HH-DSL: A Domain Specific Language for
Selection Hyper-heuristics

Hilal Kevser Cora
Institute of Science and
Technology, Istanbul Technical
University, Turkey

subasihi@itu.edu.tr

ABSTRACT

A domain specific language (DSL) is a programming lan-
guage which provides a natural notation and suitable data
structures to express solutions to problems of a targeted
domain. Although using a general purpose programming
language together with a special library for the domain is
common practice, it still requires a considerable amount of
programming knowledge, making it hard for domain experts
who might have limited or no programming skills. In the
CHeSC (Cross-domain Heuristic Search Challenge) compe-
tition, researchers and practitioners from different research
fields use the HyFlex platform to develop hyper-heuristics.
The domain specific language proposed in this study aims
to help these researchers to focus on hyper-heuristic devel-
opment rather than the details of Java programming.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages; 1.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search
— Heuristic methods

General Terms

Languages

Keywords

Hyper-heuristics, Domain Specific Languages

1. INTRODUCTION

A domain specific language (DSL) is a programming lan-
guage which aims to make it easier to develop programs
in a certain domain [17]. A well designed DSL provides
a more natural notation and more suitable data structures
to express solutions to problems of the targeted domain as
opposed to a general purpose language (GPL). Although
using a GPL in combination with a library or package for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’13 Companion, July 6-10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

H. Turgut Uyar
Department of Computer
Engineering, Istanbul
Technical University, Turkey
uyar@itu.edu.tr

1317

A. Sima Etaner-Uyar
Department of Computer
Engineering, Istanbul
Technical University, Turkey
etaner@itu.edu.tr

the domain is a very common approach, it still assumes a
considerable amount of programming knowledge, therefore
making it harder to be productive for domain experts who
might have limited or no programming skills. A study for
comparing DSLs and GPLs is given in [12] where conducted
experiments indicate that learning, understanding and de-
veloping programs in a domain using a DSL designed for
that domain is easier than doing the same using a GPL.

The development of a DSL is a difficult task because it
requires expertise both in the targeted domain and in pro-
gramming language design and implementation. The phases
of development are outlined as decision, analysis, design and
implementation [13]. First, it has to be decided if a new DSL
is really needed instead of using existing languages and tools.
The advantages of domain related notation and data struc-
tures have to be evaluated. In the analysis phase, domain
knowledge is gathered from documents, domain experts and
existing program codes developed for the domain. Next,
the DSL is designed in light of the design patterns which
emerged in the analysis phase. And finally, the DSL is im-
plemented by developing a language processor such as an
interpreter or a compiler or by embedding it in a GPL.

There are many studies about DSL design and implemen-
tation. In [11], a DSL for developing data acquisition sys-
tems is proposed. Using this DSL, domain experts can de-
sign their own data acquisition systems without any knowl-
edge of programming. As another example, the EasyTime
DSL is used to measure time in sports competitions [8]. It
offers a flexible timing system which can be adapted to differ-
ent types of competitions with small changes. Experiments
showed that using this DSL eliminated the need for hiring
specialized companies to measure time.

Since developing a new DSL is a complex process, it is
recommended to use language development tools or frame-
works [13]. Therefore, beside the research on developing
DSLs, there are also many studies on developing frameworks
to generate and implement DSLs. For example, the Delite
compiler framework and runtime aims to simplify the devel-
opment of parallel, embedded DSLs [15]. In this study, the
Spoofax language development framework is used to design
and implement the proposed DSL.

Hyper-heuristics are high-level methodologies which were
proposed as an alternative to heuristics tailored to a specific
problem domain [3]. There are two types of hyper-heuristics
in literature: heuristics to choose heuristics (selection hyper-
heuristics) and heuristics to generate heuristics [4]. In this
study, we work with only the first type of hyper-heuristics.

Therefore, in this paper, the term hyper-heuristics refers to
selection hyper-heuristics.

