
Goldenberry: EDA Visual Programming in Orange

Sergio Rojas-Galeano
Engineering School

District University of Bogota
Bogota, Colombia

srojas@udistrital.edu.co

Nestor Rodriguez
Engineering School

District University of Bogota
Bogota, Colombia

nearodriguezg@correo.udistrital.edu.co

ABSTRACT

Orange is an open-source component-based software frame-
work, featuring visual and scripting interfaces for many ma-
chine learning algorithms. Currently it does not support Es-
timation of Distribution Algorithms (EDA) or other methods
for black-box optimization. Here we introduce Goldenberry,
an Orange toolbox of EDA visual components for stochastic
search-based optimization. Its main purpose is to provide
an user-friendly workbench for researchers and practition-
ers, building upon the versatile visual front-end of Orange,
and the powerful reuse and glue principles of component-
based software development. Architecture of the toolbox
and implementation details are given, including description
and working examples for the components included in its
first release: cGA, UMDA, PBIL, TILDA, UMDAc, PBILc, BMDA,
CostFunctionBuilder and BlackBoxTester.
Goldenberry is open-source and freely available at:

http://goldenberry.codeplex.com.

Categories and Subject Descriptors

D.2.6 [Software]: Software Engineering—Programming En-
vironments; I.2.8 [Computing Methodologies]: Artificial
Intelligence—Problem Solving, Control Methods and Search

Keywords

Component-based evolutionary software systems; EDAs

1. INTRODUCTION
Visual environments for machine learning (e.g. Clemen-

tine or SPSS Modeler [9], Weka [7], RapidMiner [12]) pro-
vide graphical workbenches to conduct user-friendly data
analysis. Instead of scripting commands in an imperative
computer language, users are able to graphically sketch pro-
cessing units and interactions that are needed to run said
analysis. Orange is one of such open-source visual frame-
works, originally proposed for functional genomic analysis
[4]. It has been progressively enriched with additional visual

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

software components (widgets) for several machine learning
tasks. It is known that many of these tasks can be casted
as, or make use of, optimization problems in their underly-
ing machinery (regression analysis, regularization, cluster-
ing, feature selection); however as far as we know, to this
day Orange does not include a set of tools available to model
explicit optimization problems within the context of ma-
chine learning analysis. The latter is precisely the motiva-
tion behind the software system we introduce in this paper:
Goldenberry, a supplementary machine learning and evolu-
tionary computation suite for Orange.

The software was built by taking advantage of three inter-
esting features in Orange: (i) its versatile visual front-end;
(ii) the powerful reuse and glue postulates of component-
based software development in which it is based; and (iii)
its conformity to the open/closed principle of object-oriented
programming through an scripting interface to Python. We
reasoned that such features would be advantageous for ex-
tending its functionality to the realm of optimization prob-
lems. Since our research group has been recently work-
ing on stochastic-search-based optimization, particularly in
the field of Estimation of Distribution Algorithms (EDA [10,
15]), a decision was made to start off the project in its
first stage by focusing on this kind of algorithms. As a
result, the first release of Goldenberry comprises a set of
EDA components (cGA [8], UMDA [13], PBIL [2], TILDA [17],
PBILc [19], UMDAc [6] and BMDA [14]) and a set of utility com-
ponents (CostFunctionBuilder and BlackBoxTester) that
we shall describe in the following sections. The second stage
of the project is currently under development; it will com-
prise other black-box optimization techniques and also ad-
ditional meta-heuristics and machine learning components.

The paper describes a general depiction of the software
architecture, and provide working examples of its operation
using standard benchmark and custom optimization prob-
lems. The latter was made possible by using the built-in cost
functions or the free-text Python input mode from the Cost-
FunctionBuilder component, which are convenient design
features allowing this suite to be applied over a wide range
of discrete and continuous optimization domains. Golden-

berry is also open-source and is freely available at:
http://goldenberry.codeplex.com

For download instructions please refer to the Appendix.

2. THE SOFTWARE AT A GLANCE
Goldenberry was built as a suite of widgets for Orange.

Widgets are visual elements that can be dragged onto the
Orange visual programming board, also known as canvas.

