
GPDL: A Framework-Independent Problem Definition
Language for Grammar-Guided Genetic Programming

Gabriel Kronberger
gabriel.kronberger@fh-

hagenberg.at

Michael Kommenda
michael.kommenda@fh-

hagenberg.at

Stefan Wagner
stefan.wagner@fh-

hagenberg.at

Heinz Dobler
heinz.dobler@fh-

hagenberg.at

University of Applied Sciences Upper Austria
School for Informatics, Communications and Media

Softwarepark 11, 4232 Hagenberg, Austria

ABSTRACT
Defining custom problem types in genetic programming (GP)
software systems is a tedious task that usually involves the
implementation of custom classes and methods including
framework-specific code. Users who want to solve a custom
problem have to know the details of the targeted framework,
for instance cloning semantics, and often have to write a lot
of boilerplate code in order to implement the necessary func-
tionality correctly. This can lead to frustration and hinders
new developments and the application of GP to solve inter-
esting problems.

In this contribution we propose a framework-independent
definition language for GP problems that can reduce the re-
quired effort and facilitate the integration of new problem
types. We draw a parallel between the implementation of
compilers for programming languages and the implementa-
tion of GP problems and reuse the well-established concept
of attributed grammars with semantic actions to define com-
putational symbols, semantics and structural constraints for
GP. This goes beyond previous work in the area of context-
free-grammar GP and grammatical evolution, because we
also interweave the definition of symbol semantics and the
target function with the definition of the grammar.

This paper describes the proposed GP problem definition
language (GPDL) and exemplary definitions of two popular
benchmark problems using GPDL. We also describe a refer-
ence implementation of a GPDL compiler for HeuristicLab.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: Program synthesis; I.2.8
[Problem Solving, Control Methods, and Search]:
Heuristic Methods

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

Keywords
Domain Specific Languages, Evolutionary Computation Soft-
ware Systems, Genetic Programming

1. MOTIVATION
Most genetic programming software systems are not sim-

ple enough to be readily used as standard tools for solving
optimization problems. In many GP systems (e.g., Heuris-
ticLab, ECJ, JGAP, and OpenBEAGLE) the definition of
a custom GP problem usually includes the implementation
of a number of classes, including classes for symbols, classes
for constraints and classes for evaluation. In this process,
users must also write a lot of framework-specific boilerplate
code, e.g., for cloning, persistence, or algorithm analysis. As
a result, a large part of the source code is not directly re-
lated to the problem definition and is only necessary to fit
the classes into the existing framework. Users therefore have
to know implementation details to be able to implement the
functionality correctly.

As a result, the necessary effort for implementing even
simple problems (e.g., symbolic regression or artificial ant)
is comparatively large and can be estimated at several days
for inexperienced users. The effort for larger and more com-
plex problems is often much higher, especially if the symbol
semantics or structural constraints are complex. This is too
much effort for users who are primarily interested in solv-
ing a given problem using GP, or only experimenting if GP
would be a usable method at all. As a result, GP systems
are not used frequently, because the effort is prohibitively
large.

Another important aspect is that several sophisticated
and powerful GP systems are available, but a user would
have to implement a problem for each framework separately
in order to try which system is most suitable.

Our suggestion to improve the current situation is to de-
fine a domain specific language (DSL) for the definition of
GP problems. This language should be easy to understand,
and independent of the framework as well as the program-
ming platform. Using this language, it should be possible to
define GP problems in an abstract way so that it is possible
to solve these problems with various popular GP software
systems.

1333

A similar development has occurred in the closely related
area of mathematical programming or constraint program-
ming. A large number of solvers using sophisticated algo-
rithmic machinery have been developed and partially canned
into software products (e.g., CPLEX solver). Domain spe-
cific languages for mathematical programming (e.g., OPL
or AMPL) have been developed to allow the formulation
of such optimization problems independently from specific
solvers. An important aspect of such languages is the sepa-
ration of the problem formulation from the solver algorithm.
Many solvers support standard languages so that it is easy
to experiment with different solvers.

Generally, GP can be seen as a solver for problems where
the goal is to find a solution in form of a program which
is optimal with respect to the given target function. There
are many different approaches to GP which all fit into this
general description, and also other kinds of solvers which are
applicable to this problem.

In this contribution we describe the first implementation
of a framework-independent language for GP problem def-
initions (GPDL). We aim to raise awareness of the issues
discussed above and to facilitate discussion on the viability
and usefulness of the proposed solution among the commu-
nity of GP software system developers. We also describe the
reference implementation of a compiler for GPDL targeting
the HeuristicLab framework [11],[6]. The reference imple-
mentation should help developers who want to implement
the language for other GP software systems.