A hyper-heuristic selects and applies a low-level heuristic
without using any problem specific information [16]. Low-
level heuristics are heuristics tailored to a specific problem
domain. Therefore, low-level heuristics operate on the prob-
lem search space, whereas hyper-heuristics operate on the
low-level heuristics search space (Fig. 1).

Hyper-heuristic

low-level heuristics

problem search space

Figure 1: A hyper-heuristic communicates with the
low-level heuristics, while they in turn communicate
with the underlying problem implementation.

Over the years, research on hyper-heuristics has shown an
increase [3, 4, 5]. Recently, HyFlex (Hyper-heuristics Flex-
ible framework) [14], a hyper-heuristics framework which
provides easy implementation of hyper-heuristics and al-
lows comparisons between them [2] has been implemented.
HyFlex can be used with different hyper-heuristics and dif-
ferent problem domains. In the CHeSC' (Cross-domain
Heuristic Search Challenge) competitions, the HyFlex frame-
work is used as the underlying system for hyper-heuristic
development.

CHeSC competitions aim to bring together researchers
and practitioners from operational research and computer
science fields to develop more general approaches to problem
solving across many domains. Since researchers and practi-
tioners come from different fields, programming skills may be
a drawback for some. To write hyper-heuristic code working
on HyFlex, one needs to have good Java programming skills.
To alleviate this requirement and allow the researchers to fo-
cus on hyper-heuristic development rather than dealing with
the details of Java programming, we decided to develop a
DSL for hyper-heuristic research.

The proposed DSL is called HH-DSL and in particular, it
aims to generate code which can be executed on HyFlex. An
example HyFlex Java code and its corresponding HH-DSL
code are shown in Figure 2 and Figure 3.

2. HYPER-HEURISTICS AND HYFLEX

Hyper-heuristics are composed of two components: heuris-
tic selection schemes and acceptance criteria. Heuristic se-

"http://www.asap.cs.nott.ac.uk/external /chesc2011

1318

import AbstractClasses.HyperHeuristic;
import AbstractClasses.ProblemDomain;
public class ExampleHyperHeuristicl
extends HyperHeuristic {
public ExampleHyperHeuristicl(long seed){
super (seed) ;
}
public void solve(ProblemDomain problem) {
int numOfHeuristics
problem. getNumberOfHeuristics();
double curr(ObjVal =
Double.POSITIVE_INFINITY;
problem.initialiseSolution(0);
while ('hasTimeExpired()) {
int h = rng.nextInt(numOfHeuristics);
double newObjVal =
problem.applyHeuristic(h, 0, 1);
double delta = currObjVal - newObjVal;
if (delta > 0) {
problem. copySolution(l, 0);
currObjVal = newObjVal;
} else {
if (rng.nextBoolean()) {
problem.copySolution(1l, 0);
currObjVal = newObjVal;

}

Figure 2: Example hyper-heuristic code in Java.

hi selection simple_random
acc = acceptance nonimproving_with_probability 0.5
initialize solution

loop 100%{

h = next hl
s = first solution
n = apply hl s

check acc n replace s

Figure 3: Example hyper-heuristic code in HH-DSL.

lection schemes deal with deciding which low-level heuristic
to choose and apply to the current candidate solution. Ac-
ceptance criteria are used to determine whether to accept
or reject the new candidate solution created as a result of
applying the selected low-level heuristic. A general outline
of a hyper-heuristic program is given in Figure 4.

The initial candidate solution s is usually generated ran-
domly. Through a selection scheme, one of the low-level
heuristics h is chosen. Then, the chosen low-level heuristic
h is applied to the current candidate solution s, generat-
ing a new candidate solution s’. Based on the acceptance
mechanism, the new candidate solution s’ may be accepted,
replacing the current candidate solution s. This process con-

tinues until some stopping criteria are satisfied. The final
candidate s is returned as the solution found by the hyper-
heuristic.

generate initial candidate solution s
while stopping criteria not satisfied do
{

select low-level heuristic h

apply h to s generating s’

check whether s’ will be accepted

if accepted

s = s’

}

return s

Figure 4: Pseudo-code for a general hyper-heuristic
framework.