1325

Furthermore, widgets provide a set of input/output inter-
faces that encapsulate related services; many widgets collab-
orate to perform a given task. “Programming” in the canvas
amounts to manually wiring up the appropriate interfaces
between widgets. An example of a Goldenberry program to
optimize a cost function using three different EDA widgets is
shown in Figure 1. In that program, widgets are the com-
ponents or processing units needed to perform the optimiza-
tion task. Rather than depicting a dataflow between these
components, connections represent provision and consump-
tion of services encapsulated as objects, which are associated
with each input/output interface. For instance, in this pro-
gram the cGA, PBIL and UMDA widgets require a function to
be optimized that is provided by the CostFunctionBuilder

widget through three instances of the CostFunction object,
one per EDA, each in charge of keeping statistics of the num-
ber of function evaluations and running times. The EDA com-
ponents are responsible of setting up the parameters of their
corresponding algorithm and of providing a ready-to-use Op-
timizer that is in turn, consumed by the BlackBoxTester.
The latter is in fact responsible of orchestrating the execu-
tion of these Optimizers, that is, of running each EDA al-
gorithm (whose parameters, including cost function, must
have been already defined and provided in their output in-
terfaces before execution begins) and also of collecting and
visualizing the final results. Parameter settings and data
presentation are embodied within the the graphical user in-
terface of the widgets, as we shall depict in Section 5 and 6
(also Figure 6 to Figure 11). Intuitively, this programming
paradigm is very much the same as building a hardware
apparatus: the user first gather, connect and set-up the re-
quired units before switching-on the resulting device.

3. ARCHITECTURAL VIEW

3.1 General design considerations
The following software patterns were taken into account

during the conception of Goldenberry:

• A layering pattern [3] was applied in order to decou-
ple the algorithmic logic of the components from their
user interface (widgets); thereby all the implemented
algorithms can be used and integrated in plain Python
scripts or using the command-line.

• A template method pattern [5] was used by identifying
commonalities of the different EDA approaches. In this
way a generic abstraction of an EDA procedure was de-
fined; concrete details of implementation were deferred
to each particular algorithm. A unified EDA framework
was achieved.

• A responsibility splitting pattern [1] was utilised in
EDA optimisers so as to separate the search metaheuris-
tic from the probability estimation technique. There-
fore probability models were made reusable among mul-
tiple EDAs (those included in this and future releases).

• A dynamic binding [1] together with an interpreter
pattern [5] were applied in order to allow the user to
provide customised cost functions at runtime, in the
form of Python-like scripts.

The application of such patterns guided the resulting de-
sign of the software, as described in the remainder of this
section.

Figure 1: A Goldenberry program in the Orange canvas.

Key: UML

Figure 2: The context diagram of Goldenberry.

Key: UML

Figure 3: The three basic modules in Goldenberry.

1326

GbCostFunction

+cost() : float

+statistics()

GbBaseOptimizer

+setup(**kwargs)

1

GbSolution

+params:[]

+cost:float

GbBaseEda

GbBaseDistribution

+sample(sample_size):[][]

+has _converged():bool

1

Cga

Pbil/Umda

Tilda

Bmda

build_graph(candidates)

Binomial

BivariateBinomial

Gaussian

<<instantiate>>
<<instantiate>>

<<instantiate>>

<<instantiate>>

+ready() : bool

+reset()

+search() : GbSolution

+reset_statistics()

+set_func_script(script)

+sample(sample_size, top_ranked, best)

+done():bool

+get_top_ranked(candidates)

+estimate(candidates, best) +reset()

GbBlackBoxTester

+test(optimizer)

Key: UML

Figure 4: Decomposition view of Goldenberry modules.

3.2 Architecture packages
Widgets are actually visual wrappers for software compo-

nents written in the Phyton scripting feature provided by
Orange. Implementation of any widget or suite of widgets
require the use of the Orange core library, the PyQt4 library
for user-interface designing tools and optionally, the NumPy

library for additional scientific computation support (PyQt4
and NumPy are standard libraries of the Python program-
ming language). Therefore, the top-level organization of the
Goldenberry suite of widgets is illustrated in the context
diagram of Figure 2.
The internal architecture of the current release is shown

in the module diagram of Figure 3. Three modules were
developed. The widgetsmodules are the visual wrappers for
the suite of Goldenberry components. The Optimization

module includes objects and routines needed to implement
the EDA components; this is the core module of the suite.
Finally, Statistics is a utility module to allow modelling
of some probability distributions used by the EDA algorithms.

