fr

Fernando E. B. Otero
School of Computing

University of Kent
Chatham Maritime, ME4 4AG
F.E.B.Otero@kent.ac.uk

Tom Castle
School of Computing

University of Kent
Canterbury, CT2 7NF
tc33@kent.ac.uk

Colin G. Johnson
School of Computing

University of Kent
Canterbury, CT2 7NF

C.G.Johnson@kent.ac.uk

ABSTRACT

EpochX is a genetic programming framework with provision
for event management—similar to the Java event model—
allowing the notification of particular actions during the
lifecycle of the evolutionary algorithm. It also provides a
flexible Stats system to gather statistics measures. This pa-
per introduces a graphical interface to the EpochX genetic
programming framework, taking full advantage of EpochX’s
event management. A set of representation-independent and
tree-dependent GUI components are presented, showing how
statistic information can be presented in a rich format using
the information provided by EpochX’s Stats system.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms

Design

Keywords

EpochX, genetic programming, visualization, framework

1. INTRODUCTION
EpochX is an open source genetic programming (GP) fra-

mework written in Java. It has been designed with a mod-
ular architecture, providing an infrastructure for modifying
most aspects of the genetic programming algorithm. The
framework provides full support for 3 popular representa-
tions: strongly-typed tree GP (STGP) [7, 9], context-free

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

grammar GP (CFG-GP) [15], and grammatical evolution
(GE) [10]. EpochX is intended primarily for researchers
who are working on genetic programming theory and are
interested in the distribution of depth/length/diversity etc.
or a large range of other statistical data about their run.
While it is built sensibly to avoid performance issues, speed
is not the main goal. Several papers used EpochX in their
experimental work [2, 5, 6, 13, 12].

One of EpochX’s distinctive features is the provision of
an event framework. Events are associated with particular
actions in the lifecycle of an algorithm—e.g., the start/end
of a generation, the start/end of a genetic operator, amongst
others.

The framework provides a centralised mechanism for firing
events. For example, the GenerationalStrategy class fires
events at the start and end of each generation:

public class GenerationalStrategy

extends Pipeline

implements EvolutionaryStrategy {

public Population process(Population pop) {

int generation = 1;

while (!terminate()) {

EventManager.getInstance().fire(

StartGeneration.class,

new StartGeneration(generation);

pop = super.process(pop);

EventManager.getInstance().fire(

EndGeneration.class,

new EndGeneration(generation);

generation++;

}

return population;

}

}

1309

The event management includes the use of listeners, which
are objects that are notified when an event of interested is
fired. Events and listeners are the basis for EpochX’s Stats
system [11].

The Stats system is a flexible facility to generate and re-
trieve information about the progress of an evolutionary run.
The main idea is to use stat objects, which are implemented
as listeners, to calculate/update information based on events
and other stat objects. As an example, let us consider the
implementation of the GenerationBestFitness stat:

public class GenerationBestFitness

extends AbstractStat<EndGeneration> {

private Fitness best;

public void refresh(EndGeneration event) {

Fitness[] fitnesses = AbstractStat

.get(GenerationFitnesses.class)

.getFitnesses();

best = null;

for (Fitness fitness: fitnesses) {

if (best == null

|| fitness.compareTo(best) > 0) {

best = fitness;

}

}

}

}

The GenerationBestFitness is a listener of EndGeneration
events, and when a new EndGeneration event is fired, the
best fitness value is updated based on the fitness values from
the current population—the fitness values of the current
population is provided by a different GenerationFitnesses
stat and retrieved from the central repository using the call
AbstractStat.get(GenerationFitnesses.class).

In this paper we present a new package that introduces
GUI visualization components into the EpochX framework.
These components take full advantage of the event man-
agement and the Stats system and can be plugged into an
algorithm as listeners—there is no need to introduce GUI
specific code in the core framework. All the information in
the GUI interface is generated using event and stat objects,
and presented in a rich format using different graphical rep-
resentations, e.g., tables, graphs and charts.