In [6], several heuristic selection schemes are presented.

e Greedy (GR) applies all low-level heuristics separately
to the candidate solution and selects the one which
provides the largest improvement.

e Simple Random (SR) chooses a low-level heuristic ran-
domly and applies it.

e Random Descent (RD) is the same as SR, but the se-
lected heuristic is applied repeatedly until there is no
improvement.

e Random Permutation (RP) creates a random permu-
tation of all low-level heuristics and applies them in
the order given by the permutation. Each low-level
heuristic is applied only once.

e Random Permutation Descent (RPD) is the same as
RP, but each heuristic is applied repeatedly until there
is no improvement.

e The choice function heuristic selection (CF) and the re-
inforcement learning heuristic selection (RL) both use
a scoring approach based on the historical performance
of the low-level heuristics and select the one with the
highest score at each iteration.

Move acceptance strategies can be deterministic or non-
deterministic [3].

e All Moves (AM) directly accepts the new solution can-
didate.

e Only Improving (OI) accepts only those solution can-
didates that provide an improvement.

e Improving and Equal (IE) accepts the solution candi-
dates which are as good as or better than the current
solution candidate.

There are also more complex acceptance schemes in litera-
ture, such as Monte Carlo, Simulated Annealing and Great
Deluge acceptance methods [5].

HyFlex, the hyper-heuristics framework, provides easy im-
plementation of hyper-heuristics and allows comparisons be-
tween them [2] on various problem domains. In this study,

1319

the proposed HH-DSL is designed to work with HyFlex ver-
sion 2012. Any problem domain can be implemented in
HyFlex. This implies that the low-level heuristics for that
domain are also included along with the problem definition.
Hyper-heuristics to work with these implemented problem
domains can be developed on HyFlex. In HyFlex version
2012, six test problem domains are included as minimization
problems. These are One Dimensional Bin Packing, Permu-
tation Flow Shop, Personnel Scheduling, Boolean Satisfia-
bility, Traveling Salesman and Vehicle Routing problems.
Each problem domain contains a set of low-level heuristics
which can be grouped under four categories as mutational
heuristics, ruin-recreate heuristics, local search heuristics
and crossover heuristics. Not all problem domains have all
four types of low-level heuristics. These low-level heuristics
work on the problem search space while the implemented
hyper-heuristic controls these low-level heuristics and con-
ducts a search on the heuristics search space through HyFlex.

3. THE LANGUAGE DEVELOPMENT
FRAMEWORK

Domain specific languages can be designed as internal or
external languages. Internal DSLs are integrated into an
existing general purpose language and use the features of
the original language [18]. However, internal DSLs might
be complex for non-programmers because they still require
the knowledge of host language syntax and semantics. Non-
programmers might feel more confident when using external
DSLs where the DSL is an independent language which has
its own constructs. An advantage of internal DSLs is that
they can use the tools -such as editors and debuggers- for
the host language, whereas for external DSLs these tools
need to be implemented at an extra cost. In recent years,
language development frameworks have emerged that can,
in addition to language implementation, also provide basic
tool support for the generated DSL [18].

In this study, the Spoofax language development frame-
work? is used [10]. When using this framework, two aspects
of the DSL have to be expressed: the grammar and the code
generation rules. From these specifications, Spoofax gener-
ates the necessary components like the parser and the code
generator. It also prepares an environment which supports
assistive features like syntax highlighting for the target DSL.

The grammar of the DSL is defined using the Syntax Def-
inition Formalism (SDF) [7]. Below are examples of two
grammar production rules in SDF:

ID "=" Expression
-> Stm {cons("Assignment")}
HeuristicType? "selection"
HeuristicSelectionType Params*
-> Expression {cons("SelectionType")}

The “->” symbol means that the right hand side of the
arrow can be replaced with the left hand side.