2. RELATED WORK
Context-free grammars (CFG) have already been used to

define the set of possible solution candidates in context-free-
grammar GP [13] and grammatical evolution [9]. This is a
powerful idea that also seems natural because the promise
of GP is to find programs solving a given problem and pro-
grams are usually specified in a programming language with
syntax defined by a grammar. A recent survey of grammar
guided GP approaches is given in [8].

Some popular GP paradigms, for instance stack-based GP
systems, most notably PushGP, or other forms of linear GP
that evolve assembler, binary or byte code directly, use a
very simple syntax. These systems rely more on the seman-
tics of operations; the set of computational symbols is pre-
defined and fixed, so the evolutionary operators, crossover
and mutation, are designed to take operation semantics into
account. In these GP systems the set of possible solution
candidates is also defined by a grammar but the seman-
tics are much more important, so the grammar-based ap-
proach for problem definition does not fit very well. Simi-
larly, Cartesian GP is also not well-suited as it uses a graph-
based representation for solution candidates.

Software systems implementing CFG-GP or grammatical
evolution (e.g., EpochX, GEVA) already allow specifying
the symbol set and the grammar using a BNF-like notation.
However, the symbol semantics have to be implemented sep-
arately in form of an evaluation function that receives the
produced solution candidate as input and calculates its fit-
ness value. This has to be implemented as a separate Java
class that integrates into the framework.

Compiler generators are standard tools for the implemen-
tation of parsers, interpreters or compilers for programming
languages. Based on a language specification, a compiler
generator produces a parser or part of a compiler for this

language. The language specification is usually based on an
attributed grammar [5] with semantic actions. The gram-
mar defines the syntax and the language semantics are de-
fined through a combination of semantic actions and sym-
bol attributes. Typically, semantic actions are specified us-
ing source code in the target programming language. The
compiler generator interweaves the source code for semantic
actions with the generated source code for parsing the input
token stream.

In the definite clause translation grammar GP (DCTG-
GP) [10] system the concept of attributed grammars with
semantics actions was already used for the definition of GP
problems to reduce the implementation effort. As in other
CFG-GP or GE systems, the problem description encom-
passes the set of computational symbols and the grammar
for solution candidates. However, the definition of symbol
semantics is also included in the problem description docu-
ment. Including semantic actions directly into the problem
definition has the benefit that it is possible to specify all
details of the GP problem in one self-contained document
without writing boilerplate code. McKay et al. state that
definition of semantics in DCTG-GP “is substantially sim-
pler than for a standard GP system”, and that“the program-
ming cost of targeting a new problem is generally small – in
the case of DCTP-GP, quite typically ten or twenty lines of
code” [8].

However, the DCTG-GP problem definition language is
rather hard to read and specific to Prolog; additionally, the
fitness function has to be implemented separately. The lan-
guage format has not been used in any other GP systems
besides DCTG-GP.

3. DESIGN CONSIDERATIONS
Based on our research of previous work and the initial

motivation of our idea, our design goals for GPDL are sim-
plicity, expressivity, and generality:

• Simplicity: Users should be able to define custom prob-
lems in less time, so that it is possible to quickly try if
the problem can be solved by GP and to try different
variants of the problem formulation. In particular, it
should not be necessary to familiarize oneself with the
details of the target framework and it should not be
necessary to write boilerplate code to integrate a new
problem. Furthermore, it should not be necessary to
separately recompile code when adapting or extending
the problem definition. In an exaggerated scenario, it
should be possible to simply call a “solver” executable
with a GP problem definition so that the solver pro-
duces a solution and its fitness value after a specified
time interval. GPDL should have a simple, easily un-
derstandable syntax so that problem definitions are
easy to read.

• Expressivity: The language should allow specification
of problems in a way that they can subsequently be
solved by a large number of GP software implementa-
tions. Many GP implementations support a form of
grammar-guided GP either using a tree-based repre-
sentation and structural constraints (e.g., for strongly-
typed GP) or via grammatical evolution. It should be
possible to formulate the commonly used GP bench-
mark problems in a way that makes it possible to solve
such problems. Of course, the language should not be

1334

limited to the restricted set of problems, where the
symbols set fulfills the closure property.