4. STRUCTURAL VIEW
A decomposition view of the Optimization and Statis-

tics modules including object classes and dependencies,
is shown in the class diagram of Figure 4. It is expected
that the modular design proposed here, would allow for new
or customized EDA algorithms, probability distributions or
other stochastic-search optimizers, to be added to the tool-
box as extensions of such architecture. This would be one
of the advantages of observing the software patterns earlier
mentioned in Section 3.1.

4.1 Base classes
A core class GbBaseOptimizer was designed as an abstract

class representing any black-box optimization algorithm (see
Figure 4). The optimizer uses a GbSolution object, which
holds the values of the parameters or variables in an arbi-
trary solution to a given problem (the vector params[]); it

also holds its associated cost. The optimizer additionally en-
capsulates a setup()method to initialize its running param-
eters (e.g. problem size or number of variables, maximum
number of evaluations, etc.) and the reset() method to set
up the optimizer for a new run. The key method search(),
defines the actual optimization algorithm which returns a
best found solution; ready() is a checkpoint method to val-
idate readiness of the optimizer to start the search.

A given candidate solution is evaluated with the cost()

method from the GbCostFunction class (in the evolutionary
computation literature this would be equivalent to comput-
ing the fitness of a candidate). The routine to evaluate the
function is defined via the set_func_script()method. Fur-
thermore, this class also includes a method to keep track of
statistics(), such as the number of cost function evalua-
tions or max/min/mean cost values; the reset_statistics()
method clears up the statistics working memory.

4.2 EDA classes
In the current release Goldenberry provides implemen-

tation of only EDA-type optimizers. Other black-box op-
timization techniques would be added in the near future.
Hence, a specialized abstract class GbBaseEda was derived
from GbBaseOptimizer (see Figure 4). This class defines
the two distinctive methods of any EDA: estimate() as the
mechanism that builds up its probabilistic model, and sam-

ple() as the algorithm to generate new candidate solutions
from that model. Two additional methods were designed:
get_top_ranked() selects the promising candidates from
where the probability model estimation is updated; and
done(), which checks for convergence of the estimated model.
These are the methods that would be iteratively executed
during a run of the search() method from the parent class.

A particular implementation of the GbBaseEda class afore-
mentioned, determines a type of EDA algorithm that would
be used as optimizer. Goldenberry features a number of con-
crete EDA implementations, including univariate algorithms

1327

such as cGA, TILDA, PBIL and UMDA (discrete and continuos-
domain variants for the last two), and also a bivariate al-
gorithm, the BMDA. The latter extends the base class with
an additional method build_graph() to model pairwise de-
pendencies between problem variables. This assortment of
algorithms was chosen so as to incorporate techniques using
both univariate and bivariate probability distribution ap-
proaches. In the first release of the software we emphasised
in univariate versions due to their algorithmic simplicity;
nonetheless, future releases will build upon these algorithms
and contemplate higher-order EDAs using tree-based, Bayes
and dependency networks techniques.
For illustration purposes, we shall now outline some of the

Python scripts implementing these classes. Firstly, let us re-
call the Population-Based Incremental Algorithm (PBIL) [2].
The aim of this algorithm is to discover a real-valued prob-
ability vector from which a population of competent binary
candidate solutions can be sampled. The algorithm starts-
off with a random-valued vector; then, the vector is itera-
tively sampled in order to refine the model using the most
promising solutions from the sample and an incremental
learning re-estimation rule, until the vector converges to a
fixed distribution. Our rendering of this procedure is shown
in Algorithm 1, were a vectorized operation mode was as-
sumed.

Algorithm 1 PBIL

Requires: Cost function fitness(·), binomial distribution model

B(θ) with parameters θ ∈ R
d, learning rate 0 ≤ η ≤ 1

Outputs: Solution s ∈ R
d

Initialize θ and s with random values in [0, 1]d

repeat until convergence
Sample n candidates from model: P ∼ B(θ)
Assess fitness of candidate population: f = fitness(P)
Choose m candidates: S = {xi ∈ P : fi ∈ top-m-ranked}

Re-estimate model: θ = (1− η)θ + η 1

m

∑
i xi, xi ∈ S

Update solution: s=argmax(fitness(s), fitness(Stop))

In Goldenberry, the PBIL widget defines a class Pbil

which overrides the initialization() and estimate()meth-
ods according to the previous algorithm. Thus, PBIL is fully
implemented as the following class script (notice that the
average vectorized auxiliary operation from the NumPy li-
brary (np) is used):

class Pbil(GbBaseEda):

def initialize(self):

self.distr=Binomial(self.var_size)

def estimate(self, top_ranked, best):

self.distr.p=self.distr.p*(1-self.learning_rate)