Production rules are labeled with the cons attribute. The
example given above shows two production rules labeled
“Assignment” and “SelectionType”.

In the Assignment rule, the Stm non-terminal is expanded
to the ID non-terminal, followed by an equals sign and the

http:/ /strategoxt.org/Spoofax

Expression non-terminal. There can also be other produc-
tion rules for the Stm non-terminal.

In the SelectionType rule, the Expression non-terminal is
expanded to an optional HeuristicType non-terminal, fol-
lowed by the selection keyword, the HeuristicSelection-
Type non-terminal and any number of Params non-terminals.

Some syntax definition patterns in SDF are listed in Ta-
ble 1 [9].

The code generation rules are written using the Stratego
program transformation language [1] which is integrated into
Spoofax. The code generation process produces Java code
by applying rewrite rules to terms. Code generation rules
are matched with the labels of the production rules.

For example, the code generation rule for the assignment
statement for which the syntax was given above, is given in
Figure 5. In this example, for the Stm non-terminal labeled
as “Assignment”, the code generation takes two parameters
where the second parameter is a SelectionType Expression
with its own three parameters. The template for the code
to be generated is listed between square brackets and it can
refer to the parameters. The where part is used to con-
strain the application of the rule. In this example, the rule
is applied only when the selectionMethod parameter has
the value simple_random.

to-java:
Assignment (VarName, SelectionType(None(),
selectionMethod, params*)) ->
$L
SimpleRandomSelection [VarName] =
new SimpleRandomSelection(hList, rng);
]
where
<eq>(selectionMethod, "simple_random");
<set-global> (VarName, "simple_random")

Figure 5: The code generation rule for heuristic se-
lection.

4. PROPOSED HH-DSL

4.1 The Syntax

The syntax of the language is specified using the SDF
notation as required by the Spoofax platform. An outline
of the language grammar is given in Figure 6. Some of
the reserved keywords of HH-DSL are best, first, random,
select, solution, heuristic, apply and replace, which
map to concepts in the hyper-heuristics domain. Other than
these, some standard programming language constructs like
if-else and loop are also supported. The loop iteration
construct can take two forms. Beside the usual counter con-
trolled repetition which allows repeating for a certain num-
ber of times, loops can also be limited by the time they
are allowed to spend; so the total time available to the pro-
gram can be divided between loops. This feature is im-
plemented as a convenience for programs developed for the
CHeSC competition.

While some of these types of general purpose constructs
are necessary when expressing hyper-heuristic algorithms,
adding too many such constructs might damage the aim

1320

of being a DSL and the language might start resembling a
GPL. Some higher level features of HH-DSL are primarily
meant for defining new hyper-heuristic operators instead of
using standard operators which are already included in the
platform.

As required by the domain, one of the basic operations in
HH-DSL is selecting an element randomly from a collection.
The random function takes a collection and the number of el-
ements to select as parameters. If the number of elements is
not specified, only one element will be selected. If the num-
ber is greater than 1 and an exclamation mark is appended
to the number, it will select that many distinct elements.

Typically, a program in HH-DSL starts by setting the en-
vironment for later stages, such as configuring a selection
heuristic method and an acceptance method. Then a set
of initial solutions will be generated and the algorithm will
proceed to a loop where the chosen methods will be applied
to candidate solutions.

Heuristic Selection.

Hyper-heuristic algorithms need different mechanisms for
selecting heuristics. Some mechanisms make their selection
regardless of any history (such as simple random selection)
whereas other mechanisms need to keep track of what has
been selected so far (such as permutation based methods).
Moreover, it might be desirable to select a certain type of
heuristic, for example, a mutation heuristic. Therefore, in
order to support these different cases, first a selector has to
be created and configured, using an expression that consists
of the heuristic type, followed by the selection keyword
and the selection method. The valid heuristic types are:
mutation, crossover, local search, ruin recreate, or any com-
bination of these. Valid methods for selecting a heuristic of
the given type are: simple random, random permutation,
reinforcement learning, greedy selection. Specific heuristic
selection methodologies can also be defined and used in HH-
DSL. Once created, the next operation can be used to re-
quest the next heuristic from the selector. For example, the
following code shows how to create a random mutation se-
lector (assigned to the variable hs) and how to request a
heuristic from it (assigned to the variable h).

hs
h

mutation selection simple_random
next hs

To choose from multiple types of heuristics, a combination
of the types can be specified. For example, to choose a
random mutation or local search heuristic:

hs = mutation+local_search selection simple_random

Acceptance Method Selection.