• Generality: The problem definition should be inde-
pendent of the target framework and of the search al-
gorithm or GP paradigm. GP systems share many
commonalities, especially regarding the representation
of solution candidates, which are frequently either di-
rectly encoded using a tree data structure or mapped
from a linear representation to a tree using a gram-
mar. The differences lie mainly in the details of the
search procedure, e.g., the pipeline of the evolutionary
search or the used operators. Ideally, it should be pos-
sible to attack the problem using different solvers and
search paradigms (e.g., evolutionary and tree based,
grammatical evolution, estimation of distribution and
probabilistic context free grammars [4]) using the same
definition file. Users are often not primarily interested
in the details of the algorithm used to find a solution.

GP variants such as PushGP that use a linear representa-
tion or variants operating directly on machine code or byte
code are not well suited for the proposed problem definition
languages, because in these languages the set of computa-
tional symbols and their semantics are usually pre-defined
and fixed and because they have very simple syntax. Carte-
sian GP, which uses a graph representation, is another no-
table exception which is not well suited for the proposed
problem definition language.

4. DEFINITION OF GPDL
In the following we describe GPDL in detail. It should

be noted that even though GPDL is similar to languages
for compiler construction, its purpose is different. A prob-
lem definition in GPDL is used to generate and interpret
sentences using the specified grammar. This is in contrast
to languages for compiler construction which are used to
parse and interpret existing input sentences. In particular,
a solver (e.g., genetic programming) uses a GPDL defini-
tion to generate solution candidates and search for optimal
solutions.

For the reference implementation of GPDL we use the
Coco-2 compiler generator [3],[2] to produce the GPDL com-
piler for HeuristicLab. Thus, in the following we use the
Coco-2 compiler definition language for the specification of
GPDL. Coco-2 is available for multiple platforms including
C#, Java and C++, has a descriptive meaningful syntax,
and allows to specify the grammar using EBNF-notation1.
Figure 1 shows the definition of a symbolic regression prob-
lem in GPDL. The syntax definition of GPDL itself is shown
on the right; this specification can be used to generate a
GPDL syntax analyzer with Coco-2.

4.1 Syntax
The syntax of GPDL is very similar to the syntax of the

Coco-2 compiler definition language [3] because both lan-
guages allow definition of an attributed grammar in EBNF
syntax with semantic actions. A GP problem definition has
a name and consists of four basic parts: the set of non-
terminal symbols (NONTERMINALS), the set of terminal sym-
bols (TERMINALS), the set of rules (RULES), and a target func-
tion (MAXIMIZE or MINIMIZE). Additionally, there can be an
1The closely related variant Coco/R is available under the
GPL from http://www.ssw.uni-linz.ac.at/coco/

optional part including any kind of additional source code
(CODE) and source code for initialization (INIT).

COMPILER GPDef
CHARACTER SETS
letter = ’A’..’Z’ + ’a’..’z’.
digit = ’0’..’9’.
whiteSpace = CHR(9) + EOL IGNORE.

COMMENTS FROM ’/*’ TO ’*/’ NESTED.
KEYWORDS
’PROBLEM’. ’END’. ’EPS’. ’LOCAL’. ’SEM’.
’NONTERMINALS’. ’TERMINALS’. ’RULES’.
’MAXIMIZE’. ’MINIMIZE’. ’INIT’. ’CODE’.
’CONSTRAINTS’. ’IN’. ’SET’. ’RANGE’.

TOKENS
’=’. ’|’. ’.’. ’(’. ’)’. ’[’. ’]’.
’{’. ’}’. ’<<’. ’>>’. ’..’.

TOKEN CLASSES
ident = letter {letter | digit} .

NONTERMINALS
GPDef. NTDecl. TDecl.
RuleDef. SynExpr. SynTerm. SynFact. SemAction.
FormAttrList. ActAttrList. SrcText. ConstrDef.

RULES
GPDef = ’PROBLEM’ ident

[’CODE’ SrcText]
[’INIT’ SrcText]
’NONTERMINALS’ { NTDecl }
’TERMINALS’ { TDecl }
’RULES’ { RuleDef }
(’MAXIMIZE’ | ’MINIMIZE’) SrcText
’END’ ident ’.’ .

NTDecl = ident FormAttrList ’.’ .
TDecl = ident FormAttrList

’CONSTRAINTS’ { ConstrDef } ’.’ .
ConstrDef = ident ’IN’ (’SET’ SrcText

| ’RANGE’ SrcText ’..’ SrcText).
RuleDef = ident FormAttrList ’=’

[’LOCAL’ SrcText] SynExpr ’.’ .
SynExpr = SynTerm { ’|’ SynTerm } .
SynTerm = SynFact { SynFact } .
SynFact = ident ActAttrList

| ’EPS’
| SemAction | ’(’ SynExpr ’)’
| ’[’ SynExpr ’]’
| ’{’ SynExpr ’}’ .