+ self.learning_rate * np.average(top_ranked)

The small size of the script is due to the fact that many al-
gorithmic details have been inherited from the parent class,
GbBaseEda, because they are common to most of other EDAs.
For example, the parent class defines the initialization of pa-
rameters such as sample_size, pop_size (size of the popu-
lation), selection_rate (percentage of top-ranked selected
candidates), and max_evals (limit on the number of cost
function evaluations allowed on an entire search). Other
common features such as the sample() method (which del-
egates this task to the respective probability model), the

get_top_ranked()method to select the most promising can-
didates from the sample, and the search()method itself, are
defined in this abstract class. Its script is partially shown
below.

class GbBaseEda(GbBaseOptimizer):

...

def sample(self, sample_size, top_ranked, best):

return self.distr.sample(sample_size)

def get_top_ranked(self, candidates):

fits = self.cost_func(candidates)

index = np.argsort(fits)

[:(self.cand_size*self.selection_rate/100):-1]

return candidates[index],

bSolution(candidates[index[0]],fits[index[0]])

...

def search(self):

if not self.ready():

raise Exception("Optimizer not ready.")

best = GbSolution(None, float(’-Inf’))

top_ranked = None

while not self.done():

candidates=self.sample(self.sample_size,

top_ranked, best)

top_ranked, winner =

self.get_top_ranked(candidates)

self.estimate(top_ranked, best)

if best.cost < winner.cost:

best = winner

self.iters += 1

return best

@abc.abstractmethod

def estimate(self, candidates, best):

raise NotImplementedError()

It can be seen in the previous code that the implementa-
tion of estimate(), the estimation of distribution method,
is deferred to the specific EDA class, as it was the case of the
PBIL component.

Now let us complete the illustration by mentioning an-
other well-known EDA, the Compact Genetic Algorithm (cGA)
[8]. The algorithm is similar in fashion to PBIL, the main
difference being that it operates in a compact mode, that is,
instead of estimating the distribution from a batch of many
candidates (population), the algorithm works by sampling
two candidates at a time and using them to incrementally
build the estimation. The pseudo-code of this procedure is
thus shown in Algorithm 2, which again is our rendition of
the original, written in vectorized operation mode.

Algorithm 2 cGA

Requires: Cost function fitness(·), binomial distribution model

B(θ) with parameters θ ∈ R
d

Outputs: Solution s ∈ R
d

Initialize θ and s with random values in [0, 1]
repeat until convergence

repeat n times
Sample 2 candidates from model: {x1,x2} ∼ B(θ)
Rank them: {w, l} = compete(fitness(x1), fitness(x2))

Re-estimate model with winner and loser: θ=θ+ 1

n
(w−l)

Update solution: s = argmax(fitness(s), fitness(w))

1328

The cGA, as implemented in full in Goldenberry, is shown
in the script below.

class Cga(GbBaseEda):

def initialize(self):

self.distr=Binomial(self.var_size)

self.learning_rate=1.0/float(self.pop_size)

self.sample_size=2

def estimate(self, (winner, loser), best):

self.distr.p =

np.minimum(np.ones((1, self.var_size)),

np.maximum(np.zeros((1, self.var_size)),

self.distr.p +

(winner.params-loser.params)*self.learning_rate))

def get_top_ranked(self, candidates):

costs = self.cost_func(candidates)

maxindx = np.argmax(costs)

winner = GbSolution(candidates[maxindx],

costs[maxindx])

loser = GbSolution(candidates[not maxindx],

costs[not maxindx])

return (winner, loser), winner

The algorithm is initialized with the following settings: a
binomial univariate probability model the size of the number
of variables; learning rate of 1/n (where n is the population
size); and sample size of two, because of its compact style.
The estimate() method is overridden to account for a com-
pact learning rule, using two competitors; here again, the
auxiliary NumPy library is used (np). The get_top_ranked()
is overridden accordingly, to return the winner and loser of
the contest as the top-ranked set.