Another setting that needs to be determined concerns the
acceptance of new solutions. There are four predefined ac-
ceptance methods: accept all, only improving, improving
or equal, non-improving with probability. An accepter is
created by giving a method name after the acceptance key-
word.

ac acceptance accept_all

Table 1: Some syntax definition patterns in SDF.

Pattern Explanation Examples

A* Zero or more symbols A. Stm*, [a-zA-Z]*

A+ One or more symbols A. TypeDec+, [a-zA-Z]+

A? Optional symbol A. Expr?, [fFdD]?

{A0 A1}* | Zero or more symbols A0 separated by Al. | {Exp 7,”}*, {FormalParam ”,”}*
{A0 Al}+ | One or more symbols A0 separated by Al. | {Id ”.”}+, {InterfaceType ”,”}+
A0 | Al Alternative of symbol A0 or Al. {Expr 7,”}* | LocalVarDec

Initialization.

The syntax for initializing solutions consists of the key-
words initialize solution and optionally followed by the
number of solutions to initialize. If no number is given, only
one solution will be initialized. For example, the following
statement will create and randomly initialize 10 solutions:

initialize solution 10

Applying Heuristics.

A heuristic can be applied to a solution using the apply
statement. For example, the following code applies a heuris-
tic (h) to a solution (s) and assigns the generated solution
to a new variable (n):

n = apply h s

Accepting Solutions.

A generated solution can be accepted or rejected by re-
questing a check from an accepter. This operation takes the
old and new solutions as parameters and decides whether to
accept the new solution or not. The action to take if the
new solution is accepted (such as replacing the old solution
with the new one) can also be specified. In the example
given below, the accepter (ac) will replace the old solution
(s) with the new solution (n), provided the acceptance con-
ditions have been met.

check ac n replace s

Defining Structures.

Users of HH-DSL may want to define their own method-
ologies. Structures can be defined in this case. A struc-
ture consists of statements and methods. In the example
given below a structure (myHeuristic) for heuristic selec-
tion is defined. A permutation of heuristics is generated
using permute statement and is assigned to an initial ar-
ray. The method next is used to select and return the next
heuristic from the permutation array.

define myHeuristic

{
h[] = permute heuristic
current = -1
next() : Heuristic
{
current = current + 1
return h[current]
}
}

1321

4.2 Code Generation

In the code generation phase, our system generates Java
code which can be directly executed on the HyFlex plat-
form. The Spoofax framework uses string interpolation for
code generation. In this approach, the code to generate is
expressed as a template containing references to variables
and these variables will be replaced by their values.

As an example, the code generation rule for the solution
initialization construct is given in Figure 7. The template
for the code to be generated is written between “[” and “|”
and it starts on line 3 in the listing. This template takes
1 parameter, called MemorySize, which gets referenced in the
first line of the template. This parameter will be replaced
with a value during actual code generation. For example, if
this rule is invoked for the statement initialize solution
10, the MemorySize parameter takes the value 10 and the
code given in Figure 8 gets generated.

As another example, consider the code generation rule for
heuristic selection given in Figure 5. The where part re-
stricts the application of this rule to only the case where the
selectionMethod parameter has the value simple_random,
therefore hs = selection simple_random statement gener-
ates the code given in Figure 9.