In general, the output of GP algorithms are reported as
graphs characterising the evolution of the algorithm—e.g.,
the progress of best, average and worst fitnesses, diversity
of fitness values, difference between parent and offspring fit-
nesses. There are GP frameworks and tools, such as Galapos
[4], Opt4j [8] and HeuristicLab [14], that go beyond graphs—
e.g., they provide facilities to visualize individuals of a par-
ticular iteration of the GP, track parent-offspring sub-trees
(sub-trees preserved from the parent and sub-trees gener-
ated by mutation)—to allow not only the visualization of
the evolution of the population, but also the inner working
of the evolutionary process. By introducing GUI visuali-

sation components to EpochX, our motivation is to allow
users to better understand how the evolution works and to
get insights about the modifications that are introduced by
genetic operators in the individuals of the population, either
to understand the operations involved (beginner users) or to
aid the development of new operators and other algorithmic
components (experienced users). At the same time, these
visualization components also demonstrate how the infor-
mation from the event management and the Stats system
can be used to generate elaborate output, without requiring
directly changes to the GP algorithm.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the new graphical interface with considera-
tion for how to use the event management and Stats system
to display information on the screen in a friendly way. Sec-
tion 3 presents several components available for any type of
representation whereas elements presented in Section 4 are
restricted to the classic tree-based representation. Section
5 lists a complete example of how to run EpochX with the
proposed graphical interface. Finally, Section 6 concludes
the paper.

2. EVENT-BASED GUI USING STATS

INFORMATION
As described in [11], the use of events and stats makes

it easier to gather a vast range of information about the
execution of an evolutionary algorithm. In most cases, users
are interested in visualising this information in a graphical
form, either to check the progress of the algorithm or to
better understand how the solutions are created.

In EpochX, GUI elements could be updated by events
triggered from the Stats system in order to display informa-
tion in a friendly way—this was briefly discussed in [11]. In
this paper, we extend this idea to combine the flexibility of
EpochX’s Stats system and event management with existing
GUI libraries—e.g., Swing and JChart2D—to create a rich
graphical user interface.

2.1 Graphical Output
To introduce the idea of using an event-based graphical

interface, let us consider a simple example of a customized
JTextArea component, which displays the information from
a stat object specified in the constructor. The stat is reg-
istered in the AbstractStat repository in the constructor,
and the onEvent(Event) method is implemented to set the
text according to the stat’s toString() method:

public class StatText

extends JTextArea

implements Listener<Event> {

private Class<? extends AbstractStat<?>> klass;

public StatText(

Class<? extends AbstractStat<?>> klass) {

AbstractStat.register(klass);

this.klass = klass;

}

public void onEvent(Event event) {

setText(AbstractStat.get(klass).toString());

}

}

1310

After creating a StatText object, it must be registered in
the EventManager to start receiving events that trigger the
update to the JTextArea component’s text:

StatText text = new

StatText(GenerationNumber.class);

EventManager.getInstance()

.add(EndGeneration.class, text);

The above example shows how custom GUI components
can be updated by implementing the Listener<Event> in-
terface to receive event notifications and display the infor-
mation from a stat object.

2.2 Monitor Package
From the general idea of updating graphical components

using events, we have designed a new Monitor package—
working outside EpochX’s core framework—to centralise the
creation of graphical visualisation components. The core
class of this new module is the Monitor class, which ex-
tends a JFrame to manage and display several visualization
components—such as tables, charts or any other Swing cus-
tomized components.

