
Developing Services in a Service Oriented Architecture for
Evolutionary Algorithms

Pablo García-Sánchez, María Isabel García Arenas, Antonio Miguel Mora,
Pedro Ángel Castillo, Carlos Fernandes, Paloma de las Cuevas, Gustavo Romero,

Jesús González and Juan Julián Merelo
University of Granada

Department of Computer Architecture and Computer Technology, ETSIIT and CITIC-UGR
18071 - Granada, Spain
pgarcia@atc.ugr.es

ABSTRACT

This paper shows the design and implementation of ser-
vices for Evolutionary Computation following the Service
Oriented Architecture paradigm. This paradigm allows in-
dependence over language and distribution mechanism. This
development is challenging because some technological and
design issues, such as abstract design or unordered execu-
tion. To solve them, OSGiLiath, an implementation of an
abstract Service Oriented Architecture for Evolutionary Al-
gorithms, is used to develop new interoperable services tak-
ing into account these restrictions.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Data abstraction; D.2.12 [Software Engineering]: Inter-
operability—Distributed objects; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search—
Heuristic methods

General Terms

Algorithms

Keywords

Service oriented architecture, evolutionary algorithms, ge-
netic algorithms, distributed algorithms, OSGi

1. INTRODUCTION
Service Oriented Architecture (SOA) [19] is becoming an

important trend in software development. This paradigm
allows the organization and distribution using the service
concept. A service is an interaction depicted in Figure 1.
The service provider publishes service descriptions (or in-
terfaces) in the service registry, so the service requesters can
discover services and bind to the service providers to use it.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

SOA allows independence in language and distribution
mechanisms, aiming to easy extension and integration, but
it has the following restrictions:

• Services must be input/output functions.

• The services must not have state (i.e. not global vari-
ables).

• The order of execution of the services is not defined.

• Services must be designed as abstract as possible.

Distributed computing offers the possibility of taking ad-
vantage of parallel processing, in order to obtain a higher
computing power [3]. SOA is also applied in this area, using
platforms based on Web Services [19], and new standards
for this paradigm have emerged, like OSGi (Open Services
Gateway Initiative) [18].

OSGi allows build quality software systems considering
a high level of modularity. Besides the benefits that clas-
sic modularization paradigms can offer (like object-oriented
modelling), and the improvements in test, reusability, avail-
ability and maintainability, it is necessary to explore other
modelling techniques, such as the plug-in based development
and the SOA design. This kind of development simplifies
aspects such as the complexity, personalization, configura-
tion, development and cost of the software development. In
the optimization heuristics software area, the benefits that
using this kind of development can offer are carried out in
the development of algorithms, experimental evaluation, and
combination of different optimization paradigms [22].

Figure 1: Service interaction schema. The service
provider publish a service description that is used
by the requestor to find and use services.

1341

In our previous work [8] we presented an abstract Service
Oriented Architecture for Evolutionary Algorithms (SOA-
EA), with guidelines and steps to migrate from traditional
development in Evolutionary Algorithms (EAs) to SOA. It
also presented a specific implementation, called OSGiLiath
(OSGi Laboratory for Implementation and Testing of Heuris-
tics): an environment for the development of distributed al-
gorithms extensible via plug-ins architecture and based in a
wide-accepted software specification (OSGi). In this work,
a full service development is presented, taking into account
the specific technology used, instead an abstract design, as
in our previous work.

The rest of the work is structured as follows: after the
state of the art, we present design principles to create ser-
vices for Evolutionary Computation (Section 3). Then, the
OSGi implementation technology is explained in Section 4,
used to build our framework (described in Section 5). Then,
the steps to create services with this framework are ex-
plained (Section 6). Finally, conclusions and suggestions
for future work are presented (Section 7).

2. STATE OF THE ART
Even as SOA is used extensively in software development,

it is not widely accepted in the EA community. Most of the
frameworks have the lack of low generality, because they are
focused in a specific field, like EasyLocal++ [10] (focused in
Local Search) or SIGMA [11] (in the field of optimization-
based decision support systems). Another common issue
is that they are just libraries or Perl modules [16], they
have no GUIs, or they are complicated to install and require
many programming skills. Another problem could be the
lack of comfort, for example, C++ has a more complicate
sintaxis than other languages. There also exist frameworks
that use metaheuristics to apply in specific fields, like the
KEEL framework [2], that let the creation of heuristics to
apply in data-mining problems.

Among this great number of software tools we want to
focus in the most widely accepted distributed algorithms
frameworks. ECJ [15], Evolutionary Computation in Java,
is a set of Java classes that can be extended and includes
several communication modules. MALLBA [1] is based in
software skelletons with a common and public interface. Ev-
ery skeleton implements a resolution technique for optimiza-
tion in the fields of exact, heuristic or hybrid optimization.
It provides LAN and WAN capacity distribution with MPI .
However, this both frameworks are not based in the plug-in
development, so they can not take advantage of features like
the life-cycle management, versioning, or dynamic service
binding, as OSGi proposes.

Another important platform is DREAM [4], which is an
open source framework for Evolutionary Algorithms based
on Java that defines an island model and uses the Gossip
protocol and TCP/IP sockets for communication. It can be
deployed in P2P platforms and it is divided in five layers.
Every layer provides an user interface and different interac-
tion and abstraction level, but adding new functionalities is
not so easy, due to the the fact that system must be stopped
before adding new modules and the implementation of in-
terfaces must be defined in the source code, so a new com-
pilation is needed (as in ECJ). OSGi lets the addition of
new functionalities only compiling the new features, not the
existing ones.