SemAction = ’SEM’ SrcText .
SrcText = ’<<’ /* code */ ’>>’ .
FormAttrList = ’<<’ /* formal param. */ ’>>’ .
ActAttrList = ’<<’ /* actual param. */ ’>>’ .

END GPDef.

Non-terminal symbols (NTDecl) can only occur as inner
nodes and the root node of a parse tree and there must be
exactly one matching rule in the RULES section for each non-
terminal symbol. Terminal symbols (TDecl) contain data
components and occur only as leaves of the parse tree. The
allowed values for the data components of terminal symbols
can be defined in the CONSTRAINTS section using either a set
of allowed values or a range of values (SET, RANGE).

Rules (SynExpr) can be specified using the symbols of
EBNF-notation and can be interspersed with semantic ac-
tions (SEM). Only context-free grammars are supported so
each rule consists of a set of alternative productions for each
non-terminal symbol.

GPDL is independent of the programming language of
the target framework. Semantic actions can be defined us-
ing source code fragments between the << and >> tags in
the three non-terminal symbols (SrcText, FormAttrList,
and ActAttrList). These source code fragments are di-
rectly copied to the produced output code and can use any

1335

PROBLEM SymbRegKoza
CODE <<

double[,] inputValues; double[] targetValues; string[] variableNames;
double GetValue(double[,] data, string varName, int row) { /* ... */ }
double RSquared(IEnumerable<double> xs, IEnumerable<double> ys) { /* ... */ }
void LoadData(out double[,] inputValues, out string[] variableNames, out double[] target) { /* ... */ }

>>
INIT <<

LoadData(out inputValues, out variableNames, out targetValues);
>>
NONTERMINALS

Model<<int row, out double val>>. RPB<<int row, out double val>>.
Addition<<int row, out double val>>. Subtraction<<int row, out double val>>.
Multiplication<<int row, out double val>>. Division<<int row, out double val>>.

TERMINALS
ERC<<out double val>>
CONSTRAINTS
val IN RANGE <<-100>> .. <<100>>

.
Var<<out string varName>>
CONSTRAINTS
varName IN SET <<variableNames>>

.
RULES

Model<<int row, out double val>> =
RPB<<row, out val>>

.
RPB<<int row, out double val>> = LOCAL << string varName; >>
Addition<<row, out val>>
| Subtraction<<row, out val>>
| Division<<row, out val>>
| Multiplication<<row, out val>>
| Var<<out varName>> SEM << val = GetValue(inputValues, varName, row); >>
| ERC<<out val>>

.
Addition<<int row, out double val>> = LOCAL << double x1, x2; >>

RPB<<row, out x1>> RPB<<row, out x2>> SEM<< val = x1 + x2; >>
.
Subtraction<<int row, out double val>> = LOCAL << double x1, x2; >>

RPB<<row, out x1>> RPB<<row, out x2>> SEM<< val = x1 - x2; >>
.
Division<<int row, out double val>> = LOCAL << double x1, x2; >>

RPB<<row, out x1>> RPB<<row, out x2>> SEM<< val = x1 / x2; >>
.
Multiplication<<int row, out double val>> = LOCAL << double x1, x2; >>

RPB<<row, out x1>> RPB<<row, out x2>> SEM<< val = x1 * x2; >>
.

MAXIMIZE <<
var rows = System.Linq.Enumerable.Range(0, inputValues.GetLength(0));
var predicted = rows.Select(r => {
double result;
Model(r, out result); /* we can call the root symbol directly */
return result;

});
return RSquared(predicted, targetValues); /* target function returns double */

>>
END SymbRegKoza.

Figure 1: Exemplary definition of a simple symbolic regression problem in GPDL.

1336

constructs available in the targeted programming language.
The problem is specified in a declarative way which does
not specify details of the search procedure, thus, GPDL is
independent of the search or optimization algorithm.

4.2 Semantics
A compiler for a tree-based GP framework must typi-

cally produce classes for all symbols, code for checking con-
straints, a class for the target function and code to eval-
uate or interpret solution candidates. Often the code for
interpretation is either included directly in the symbols or
in the class for the fitness evaluation. A GPDL document
contains all necessary information to produce the required
classes. The set of symbols can be derived directly from the
TERMINALS and NONTERMINALS section. The fitness function
can be extracted directly from the MAXIMIZE or MINIMIZE

section. Finally, the RULES section contains information that
is relevant both for the symbol constrains and also for the
interpretation of symbols (<<..>>).