The layout is a grid of tabbed-panes whose rows and
columns’ counts can be specified in the constructor. Below
is sample code which creates a Monitor frame with one row
and two columns and adds a monitoring table (described in
detail in section 3.1) to the first column:

Monitor monitor = new Monitor("GP Monitor", 1, 2);

Table table = new Table("Progress Table");

// table settings

monitor.add(table, 0, 0);

The Monitor can receive any subclass of JComponent (e.g,
JPanel, JScrollPane and JTable) through the add method.
The row and the column index can also be specified, other-
wise the component is not visible, but it can be later added
to the monitor using the JFrame’s menu or the “Add” but-
ton. The menu also provides a convenient way to perform
usual operations such as exporting a component (e.g. a ta-
ble in a spreadsheet file, a chart in graphic file) or resizing
the frame to the best fit.

The Monitor package has ready-to-use customisable GUI
components, that in combination with stat objects, can be
used to display information and track the progress of the ex-
ecution of a GP algorithm. These components are divided in
to two groups: a set of representation-independent compo-
nents (Section 3), which provide general information about
a GP execution, and a set of tree-dependent components
(Section 4), which are specific components for tree-based
GP algorithms.

3. REPRESENTATION-INDEPENDENT

COMPONENTS
Representation-independent GUI components can be used

to display general information about the execution of a GP
algorithm, independent from the individual representation
used—i.e., these components can be used in combination
with the GP, GE, CFG-GP and any other user-specified rep-
resentation.

3.1 Tables
The Table component responds to a primary need: dis-

play the raw data in a clear way and refresh it in real-
time during the evolutionary run. This is similar to the
StatPrinter [11], which prints one or several statistics in a
specified OutputStream—the standard output stream (Syst-
em.out) in most cases—each time a specific event is trig-
gered.

The implementation of the Table component, which ex-
tends a JTable, respects the Model-View-Controller (MVC)
design pattern of the Swing architecture. The data model
and the controller have been joined in the TableModel class
to store the raw data, which extends javax.swing.table.A-
bstractTableModel. The stats to be displayed in the table
are registered in the TableModel and the onEvent(Event)

method is implemented to perform the table refreshment.
Each column of the table represents a different stat ob-
ject and new columns are added using the addStat(Class)

method. The method addListener(Class) is used to spec-
ify the event that triggers the refresh of the table.

Let us consider an example of a commonly used table to
show the evolution of the fitness diversity throughout the
generations:

Table table = new Table("Fitness Diversity", 1000);

table.addStat(GenerationNumber.class);

table.addStat(GenerationFitnessDiversity.class);

table.addListener(EndGeneration.class);

// adds the table to the monitor frame (optional)

monitor.add(table, 0, 0);

First of all, a new Table is created with two optional ar-
guments: the table name and the refreshing period (time
in milliseconds between successive refreshments of the ta-
ble’s view). The user then registers the stats in the Table,
which will automatically register them in the repository, and
each of them will define a new column—the order is deter-
mined by the order in which the stats are registered. In the
fourth line, the EndGeneration event is registered as a lis-
tener, specifying that a new row will be added each time an
EndGeneration event is fired.

Finally, the last (optional) line adds the table to the moni-
tor. In some cases we could want to run a simulation without
any interface but keeping an ‘off-line’ trace of the generated
data. One use of this facility is that the gathered data could
be later exported to a file on the EndRun event (the event
fired at the end of the execution of a GP algorithm):

File file = new File("output.csv");

EventManager.getInstance().add(EndRun.class,

new Listener<EndRun>() {

public void onEvent(EndRun e) {

table.export(file, Table.FORMAT_CSV);

}

});

This sample code provides a convenient way to automati-
cally generate a dataset at the end of an evolutionary run
without using any graphical output. It also highlights the
export(File file, String format) method which saves
the table according to the specified format. There are two
built-in formats available: FORMAT_CSV (comma-separated

1311

Figure 1: A sample monitor with one rows and two columns. On the left side, Statistics are displayed in a
table and refreshed on the EndGeneration event. On the right, the same statistics are printed in a chart.

file) and FORMAT_XLS (Excel 2000 file). The data from a ta-
ble can also be exported from the Monitor JFrame’s menu.