4.3 Statistics classes
The classes comprising this module were designed to ac-

count for the mechanisms needed to modeling probability
distributions. A GbBaseDistribution is defined encapsu-
lating a sample() method, a has_converged() validation
method, and a reset() method for randomly initializing
the parameters of the probability model (see Figure 4). Cur-
rently four probability distributions are implemented: Bino-
mial, Gaussian, TruncatedGaussian and BivariateBinomi-

al. Most of the functionality of these classes were imple-
mented using standard NumPy routines such as generation
of normally independent distibuted random vectors, and
element-wise vector operators (details omitted).

5. COMPONENTS VIEW
Figure 5 shows the components view of the toolbox. For

illustration purposes only two EDA components are shown:
cGA for discrete domains and TILDA for continuous-valued
domains (we recall the other implemented components are:
PBIL, UMDA, PBILc, UMDAc, BMDA).

5.1 The EDA components
Any of these components internally consists of a collab-

oration between an EDA algorithm and a probability model
(e.g. cGA uses a binomial distribution, TILDA uses a Gaus-
sian distribution, and so on). Each EDA component exposes
two interfaces. The first interface requires a GbCostFunction
object that is able to evaluate the cost function on a given

candidate solution, and also is able to trace statistics of the
total number of evaluations made by the EDA. The second
interface provides a GbBaseOptimizer object, initialized and
ready to run a stochastic search to optimize the cost func-
tion.

These components are at the end of the day deployed as
widgets in the Orange canvas, under a new toolbar named
“Optimization” (see again Figure 1). The user interface of
these widgets consists of a setup/results window. In there,
parameters settings are applied to the EDA component and
optimization results are displayed in an output text box af-
ter execution of the algorithm. An example of the user
interface for the cGA widget, applied to solve the classical
OneMax problem with 100 variables, using a population size
of 30, and 1000 maximum number of evaluations, is shown
in Figure 6.

Key: UML

T
� �

D �
Tilda� lgorithm

Gaussian

Distribution

GbBaseOptimizer GbCostFunction

cG�
Cga� lgorithm

Binomial

Distribution

GbBaseOptimizerGbCostFunction

Cost Function

Custom

Functions

<<Python>>

Benchmark

functions

<<Python>>

GbCostFunction

Black Box Tester�
ultiple

GbBlackBoxTester

1 � � * GbBaseOptimizer

Figure 5: The components diagram of Goldenberry.

Figure 6: User interface of the cGA widget.

1329

Figure 7: The benchmark input mode of the
CostFunctionBuilder component. Here the well-
known Onemax problem is chosen.

(a)

(b)

Figure 8: How to customize a built-in bechmark
function: (a) A benchmark function is chosen and
its code is copied into the clipboard; (b) the code is
pasted in the “Custom” tab and edited as required.

5.2 The Cost Function Builder component
This component enables the user to define the cost func-

tion for the optimization problem. It provides two input
modes to setup such a function. In the first mode, a set
of ready-to-use built-in benchmark functions are listed to
the user as it is illustrated in Figure 7. This mode appears
on the “Benchmarks” tab of the CostFunctionBuilder user
interface. The user chooses a function name, and then the
Python script implementing the function is shown in the un-
derlying text box; the box is read-only, so the code can not
be edited but can be copied into the clipboard. The bench-
mark functions were taken from those suggested in [11].

The second mode consists of a free-text input box for
writing up any customized cost function in the Python lan-
guage. This mode appears on the “Custom” tab of the
CostFunctionBuilder user interface. Custom functions
must be written complying with the following Python-style
signature:

def yourcustomfunctionname(self, solution):

...

return computedcostofsolution

An arbitrary routine to evaluate the given solution (a
NumPy 1D vector array with the values of that solution to
the problem variables) must be defined in order to compute
its associated cost. For example, if the user wants to define
a customized version of the benchmarks built-int functions,
he or she may copy to the clipboard its original code, then
paste it in the “Custom” tab and make the necessary adjust-
ments (see Figure 8). Alternatively the user may write up
his cost function code from scratch, to meet his particular
problem needs. We remark that this a is non-intrusive in-
put mode, meaning that the user-written-code is bind to the
Goldenberry components in run time; no additional inter-
vention has to be done in the source code of the software.
We anticipate this feature would extend the usability of the
EDA components to a wide range of discrete and continuous
optimization problem domains.

5.3 The Black-Box Tester component
This component was designed to allow the user to run and

compare execution of different algorithms or algorithm con-
figurations over the same cost function, in one experiment
with several repetitions. The number of repetitions is set
as an input parameter for this component. Another inter-
esting functionality of the BlackBoxTester is that it is able
to collect outputs of all the optimizer components provided
as inputs, and display summarized statistics, and also de-
tails of the different runs and repetitions. The user interface
of the widget associated to this component will be used to
display results for the working experiments reported in the
next section.