4.2.1 Symbols
In tree-based GP the set of non-terminal symbols and the

set of terminal symbols directly relate to the function set
and the terminal set, respectively. It seems natural to think
of non-terminal symbols as functions or operators taking ar-
guments and terminal symbols as literal values. However, it
should be noted that this is not a strict relation in general, as
any kind of semantics is valid for terminal and non-terminal
symbols in GPDL.

The major difference between terminal symbols and non-
terminal symbols is that terminal symbols can be composed
of multiple data components. All “out”-parameters of the
formal parameter list of terminal symbols are considered as
local data components that can be different for each occur-
rence of the symbol in solution candidates. This is necessary,
e.g., for the implementation of ephemeral random constants
(ERC) which are initialized on tree generation (compare Fig-
ure 1). The allowed values for each data component have
to be specified in the CONSTRAINTS section. For categorical
variables the set of allowed values can be specified directly
using the SET keyword and an expression returning the al-
lowed values (i.e. IEnumerable<T> in C#). For continu-
ous variables, a range of values can be specified using the
RANGE keyword and two expressions returning the minimum
and maximum values. Non-terminal symbols cannot contain
data components, but as a work-around it would be possible
to define the grammar in a way, that such a non-terminal
symbol always has a terminal child symbol containing the
data components.

4.2.2 Grammar
The translation of grammar rules is very specific to the ca-

pabilities of the target GP system. Therefore, the details of
the grammar transformation are not specified in this contri-
bution. In grammatical evolution systems it is necessary to
transform the rule definitions to match the rule definitions
of the target system. In GP systems supporting tree-based
GP with symbol constraints, the rules and alternatives have
to be transformed to symbol constraints. If the constraint
system of the target framework is not powerful enough to
express the rules specified in the grammar, then either the
compiler is able to transform the grammar automatically or
the user has to adapt the grammar accordingly.

The reference implementation for HeuristicLab described
below only supports grammars that do not contain repeti-
tions {..} and/or optional chains [..]. Additionally, all
alternatives must contain a single symbol only.

4.2.3 Interpretation
For the interpretation of solution candidates, the produc-

tion rules have to be translated into source code for evalua-
tion. This can be done in a recursive-descent fashion where
an evaluation method is generated for each symbol. The
production rules can then be translated into source code
containing calls to other evaluation methods and the source
code specified in semantic actions can be integrated at the
correct positions directly.

Both, non-terminal and terminal symbols, can have at-
tributes which can be used either to supply additional data
that is necessary for evaluation from outside, or to produce
output values. Through attributes it is possible to define
multiple output values of different types. Formal attributes
are translated by the GPDL compiler to formal parameters
for each non-terminal symbol. In production rules, actual at-
tribute values have to be specified if a symbol with attributes
is used on the right-hand-side. The actual attribute values
are translated by the GPDL compiler to actual parameters
values for the invocation of the evaluation method.

4.2.4 Scope
Variables and methods defined in the source code in the

CODE section can be used from all sections that allow specifi-
cation of source code. The statements specified in the INIT

section are executed once when initializing the problem class
(i.e. called from the constructor of the generated problem
class). Variables defined in the LOCAL section for rules or in
semantic actions are visible only within the rule. Variables
defined in the MAXIMIZE/MINIMIZE section are only visible
within this section.

4.3 Examples
Figure 1 shows the GPDL definition of the familiar sym-

bolic regression problem. This is a simple example because
the symbol set fulfills the closure property [7] and functions
are side-effect free. The arithmetic operators represented
as separate non-terminal symbols each take two arguments
and produce a single output value. Two types of terminal
symbols represent ephemeral random constants (ERC) and
variables Var. The ERC symbol contains the data component
val to store the constant value which is initialized randomly
in the range [−100..100] and is constant over the whole run.
The Var symbol contains the name of the variable it repre-
sents. This is also initialized by randomly selecting an ele-
ment from the set of available variable names. The target
function is the sum of squared errors which should be min-
imized. On the first call of the target function, the data is
loaded from a file. The root symbol of the grammar (Model)
serves as the entry point for the evaluation of a solution can-
didate in the target function. For each row in the data set,
the method for the root symbol is called specifying the row

value as an input. The result of the evaluation is returned
via the output parameter val.

Note that we left out some less relevant parts in both
examples due to page constraints. The full source code for
these examples is available on our website2.