4.3 Working Environment

HH-DSL is written using the Spoofax language platform
which is integrated into Eclipse, one of the leading modern
development environments. Therefore, the working environ-
ment for HH-DSL can take advantage of the features pro-
vided by Eclipse and Spoofax, such as syntax highlighting
and code folding.

After editing the HH-DSL code in the editor component
of the working environment, code generation is invoked from
the menu. An Eclipse Java project is generated automati-
cally when code generation is invoked.

S. EXAMPLES AND DISCUSSION

The example codes given here are based on the exam-
ples provided in the HyFlex platform. These examples were
tested on the system developed in this study to make sure
that the generated code was equivalent to the code given in
the HyFlex documentation. The DSL design and implemen-
tation were also tested with code not covered in the HyFlex
documentation.

Figure 10 shows a simple hyper-heuristic example which
works with a single candidate solution at a given time. Meth-
ods for heuristic selection will be chosen at random from all
supported types of heuristics. A generated solution will defi-
nitely be accepted if it improves on the original solution, but
only with probability 0.5 if it does not improve. At every
iteration, a random heuristic will be applied to the solution

Stm* StructDclx*
-> Start
ID "=" Expression
-> Stm {cons("Assignment")}
Array "=" ArrayExpr
-> Stm {cons("ArrayAssignment")}
"check" ID ID "replace" ID ("[" INT "]")?

{cons ("TypesAndStatements")}

-> Stm {cons("Acceptance")}
"initialize" "solution" INT?
-> Stm {cons("Initialization")}

"define" ID "{" Stm* Methodsx "}"
-> StructDcl {cons("StructDeclaration")}
"define" ID "(" StructParams ")"
"{" Stm* Methods* "}"
-> StructDcl {cons("StructDclWithParams")}
"0 " VariableType? "{" Stmx "2}"
-> Methods {cons("Methods")}
HeuristicType? "selection" HeuristicSelectionType
Params*
-> Expression {cons("SelectionType")}
"acceptance" AcceptanceSelectionType
AcceptanceParams*
-> Expression {cons("AcceptanceType")}
"next" ID
-> Expression
"apply" Arguments
-> Expression
AdjExpr HSType
-> Expression {cons("HSSelection")}
"permute" "heuristic"
-> ArrayExpr {cons("PermuteHeuristic")}
AdjExpr "solution" INT "!"
-> ArrayExpr {cons("ArraySelection")}
{Heuristic "+"}+
-> HeuristicType{cons("MultipleHeuristics")}

{cons("HeuristicSelection")}

{cons("ApplyHeuristic")}

ID "in" ID
-> Expr {cons("CheckType")}
ID n [] n
-> Array {cons("Array")}
|lbestll
-> AdjExpr {cons("Best")}
"first"
-> AdjExpr {cons("First")}
"random"
-> AdjExpr {cons("Random") }
"heuristic"
-> HSType {cons("HeuristicType")}
"solution"
-> HSType {cons("SolutionType")}
"#" HSType
-> Size {cons("Size")}
Size
-> Expression {cons("SizeExpression")}
nifn Expr u{n Stmx* n}u ("else" u{n Stm* n}u)?
-> Stm {cons("IfElse")}

"loop" LoopCondition "{" Stmx "}"
-> Stm {cons("Loop")}

Figure 6: Some grammar rules of the proposed lan-
guage.

1322

to-java:

Initialization(Some (MemorySize)) -> $[

int solutionmemorysize = [MemorySize];

problem.setMemorySize (solutionmemorysize) ;

double["[]1"] current_obj_function_values
new double["["]solutionmemorysize["]"];

for (int x = 0; x < solutionmemorysize; x++) {
problem.initialiseSolution(x) ;
current_obj_function_values["[x]"] =

problem.getFunctionValue (x) ;

Figure 7: Code generation rule for solution initial-
ization.

int solutionmemorysize = 10;
problem.setMemorySize (solutionmemorysize) ;
double[] current_obj_function_values =
new double[10];
for (int x = 0; x < solutionmemorysize; x++) {
problem.initialiseSolution(x) ;
current_obj_function_values[x] =
problem.getFunctionValue(x);

Figure 8: The generated Java code for solution ini-
tialization.