6. GOLDENBERRY AT WORK
In this section we show how to use the developed compo-

nents to solve optimization problems defined as minimiza-
tion of a cost function. We carried out experiments using
benchmark and customized cost functions. Other uses in
machine learning can be also envisioned (see for example
the discussion in Section 7).

The results of these experiments are shown next. It is
worth to remark that previous to deployment, additional val-

1330

idation for the algorithmic machinery of each of the Golden-
berry components was carried-out using a carefully designed
set of unit tests (omitted because of space limitations). The
program shown in Figure 1 was used in these experiments:
A CostFunctionBuilder component is instantiated to se-
lect the optimization problem, as explained before; three
EDA components were tested (cGA, PBIL and UMDA) using as
input the selected CostFunction; finally, a BlackBoxTester

executes and collects the outputs of the EDA components
and shows summarised and detailed results over a number
of repetitions of the experiment.

(a)

(b)

Figure 9: Onemax experiment results: (a) Summary
over all repetitions (partial view); (b) Details per
repetition (partial view).

6.1 Benchmark function optimization
Two problems were chosen from the built-in benchmark

library of functions: Onemax and LeadingOnesBlock. Re-
sults for the Onemax experiment are reported in Figure 9.
Figure 9(a) shows the following aggregate results per EDA al-
gorithm: maximun cost found in all experiment repetitions;
average cost over all repetitions; average number of cost
function evaluations per repetition; and average CPU time
per repetition (in seconds). Other statistics can be dis-

played by scrolling the table bar to the right. Notice that
the obtained tabulated results can be exported to spread-
sheet software tools for further analysis by using the “Copy
to Clipboard” option located underneath the output table.
Figure 9(b) shows a detailed view of the results obtained
in the experiments. Here each row holds the outputs per
repetition for each input EDA component. The summarized
results are statistics of these individual records. The only
column not used in the summarized report is the actual vec-
tor representation of the best solution found in each run (for
Onemax the expected solution is an all-ones vector). The cost
of this solution is shown in the next column to its right.

For the LeadingOnesBlock experiment, results are simi-
larly self-explained, as reported in Figure 10.

(a)

(b)

Figure 10: LeadingOnesBlock experiment results: (a)
Summary (partial view); (a) Details (partial view).

6.2 Customized function optimization
In this experiment we used the same Goldenberry pro-

gram of Figure 1 to carry out optimization of the customized
cost function defined in Figure 8, that is, the same Leading-
OnesBlock problem this time with a block_size value of
10. Similarly to the other experiments, results are shown in
Figure 11.

1331

Figure 11: Results of custom function experiment.

7. CONCLUSIONS
It is our belief that user-friendly, open-source visual tools

may have a big potential benefit in tasks carried out daily by
data mining analysts. The Orange platform is a fantastic ef-
fort complying with these premises by combining a powerful
visual programming approach with the reuse and glue princi-
ples of component-based software. The Goldenberry initia-
tive is a modest contribution intended to extend the appli-
cation domain of Orange to the field of black-box and meta-
heuristics optimization. In this first release we developed a
number of EDA-based software components featuring a non-
intrusive, runtime-binding interface to allow users to define
tailor-made discrete and continuous optimization problems.
As it was mentioned in the introduction, it is anticipated

that these components can be used independently as func-
tion optimizers, as it is reported in this paper, or as part
of higher-level data mining machines. Let us illustrate the
point with the task of feature selection. The aim there is to
select an optimal subset of relevant variables for a classifica-
tion problem; the relevant found subset can be further anal-
ysed by experts for specific purposes (in biology for example,
features may represent over-expressed gene activity due to
an illness condition). In the so-called wrapper scheme of the
problem [18] the classifier is enabled to incorporate the selec-
tion mechanism during the learning stage: a weighted kernel
classifier, for example, may use an UMDA component to define
relevance coefficients for the variables and then use them as
input for the kernel machine (that is the approach taken
in [16]). Currently these type of mechanisms are hidden in
the current implementation of classifier or clustering compo-
nents of Orange. Thus, by providing interfaces to black-box
optimizers we hope to extend applicability to this type of
tasks, giving researchers a flexible workbench to design new
component-based machine learning techniques. Novel com-
ponents complying with the design principles described in
this paper will be needed though (e.g. component-based ge-
netic algorithms, kernel machines, etc.), and that would be
matter of the next Goldenberry release.