2http://dev.heuristiclab.com/GPDL

1337

PROBLEM MultiOutputMultiplier
CODE <<

const int N = 4;
class State { public bool[] x1; public bool[] x2; public bool[] output; }
void GenerateProblemData(int n, out bool[][] a, out bool[][] b, out bool[][] expectedOutput) {
/* ... */

}
>>
NONTERMINALS

Expr<<State state, out bool res>>.
Assign<<State state, out bool res>>.
AND<<State state, out bool res>>.
AND1<<State state, out bool res>>.
XOR<<State state, out bool res>>.
OR<<State state, out bool res>>.

TERMINALS
InputA<<out int id>>
CONSTRAINTS
id IN SET << Enumerable.Range(0, N) >> .

InputB<<out int id>>
CONSTRAINTS
id IN SET << Enumerable.Range(0, N) >> .

Output<<out int id>>
CONSTRAINTS
id IN SET << Enumerable.Range(0, 2 * N) >> .

RULES
Expr<<State state, out bool res>> = LOCAL << int id; >>
Assign<<state, out res>>
| AND<<state, out res>>
| AND1<<state, out res>>
| XOR<<state, out res>>
| OR<<state, out res>>
| InputA<<out id>> SEM<< res = state.x1[id]; >>
| InputB<<out id>> SEM<< res = state.x2[id]; >>
| Output<<out id>> SEM<< res = state.output[id]; >>

.
Assign<<State state, out bool res>> = LOCAL << int outId; >>
Output<<out outId>> Expr<<state, out res>> SEM<< state.output[outId] = res; >>

.
AND<<State state, out bool res>> = LOCAL << bool resA, resB; >>
Expr<<state, out resA>> Expr<<state, out resB>> SEM << res = resA & resB; >>

.
AND1<<State state, out bool res>> = LOCAL << bool resA, resB; >>
Expr<<state, out resA>> Expr<<state, out resB>> SEM << res = resA & !resB; >>

.
XOR<<State state, out bool res>> = LOCAL << bool resA, resB; >>
Expr<<state, out resA>> Expr<<state, out resB>> SEM << res = resA ^ !resB; >>

.
OR<<State state, out bool res>> = LOCAL << bool resA, resB; >>
Expr<<state, out resA>> Expr<<state, out resB>> SEM << res = resA | resB; >>

.
MINIMIZE <<

bool[][] a, b, expectedOutput;
GenerateProblemData(N, out a, out b, out expectedOutput);
int sumErr = 0;
for(int i=0; i<expectedOutput.Length; i++) {
bool tmp;
// evaluate tree for inputs a and b
var state = new State();
state.x1 = a[i]; state.x2 = b[i]; state.output = new bool[2*N];
Expr(state, out tmp);

// count incorrect bits
for(int j=0;j<state.output.Length;j++) {

if(state.output[j] != expectedOutput[i][j]) sumErr++;
}

}
return (double)sumErr;

>>
END MultiOutputMultiplier.

Figure 2: Exemplary definition of a 4-bit multi-output multiplier problem [12] in GPDL.

1338

Figure 2 shows a GPDL definition of the multi-output
multiplied problem [12]. This is an example for a more com-
plicated problem which is not straight-forward to implement
in a simple tree-based GP system. This problem has origi-
nally been formulated for a Cartesian GP system which nat-
urally supports multiple output values. In our adaptation
for grammar guided GP systems, a solution candidate is a
single boolean expression that consists of operator symbols
and terminal symbols. We represent input lines and output
lines using terminal symbols and introduce an assignment
operator that can be used to set output values. Output lines
can again be used as inputs in expressions. The assignment
operator also returns the assigned right hand side value so
the operator can again be used as part of an expression. The
semantics of Boolean operators (AND, XOR, OR) are defined
as expected; the symbol AND1 represents a logical AND with
one input negated. Each operator produces a single output
bit from two input bits and the terminal symbols produce
a single bit as a result. However, the symbols also have at-
tributes for the full input and output vectors, so it is possible
to set selected output bits via the assignment operator. The
target function returns the number of incorrect output bits
produced by a solution candidate for two input vectors.

On the GPDL website2 we provide additional examples.