SimpleRandomSelection hs =
new SimpleRandomSelection(hList, rng);

Figure 9: The generated Java code for simple ran-
dom heuristic selection.

to obtain a new solution, which will then be checked for
acceptance and if it is accepted, it will replace the original
solution. This loop will use up all the time slot available to
the program.

hs selection simple_random

ac acceptance nonimproving_with_probability 0.5
initialize solution

loop 100% {

hl = next hs

s = first solution
nl = apply hl s

h2 = next hs

n2 = apply h2 ni

check ac n2 replace s

Figure 10: Example program with 1 candidate solu-
tion, simple random heuristic selection and proba-
bilistic acceptance of non-improving solutions.

The second example program shown in Figure 11 works
with 10 candidate solutions. Three heuristic selection meth-
ods are used for different stages of the algorithm. All gen-
erated candidate solutions will be accepted. At every iter-
ation, a random mutational heuristic is applied to the best
candidate solution in the current solution set. If the new
candidate solution is accepted, it takes the place of the orig-
inal best candidate solution. Next, a random local search
heuristic is selected and applied to the best candidate so-
lution. Again, if the new candidate solution is accepted, it
takes the place of the original one. Then, two distinct candi-
date solutions are selected randomly and a random crossover
heuristic is applied to these. If the obtained solution is ac-
cepted, it replaces the first one of the candidate solutions in
the crossover operation. At the end of every iteration, the
new best candidate solution is determined.

hsl = mutation selection simple_random

hs2 = local_search selection simple_random

hs3 = crossover_heuristic selection simple_random
ac = acceptance accept_all

initialize solution 10
loop 100% {

hl = next hsl
s = best solution
nl = apply hl s

check ac nl replace s

h2 = next hs2

n2 = apply h2 s

check ac n2 replace s

s3[] = random solution 2!
h3 = next hs3

n3 = apply h3 s3[]

check ac n3 replace s3[0]
currentBest = best solution

Figure 11: Example program with 10 solutions,
three heuristic selection methods and acceptance of
all generated solutions.

Figure 12 shows an example of how to use conditional
branches based on the types of selected heuristics. At every
iteration, a mutation or local search heuristic is applied to a
solution. Then, if that first heuristic is a mutation heuristic,
a local search heuristic will be used which does not change
between iterations.

Figure 13 shows an example of how to define and use a
structure for heuristic selection. A custom structure named
myHeuristic is defined. In this method, first, a permuta-
tion of all supported types of heuristics is generated. The
next method is defined to select the next heuristic from the
permutation array. This structure is used as the heuristic
selection strategy in the program. All generated solutions
are accepted in this example.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed HH-DSL, a domain specific
language for developing hyper-heuristic programs, which can
be executed on HyFlex. Through examples, we illustrated
how hyper-heuristic programs can be developed using HH-

1323

hsl= mutation+local_search selection simple_random

hs2= local_search selection simple_random
ac = acceptance accept_all
h2 = next hs2

initialize solution
loop 100% {

hl = next hsil

s = first solution

n = apply hl s

if h1l in mutation {
n = apply h2 n

¥

check ac n replace s

Figure 12: Example program with check for heuris-
tic type.

hsl = selection myHeuristic
ac acceptance accept_all
initialize solution 10
loop i in [1:20]{

hl = next hsi
s = first solution
n = apply hl s
check ac n replace s
}
define myHeuristic
{
h[] = permute heuristic
current = -1
next() : Heuristic
{
current = current + 1
return h[current]
}
}

Figure 13: Example program with defining heuristic
selection mechanism.