8. ACKNOWLEDGEMENTS
We would like to acknowledge Henry Diosa, Leidy Garzón

and Harry Sanchez, members of the Arquisoft Research Gro-
up from the District University of Bogota, for the design and
implementation of the BlackBoxTester component. We also
thank the anonymous reviewers for their valuable comments
which allowed us to greatly improve readability of the paper.

9. REFERENCES
[1] F. Bachmann, L. Bass, and R. Nord. Modifiability tactics.

Technical Report CMU/SEI-2007-TR-002, Software
Engineering Institute, Carnegie Mellon University, 2007.

[2] S. Baluja and R. Caruana. Removing the genetics from the
standard genetic algorithm. Technical Report CMU-CS-95-141,
Carnegie-Mellon University, 1995.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture Volume 1: A
System of Patterns. Wiley, volume 1 edition, Aug. 1996.

[4] T. Curk, J. Demsar, Q. Xu, G. Leban, U. Petrovic, I. Bratko,
G. Shaulsky, and B. Zupan. Microarray data mining with visual
programming. Bioinformatics, 21(3):396–398, 2005.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1 edition, Nov. 1994.

[6] C. Gonzáles, J. A. Lozano, and P. Larrañaga. Mathematical
modelling of UMDAc algorithm with tournament selection.
International Journal of Approximate Reasoning,
31(3):313–340, 2002.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. Witten. The WEKA data mining software. SIGKDD
Explor. Newsl., 11(1):10–18, 2009.

[8] G. R. Harik and F. G. Lobo. The compact genetic algorithm.
IEEE Transactions on Evolutionary Computation, 3:523–528,
1999.

[9] IBM. IBM SPSS R© Algorithms Guide. 2012.

[10] P. Larrañaga and J. A. Lozano, editors. Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation. Springer, 2001.

[11] S. Luke. Essentials of Metaheuristics. Lulu, 2009. Available for
free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[12] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler.
Yale: Rapid prototyping for complex data mining tasks. In
L. Ungar, M. Craven, D. Gunopulos, and T. Eliassi-Rad,
editors, Proceedings of the 12th ACM SIGKDD, pages
935–940, NY, USA, August 2006. ACM.

[13] H. Mühlenbein. The equation for response to selection and its
use for prediction. Evolutionary Computation, 5(3):303–346,
1997.

[14] M. Pelikan and H. Müehlenbein. The bivariate marginal
distribution algorithm. In R. Roy, T. Furuhashi, and
P. Chawdhry, editors, Advances in Soft Computing. Springer
London, 1999.

[15] M. Pelikan, K. Sastry, and E. Cantú-Paz, editors. Scalable
Optimization via Probabilistic Modeling: From Algorithms to
Applications. Springer-Verlag, NJ, USA, 2006.

[16] S. Rojas-Galeano, E. Hsieh, D. Agranoff, S. Krishna, and
D. Fernandez-Reyes. Estimation of relevant variables on
high-dimensional biological patterns using iterated weighted
kernel functions. PLoS ONE, 3(3), 2008.

[17] S. Rojas-Galeano and N. Rodriguez. A memory efficient and
continuous-valued compact EDA for large scale problems. In
Proceedings of GECCO 2012, pages 281–288, NY, USA, 2012.
ACM.

[18] Y. Saeys, I. n. Inza, and P. Larrañaga. A review of feature
selection techniques in bioinformatics. Bioinformatics,
23(19):2507–2517, Sept. 2007.

[19] M. Sebag and A. Ducoulombier. Extending Population-Based
incremental learning to continuous search spaces. Lecture Notes
in Computer Science, 1498, 1998.

Appendix. Download and installation

Goldenberry is hosted publicly under a GPL license in Code-
plex (http://goldenberry.codeplex.com). To install the
software follow these steps:

1. Download and install Orange 2.6.1 from:
http://orange.biolab.si/download/.

2. Get the latest Goldenberry release from the Downloads
tab in http://goldenberry.codeplex.com (the down-
load link is located to the left side of the screen).

3. Follow the installation instructions in the release notes
just below the download link.

4. Open the Orange application and look for the “Opti-
mization” toolbar in the canvas (as shown in Figure 1).

1332