5. LIMITATIONS
The target framework must have support to restrict so-

lution candidates. For instance, if the target framework
supports tree-based GP but only allows specification of the
number of children of function symbols, then it would not
be possible to map grammar rules to the less powerful set of
constraints. In such cases, only a subset of the allowed spec-
ifications can be translated to the target framework. Ideally,
if the target framework already uses context free grammars
for solution candidates only minor adaptations and checks
(e.g., the LL(1) property) are necessary. Software systems
that support tree-based GP with structural and symbol con-
straints (e.g., HeuristicLab, ECJ, JGAP, OpenBEAGLE, ...)
and frameworks that support CFG-GP, strongly-typed GP,
or grammatical evolution (EpochX, GEVA, DEAP, ...) are
candidates that could be used as target frameworks because
in these systems the necessary functionality to incorporate
grammatical rules is already available.

GP systems such as Cartesian GP, PushGP and other
linear GP variants already use pre-defined languages with
simple syntax, thus these systems are not well suited to
the proposed approach and are not considered as solvers
for problems specified in GPDL. However, it would be pos-
sible to define the stack-based PushGP language in GPDL
to emulate stack-based execution of PushGP programs using
other GP systems.

6. REFERENCE IMPLEMENTATION
Our implementation consists of a set of C# source files

and the attributed grammar for GPDL from which we gen-
erate additional C# source files using Coco-2. From the
resulting files we build the compiler for HeuristicLab. The
compiler consists of three main parts: the parser (generated
by Coco-2), the code generator the compiler and executer.
The parser reads a GPDL problem definition as shown in the
examples section and builds an abstract syntax tree (AST)
data structure in memory. The AST is then supplied to the

code generator which uses a number of template files con-
taining all boilerplate code and the information stored in
the AST to produce C# source code defining a set of classes
for HeuristicLab. In this process, the code generator gener-
ates a symbol class for each symbol, a node class for each
terminal symbol, a grammar class, an evaluator class and
an problem class. Finally, the GPDL compiler invokes the
CodeDom C# compiler to compile the generated source files
and invoke a genetic programming algorithm configured to
solve the custom problem. Details on the implementation of
the GP framework in HeuristicLab are given in [6].

6.1 Symbols
The set of non-terminal and terminal symbols can be eas-

ily derived from the AST. For terminal symbols it is nec-
essary to generate specific tree node classes to store the
data components. The code for the initialization and muta-
tion of terminal symbols is generated based on the specified
CONSTRAINTS.

6.2 Grammar
The reference implementation does not support all possi-

ble problem definitions because HeuristicLab only has lim-
ited support for structural constraints for tree-based GP. It
is possible to restrict the number of sub-trees and the set of
allowed symbols for each sub-tree slot for each symbol. For
instance, it is possible to define that an If-Then-Else symbol
must have exactly three arguments where the first argument
can be any symbol from the set of Boolean functions and
terminals and the second and third arguments can be any
symbol from the set of real-valued functions and terminals.
The production rule A → BC|DE cannot be translated be-
cause the first symbol limits the set of allowed symbols for
the second argument. However, note that this rule can be
transformed into three rules by introducing two new non-
terminal symbols A → F |G, F → BC and G → DE. which
could be modeled using the available set of structural con-
straints in HeuristicLab.

6.3 Interpreter
The compiler translates symbols and rules using a recur-

sive-descent approach. This means that for each symbol the
compiler creates a method that evaluates other symbols in
the order stated in the rules section. The methods for in-
terpretation are defined in the problem class which contains
all other source code fragments. The compiler must check
if the specified grammar fulfills the LL(1) criterion so that
an interpreter can be generated using the recursive-descent
approach.

One critical aspect that needs to be addressed is how the
stream of symbols and the look-ahead symbol are produced.
Parsers usually receive a stream of tokens produced by a
lexer (lexical scanner). The lexer produces tokens from an
input stream (i.e., a text file). In our reference implementa-
tion for tree-based GP it is also necessary to process symbols
in a sequence and a look-ahead symbol is necessary to choose
the correct alternative in the interpreter. In tree-based GP,
the input for the interpreter is a tree instead of a stream of
characters so a lexer is not necessary. Instead, the stream of
symbols is produced by iterating the tree in pre-order.

1339

7. OPEN TOPICS
First and foremost we have not yet analyzed or discussed

how problems defined in GPDL can be solved efficiently. The
language rules for solution candidates are strongly related to
the search over possible solution candidates. Thus, language
rules introduce a search bias. Often, multiple different for-
mulations of the same problem are possible which are not
equally suited to a given search algorithm. Some formula-
tions of the problem might lead to better search performance
than others. The search bias introduced by properties of the
language needs to be researched in more detail. Currently,
we can only refer to previous work and success stories in the
area of grammatical evolution demonstrating the viability
of the approach [9].