3.2 Charts
While the Table component provides a flexible way to

display information to the screen in a tabulated form, pre-
senting information in a chart provides a graphical repre-
sentation of numeric-valued statistics. This feature is im-
plemented as the Chart and ChartTrace components, which
extends the Chart2D and the Trace2DSimple, from JChart2D

[1], respectively.
A Chart is a component which contains one or several

ChartTrace. A ChartTrace is defined by an X-axis stat, an
Y-axis stat and a list of listeners. When an event triggers
one of the registered listeners, a point (TracePoint2D) is
added to the chart, where the (x,y) coordinates correspond
to the numeric values of the associated stats.

The following code creates a basic chart which displays
the fitness diversity through generations:

Chart chart = new Chart("Fitness Diversity");

ChartTrace trace = new ChartTrace("Gen-Fit");

trace.setXStat(GenerationNumber.class);

trace.setYStat(GenerationFitnessDiversity.class);

chart.addTrace(trace);

chart.addListener(EndGeneration.class);

A Chart component can also be exported as an image by
using the export method or the export menu of the Monitor
JFrame’s menu.

3.3 Evolutionary Graph
The Graph component provides a clear way to visualize

the entire population and kinship networks through gener-
ations. Individuals of each generation are represented in a
row by round vertices. Those are coloured from blue to red
according to the individual’s fitness—the color of the best
individuals is red—and linked by family ties with their par-
ents. Figure 2 illustrates an example of the evolutionary
graph component. The following code adds a new Graph

component to an existing Monitor object:

Graph graph = new Graph("Visualization Graph");

monitor.add(graph);

The String parameter in the Graph constructor is optional
and sets the name of the component.

The Graph component does not only represent data in a
convenient form, but also allows user interaction. When an
individual is selected by a user, its family links are high-
lighted and additional information (e.g. its string represen-
tation, fitness, genetic operator that originated the individ-
ual) are displayed in the bottom panel.

The individuals from a generation (row) are sortable ac-
cording to:

Fitness: individuals are sorted according to their fitness in
an increasing order, so it is possible to visualise from
which part of the population the best individuals orig-
inated.

Operator: individuals are sorted according to their parent
operator, but still coloured depending on their fitness,
it is possible to identify which genetic operators pro-
duce better individuals—e.g., does the crossover oper-
ation provide better offspring than the mutation?

Parent relative position: the parent position determines
the order of the next generation in order to reduce
link overlaps, which in some cases can facilitate the
visualisation.

The implementation of the Graph component is divided
into three main parts:

Data model (GraphModel): organises and stores data in-
formation retrieved from the event system to be dis-
played in the graph. For each individual, the model
creates and stores a GraphVertex instance which en-
capsulates the individual and additional information,
such as the Operator and the parent GraphVertex.

View model (GraphViewModel): stores and manages all a-
ttributes related to the graphical representation of an
individual, such as the diameter of vertices, gaps and
colours.

Main view (Graph and GraphView): displays vertices ac-
cording to the information stored in both GraphModel

and GraphViewModel.

1312

Figure 2: On the left side, the evolutionary graph: individuals are represented in generation rows, sorted
by their fitness—in a left-to-right decreasing order—and linked by family bonds. On the right side, the Tree

component gives the tree representation of the selected individual in a radial form—a user selected subtree
is displayed in green.

Since the data model part is entirely separated from the
view, it is possible to export and import a set of data. It is
also possible to complete a GP run without the graphic in-
terface, but generating a GraphModel. The generated model
can later be visualized.

The GraphMonitorWriter class is responsible for saving
the data of a GraphModel. The GraphMonitorWriter acts
as a listener of an event and the data is saved when the
specified event is triggered:

GraphModel model = new GraphModel();

EventManager.getInstance().add(

EndRun.class,

new GraphModelWriter(model, "backup.ser"));

The above sample code creates a new graph data model
which will be automatically generated during the run of the
GP. A new GraphMonitorWriter is created for the graph
model and the output file is specified. The EventManager

registers the GraphMonitorWriter listener to receive EndRun
events. When the GraphMonitorWriter receives the event,
all the data stored in the GraphModel is saved to the file.
To load the data from a file, a convenient static method is
provided by the Graph class:

GraphModel model =

Graph.loadInputModel("backup.ser");

Graph graph = new Graph(model);

monitor.add(graph);

The above code loads a model from the file “backup.ser”,
then creates a new Graph with the loaded model and adds
it to the monitor.