DSL. The examples show that writing a hyper-heuristic pro-
gram in HH-DSL is easier than writing the same in Java.
Currently, the features provided in HH-DSL are designed
to work with hyper-heuristic development on HyFlex, how-
ever, features can be added to make it a more general tool
for hyper-heuristic research. The advantage of working with
HyFlex is that HyFlex provides the problem domain im-
plementations. Therefore, researchers can focus on hyper-
heuristic development rather than implementing the prob-
lems to solve. It also allows researchers to benchmark their
approaches on standard implementations of these problem
domains.

This paper presents a minimal, functional implementation
of HH-DSL. It is a work in progress and the language is still
being improved. The source code for HH-DSL is available
at https://bitbucket.org/hcora/hh-dsl.

7.
[1]

2]

3]

[4]

6

[7

8]

REFERENCES

M. Bravenboer, K. T. Kalleberg, R. Vermaas, and

E. Visser. Stratego/XT 0.17. A language and toolset
for program transformation. Science of Computer
Programming, 72(1-2):52-70, 2008.

E. K. Burke, T. Curtois, M. Hyde, G. Kendall,

G. Ochoa, S. Petrovic, and J. A. Vazquez-Rodriguez.
HyFlex: A flexible framework for the design and
analysis of hyper-heuristics. In MISTA, 20009.

E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,

E. Ozcan, and Q. Rong. A survey of hyper-heuristics.
Technical report, 2009.

E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,

E. Ozcan, and J. R. Woodward. A classification of
hyper-heuristic approaches. In M. Gendreau and J.-Y.
Potvin, editors, Handbook of Metaheuristics, volume
146 of International Series in Operations Research and
Management Science, pages 449-468. Springer, 2010.
K. Chakhlevitch and P. Cowling. Hyperheuristics:
Recent developments. volume 136 of Studies in
Computational Intelligence, pages 3—29. Springer,
2008.

P. Cowling, G. Kendall, and E. Soubeiga. A
hyper-heuristic approach to scheduling a sales summit.
In Practice and Theory of Automated Timetabling III :
Third International Conference, PATAT 2000, volume
LNCS 2079, August 2000.

J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers.
The syntax definition formalism SDF - reference
manual, 1992.

I. F. Jr., I. Fister, M. Mernik, and J. Brest. Design
and implementation of domain-specific language
EasyTime. Comput. Lang. Syst. Struct.,
37(4):151-167, Oct. 2011.

1324

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

K. T. Kalleberg and E. Visser. Syntax definition in
SDF, Jan. 2013.

L. C. L. Kats and E. Visser. The Spoofax language
workbench. In Companion to the Conference on
Systems, Programming, Languages, and Applications:
Software for Humanity (SPLASH 2010). ACM, 2010.
T. Kos, T. Kosar, and M. Mernik. Development of
data acquisition systems by using a domain-specific
modeling language. Comput. Ind., 63(3):181-192, Apr.
2012.

T. Kosar, M. Mernik, and J. C. Carver. Program
comprehension of domain-specific and general-purpose
languages: comparison using a family of experiments.
Empirical Softw. Engg., 17(3):276-304, June 2012.
M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316-344, Dec. 2005.

G. Ochoa, M. Hyde, T. Curtois, J. A.
Vazquez-Rodriguez, J. Walker, M. Gendreau,

G. Kendall, B. McCollum, A. J. Parkes, S. Petrovic,
and E. K. Burke. HyFlex: A Benchmark Framework
for Cross-domain Heuristic Search, volume 7245 of
LNCS. Springer, 2012.

K. Olukotun. High performance embedded domain
specific languages. SIGPLAN Not., 47(9):139-140,
Sept. 2012.

E. Ozcan, B. Bilgin, and E. E. Korkmaz. A
comprehensive analysis of hyper-heuristics. Intelligent
Data Analysis, 12:3—23, January 2008.

D. Spinellis. Notable design patterns for
domain-specific languages. Journal of Systems and
Software, 56(1):91-99, Jan. 2001.

M. Voelter. DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages.
CreateSpace Independent Publishing Platform, 2013.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130510092527
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130510092527
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 8
 7
 8

 1

 HistoryList_V1
 qi2base