The current draft specification does not support multi-ob-
jective genetic programming. If multi-objective GP should
be supported, the specification must be adapted accordingly
for instance by allowing multiple definitions of target func-
tions using the MAXIMIZE or MINIMIZE keywords. However,
currently we do not plan to implement this functionality.

It is not possible to define any additional constraints be-
yond the grammar rules. For instance, the maximum size
of solution candidates cannot be constrained; this has to
be done in the algorithm configuration instead. A similar
constraint would be to limit the maximum number of occur-
rences of a specific symbol.

We have not yet considered how grammars with optional
chains and repetitions can be best transformed to tree-based
GP systems. In such systems, the number of children of
a node is usually limited and rather small, while grammar
rules containing a repetition could potentially lead to a large
number of sub-trees.

Another interesting aspect that is not yet supported in
GPDL is that a problem definition might also include a-
priori knowledge that could be used to guide the search pro-
cedure [1]. One idea to specify a-priori knowledge is to add
annotations to grammar rules or alternatives to bias search.

Automatically defined functions (ADF) can be included in
the grammar for solution candidates as long as the number
of ADF is limited and the number of arguments of each ADF
are fixed. In this case, it is possible to ensure through gram-
mar rules that functions are only called when they have pre-
viously been defined. Architecture altering operators which
build function definitions from existing branches and auto-
matically define the number of arguments are not supported,
as it would be necessary to defined which symbols can be
used to define and call functions in the specified language.

8. ROADMAP
The specification of GPDL and the reference implementa-

tion for HeuristicLab are available on our website3. On this
website we will document relevant discussions on the lan-
guage specification and changes as well as extensions to the
language specification. A next step is to implement a com-
piler for the popular ECJ framework which is quite similar
to HeuristicLab but uses the Java platform. Subsequently,
it should also be straight-forward to adapt the compiler to
GEVA and possibly JGAP or OpenBEAGLE. Since Coco-
2 is available for many languages including C#, Java and
C++ it should be possible to translate the compiler def-

3http://dev.heuristiclab.com/GPDL

inition from the reference implementation to other target
languages.

9. REFERENCES
[1] W. W. Cohen. Grammatically biased learning:

Learning logic programs using an explicit antecedent
description language. Artif. Intell., 68(2):303–366,
1994.

[2] H. Dobler. Top-down parsing in Coco-2. SIGPLAN
Notices, 26(3):79–87, Jan. 1991.

[3] H. Dobler and K. Pirklbauer. Coco-2: A new compiler
compiler. SIGPLAN Notices, 25(5):82–90, May 1990.

[4] Y. Hasegawa and H. Iba. Latent variable model for
estimation of distribution algorithm based on a
probabilistic context-free grammar. IEEE
Transactions on Evolutionary Computation,
13(4):858–878, Aug. 2009.

[5] D. Knuth. Semantics of context-free languages.
Mathematical Systems Theory, 2(2):127–145, 1968.

[6] M. Kommenda, G. Kronberger, S. Wagner,
S. Winkler, and M. Affenzeller. On the architecture
and implementation of tree-based genetic
programming in HeuristicLab. In Proc. of the 14th
GECCO, GECCO Companion ’12, pages 101–108,
New York, NY, USA, 2012. ACM.

[7] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[8] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan,
and M. O’Neill. Grammar-based genetic programming:
a survey. Genetic Programming and Evolvable
Machines, 11(3/4):365–396, Sept. 2010.

[9] M. O’Neill and C. Ryan. Grammatical Evolution:
Evolutionary Automatic Programming in a Arbitrary
Language, volume 4 of Genetic programming. Kluwer
Academic Publishers, 2003.

[10] B. J. Ross. Logic-based genetic programming with
definite clause translation grammars. New Generation
Computing, 19(4):313–337, 2001.

[11] S. Wagner. Heuristic optimization software systems –
Modeling of heuristic optimization algorithms in the
HeuristicLab software environment. PhD thesis,
Institute for Formal Models and Verification,
Johannes Kepler University, Linz, 2009.

[12] J. A. Walker and J. F. Miller. The automatic
acquisition, evolution and reuse of modules in
cartesian genetic programming. IEEE Transactions on
Evolutionary Computation, 12(4):397–417, Aug. 2008.

[13] P. A. Whigham. Grammatically-based genetic
programming. In J. P. Rosca, editor, Proceedings of
the Workshop on Genetic Programming: From Theory
to Real-World Applications, pages 33–41, Tahoe City,
California, USA, 9 July 1995.

1340