4. TREE-REPRESENTATION COMPONE-

NTS
So far we introduce several generic components available

for any GP representation. This section presents GUI com-
ponents that are specific to tree-based GP algorithms. These
components take advantage of the additional information

available in the EndOperator event about the individuals
undergoing a genetic operator. The information is used to
determine:

First parent (Parent1): the first individual selected to
undergo the genetic operator.

Second parent (Parent2): the second individual selected
to undergo the genetic operator; in case of a mutation
or a reproduction, this is null.

First point (Point1): the index of the node from the first
individual selected for crossover or mutation.

Second point (Point2): the index of the node from the
second individual selected for crossover.

Let us consider the subtree crossover operator, which takes
two individuals and produces two offspring. The operator
starts by selecting two parent individuals, then it randomly
selects a crossover point in each of the parent individuals—
Point1 from the Parent1 and Point2 from the Parent2. The
parent individuals are then cloned and the sub-trees indi-
cated by Point1 and Point2 are exchanged, generating two
new individuals. This process is illustrated in Figure 3. The
subtree mutation operator is similar, except that only one
parent (Parent1) is involved and the sub-tree indicated by
Point1 is replaced by a randomly generated sub-tree.

As we will discuss in the next sub-sections, the tree-based
GUI components display all the information related to how
individuals are created—e.g., if the individual was created
from Parent1 or Parent2, what was the crossover/mutation
point selected (Point1 and Point2), and the origin of sub-
trees in the individual genotype.

4.1 Tree
The Tree component provides a clear way to visualise an

individual as a radial graph [3]. Nodes are displayed in cir-
cular levels according to their depth. The Tree component
allows user interaction. It is possible to zoom-in/zoom-out,
drag the tree around; nodes of the tree can also be selected

1313

Figure 3: The crossover process: two offspring are
produced by exchanging subtrees in the genotype of
two selected parent individuals. All the information
related to the crossover—Parent1, Parent2, Point1

and Point2—is displayed in a graphical form by the
OperationPanel component.

Figure 4: The OperationPanel uses Tree components
and information provided by the EndOperator event
to represent a crossover operation.

from the graph. In the Figure 2, the Tree is linked to the
Evolutionary Graph component: when an individual is se-
lected by the user, its tree representation is displayed.

4.2 Operation Panel
The OperationPanel component uses a set of Tree com-

ponents to show the behaviour of genetic operators. It dis-
plays the parent individual(s) and the offspring, together
with the information about their fitness and the genetic op-
erator used. Users can select sub-trees in the offspring, and
the corresponding sub-tree in the parent individual will be
highlighted. This is possible using the information about
Parent1, Point1, Parent2 and Point2 from the EndOperator
event—Parent2 and Point2 only in the case of crossover.
Given that each individual is displayed using Tree compo-
nents, users can zoom-in/zoom-out and drag the tree around.

The mutation visualization is similar, the main difference
is that there is only one parent and offspring. If a user selects
a sub-tree that is not part of the parent individual (i.e. the

Figure 5: The AncestryFinder: After a sub-tree is
selected in the bottom panel, the list of ancestor
individuals is displayed in the top table, and they
can then be visualised in the top-right panel.

randomly generated sub-tree), no sub-tree is highlighted in
the parent individual.

The OperationPanel is also linked to the Evolutionary
Graph component: when an individual is selected by the
user, the OperationPanel shows the information about how
the individual was created. In order to receive the notifica-
tion when a user selects an individual, the OperationPanel

is registered as a listener of the Graph component’s view
model:

OperationPanel panel = new OperationPanel();

graph.getViewModel().addGraphViewListener(panel);

monitor.add(panel, 0, 1);

4.3 Ancestry Finder
The AncestryFinder component takes advantage of the

Tree component and allows a user to visualise where sub-
trees originated. The idea is to allow the user to select a
sub-tree from an individual and trace back the origin of the
sub-tree. The principle is to look for the occurrence of the
selected sub-tree of the individual in its parent(s) using the
Parent1 and Parent2 information—the latter in the case
of crossover—and repeating this procedure until the search
reaches an individual of the initial population or when it
is determined that the selected sub-tree originated from a
mutation operator.

The AncestryFinder component is also registered as a lis-
tener of the Graph component, so when an individual is se-
lected in the Graph, it is displayed using a Tree component
at the bottom of the AncestryFinder component’s panel.
This allows the user to visualise the selected individual and
select a sub-tree. After a sub-tree is selected, the list of
ancestor individuals (all previous individuals that contain
the sub-tree) is displayed, together with the information of
their generation, fitness and the genetic operator. The user

1314

can then visualise any of the ancestors by selecting individ-
uals from the ancestor list—the ancestor list allows multiple
selections.

5. PUTTING IT ALL TOGETHER
Since all the GUI components receive notifications from

the run of the GP using the event mechanism, the only re-
quirement to generate a graphical output is to create the
GUI components objects and register them to the Monitor.
Each component automatically registers itself to receive eve-
nts from the EventManager and it retrieves the required data
from stat objects.

The first step is to configure the GP algorithm. The listing
below shows the sequence of statements required to configure
EpochX to run the even-5 parity problem:

Config config = Config.getInstance();

// sets the default generational parameter values

config.set(Template.KEY,

new GenerationalTemplate());

config.set(TreeFactory.MAX_DEPTH, 5);

config.set(TreeFactory.INITIAL_DEPTH, 3);

// the problem instance

Problem problem = new EvenParity(5);

config.set(FitnessEvaluator.FUNCTION, problem);

// operators

List<Operator> operators =

new ArrayList<Operator>();

operators.add(new Mutation());

operators.add(new Crossover());

config.set(BranchedBreeder.OPERATORS, operators);

// termination criteria

List<TerminationCriteria> criteria =

new ArrayList<TerminationCriteria>();

criteria.add(new MaximumGenerations());

config.set(

GenerationalStrategy.TERMINATION_CRITERIA,

criteria);

After the configuration statements, the GUI components can
be created:

// Monitor frame with 1 row and 2 columns

Monitor monitor = new Monitor("Monitor", 1, 2);

Graph graph = new Graph();

monitor.add(graph, 0, 0);

OperationPanel panel = new OperationPanel();

graph.getViewModel().addGraphViewListener(panel);

monitor.add(panel, 0, 1);

AncestryFinder finder = new AncestryFinder();

graph.getViewModel().addGraphViewListener(finder);

monitor.add(finder, 0, 1);

// export the graph model to "backup.ser"

EventManager.getInstance().add(

EndRun.class,

new GraphModelWriter(graph.getModel(),

"backup.ser"));

The above listing creates a Monitor frame with 1 row and 2
columns: on the left, it displays a Graph component (Evolu-
tionary Graph); on the right, it will display a tabbed panel
with the OperationPanel and AncestryFinder components.
It will also export the Graph’s model to a file at the end of
the run. Finally, we just need to run the GP algorithm:

Evolver evolver = new Evolver();

evolver.run();

6. CONCLUSION
In this paper we presented the Monitor package, which

introduces GUI visualization components into the EpochX
framework. These components make use of the event man-
agement and Stats system to provide a graphical represen-
tation of the progress of an evolutionary run. We discussed
representation-independent components and also tree-repre-
sentation components, which provide a graphical represen-
tation of tree-based individuals.

Representation-independent components included: Table
and Chart, which are common facilities to follow the evolu-
tion of a GP algorithm in terms of fitness; and the Evolutio-
naryGraph, which is a more elaborated component show-
ing the entire population and allowing the visualization of
parent-child relationships and detailed information of each
individual in the population. Tree-representation compo-
nents included: Tree component, which shows individuals in
a radial structure; the OperationPanel component, which
allows the visualization of the effect of genetic operators
(mutation and crossover) in the structure of the individu-
als; and the AncestryFinder component, which allows the
user to select a sub-tree from an individual and trace back
the origin of the sub-tree, navigating through parent-child
(ancestry) relationships.

The Monitor package is highly customizable, making it
easier to introduce rich graphical components. We are cur-
rently evaluating the implementation of specific components
for other GP representations.

EpochX is available for download, including source code
and documentation, from http://www.epochx.org/.

7. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the financial support

from the EPSRC grant EP/H020217/1. Löıc Vaseux thanks
the ERASMUS Student Mobility for Placements and the
Conseil Général de Haute-Normandie for their scholarships.

8. REFERENCES

[1] Jchart2d, precise visualization of data.
http://jchart2d.sourceforge.net/usage.shtml, 2012.

[2] L. Beadle and C. G. Johnson. Semantic analysis of
program initialisation in genetic programming.
Genetic Programming and Evolvable Machines,
10(3):307–337, Sept. 2009.

[3] G. Book and N. Keshary. Radial tree graph drawing
algorithm for representing large hierarchies. University
of Connecticut, December 2001.

[4] G. Brunoro, G. Pappa, J. Palotti, and
R. Melo-Minardi. Galapagos: Understanding genetic
programming evolution. GECCO’11 Visualizing
Evolution Competition, 2011.

1315

[5] T. Castle and C. G. Johnson. Positional effect of
crossover and mutation in grammatical evolution. In
Proceedings of the 13th European Conference on
Genetic Programming, EuroGP 2010, volume 6021 of
LNCS. Springer, Apr. 2010.

[6] T. Castle and C. G. Johnson. Evolving high-level
imperative program trees with strongly formed genetic
programming. In Proceedings of the 15th European
Conference on Genetic Programming, EuroGP 2012,
volume 7244 of LNCS, pages 1–12. Springer, Apr.
2012.

[7] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, 1992.

[8] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich.
Opt4J - A Modular Framework for Meta-heuristic
Optimization. In Proceedings of the Genetic and
Evolutionary Computing Conference (GECCO 2011),
pages 1723–1730, Dublin, Ireland, 2011.

[9] D. J. Montana. Strongly typed genetic programming.
Evolutionary Computation, 3(2):199–230, 1995.

[10] M. O’Neill and C. Ryan. Grammatical evolution.

IEEE Transactions on Evolutionary Computation,
5(4):349–358, Aug. 2001.

[11] F. Otero, T. Castle, and C. G. Johnson. Epochx:
Genetic programming in java with statistics and event
monitoring. In GECCO’12 Companion, Philadelphia,
PA, USA, July 2012.

[12] F. Otero and C. G. Johnson. Automated problem
decomposition for the boolean domain with genetic
programming. In Proceedings of EuroGP 2013, LNCS
7831, pages 169–180, 2013.

[13] S. van Berkel, D. Turi, A. Pruteanu, and S. Dulman.
Automatic discovery of algorithms for multi-agent
systems. In Proceedings of GECCO’12 Companion,
pages 337–344, 2012.

[14] S. Wagner. Heuristic Optimization Software Systems –
Modeling of Heuristic Optimization Algorithms in the
HeuristicLab Software Environment. PhD thesis,
Institute for Formal Models and Verification,
Johannes Kepler University Linz, Austria, 2009.

[15] P. Whigham. Grammatically-based genetic
programming. In Proceedings of the Workshop on
Genetic Programming: From Theory to Real-World
Applications, pages 33–41, 1995.

1316