The MALLBA authors are now working in the jMetal

Framework [5], that is a newer Java-based framework, but
it has not yet distributed capabilities and it is focused in
multi-objective optimization.

ParadiseEO [14] allows the design of Evolutionary Algo-
rithms and Local Search with hybridization, providing a
variety of operators and evaluation functions. It also im-
plement the most common parallel and distributed models,
and it is based in standard libraries like MPI, PVM and
Pthreads. However, it has the same problems that the pre-
vious frameworks, not lifecycle management or service ori-
ented programming. GAlib [23] is very similar and share the
same characteristics and problems.

In the field of the plug-in based frameworks, HeuristicLab
[21] is the most outstanding example. It also allows the dis-
tributed programming using Web Services and a centralized
database, instead using their own plug-in design for this dis-
tributed communication.

METCO framework [13] also have the same problems, it
does not use a standard plug-in system or SOA, but let
the implementation of existing interfaces, and lets the user
configure its existing functionalities.

Finally, the only service oriented optimization framework
is GridUFO [17], but it only allows the modification of the
objective function and the addition of whole algorithms,
without combining existing services.

Previous frameworks are designed to be extensible and re-
usable, but without taking into account the restrictions of
SOA to achieve even more independence and development
improvements.

3. DESIGNING SERVICES FOR A SERVICE

ORIENTED ARCHITECTURE FOR EVO-

LUTIONARY ALGORITHMS
In [8] we demonstrated that it is possible to create a ser-

vice oriented architecture for EAs using a specific SOA tech-
nology. This architecture used the features that SOA offers.
To do this, loose coupling services for EAs were designed
(SOA-EA), and they were implemented using a SOA tech-
nology and compared with other frameworks. These ser-
vices can be combined in several ways to obtain different
algorithms (for example, from a canonical GA, a NSGA-II
can been created just adding new services). Also several
techniques were presented to combine existing services in a
flexible way.

3.1 Design principles
One of the main restrictions in SOA, appart from focus-

ing in develop abstract services, is the stateless nature of
services. Therefore, in SOA the services design must follow
several guidelines.

First, as services are unaware of others, there must not
be global variables in any part of the code. Services are lis-
tening, and waiting to be executed. For example, a fitness
service with a counter that is increased each time is called
(to stop the algorithm if a limit is reached, for example).
If several (and different) algorithms are working in parallel,
and calling this function at the same time the counter would
not distinguish between algorithms, giving erroneous results.
However, a service that maintains some kind of state is al-
lowed, for example, a statistic service that read events from
all the algorithms being executed at the same time, but this
should be managed to avoid errors.

1342

Also, a service must not be distinguishable from local or
remote running in other node in the network. Every stage in
the algorithm should be treated as service to be executed in
local or in remote, even the Population or the Parameters.
Mechanisms to ensure the correct data-sharing should be
provided. Also, many implementations of the same service
could exist at the same time (different implementations of
Crossover, for example) and it should be correctly managed
and used.

Moreover, a service is always a request-response function.
For example, the fitness calculation must not be a method of
the Individual implementation, but a function that receives
a list of individuals and returns a list of the calculated fit-
ness of that individuals. This allow things such as remote
fitness calculation and distributed load balancing, impossi-
ble to perform if the fitness is a method of the Individual
class.

Thinking as abstract as possible requires separate con-
cepts such the order of recombination, and the crossover it-
self. Usually, after parent selection, individuals are crossed
in order. However, if we need a different mechanism for
mating (for example, using more than two parents, or par-
ent selected several times) a duplication of effort is needed.
That is the reason we should sepparate the concept recom-
bine from crossover.

Finally, we must not make assumptions about services
previously executed or being executed next. For example,
services such Recombinator or Mutator should return the
individuals with their fitness already calculated. Usually
this step is performed in the last stage of the generation, but
if we require the individuals for other tasks: for example, a
Local Search or a statistics collector to guide the algorithm.

3.2 Other technological restrictions
In [8] we also presented the advantages of using SOA in

Evolutionary Algorithms area: firstly, SOA fits with the
genericity advantages in the development of software for EAs
[6] and adds new features, like language independence and
distribution mechanisms. It also allows the addition and
removal of services in execution time without altering the
general execution of the algorithm (that is, it is not manda-
tory to stop it or to add extra code to support new op-
erators). This issue increases the interoperability between
different software elements. Moreover, this allows easy code
distribution: SOA does not require the use of a concrete
implementation or library.

In this work, a new process development, explaining the
specific technology used is presented. The services developed
must match with the next technological restrictions:

• These services can dynamically bound to change the
needed EA aspects.

• The source code of the basic EA services must not been
re-written or re-compiled to achieve this task.

• New services can be added in execution time.

• No specific source code for a distribution must added,
neither the existing source code of the services should
be modified for this purpose (that is, changing distri-
bution libraries must not add extra code in exisitng
services).

4. IMPLEMENTATION TECHNOLOGY
This section dives into some technical features of the OSGi

platform, to guide the reader to understand the OSGiLiath
framework in a deeper way, and to evaluate the advantages
of using this features in the development of distributed al-
gorithms to match with the previous restrictions.

The used technology, OSGi, was proposed by a consor-
tium of more than eighty companies in order to develop
an infrastructure for the deployment of service in hetero-
geneous network of devices, mainly oriented to domotics [9].
Nowadays it defines a specification for a Service Oriented
Architecture for virtual machines (VMs). It provides very
desiderable features, like packet abstraction, life-cycle man-
agement, packaging or versioning, allowing significant reduc-
tion of the building, support and deployment complexity of
the applications.

OSGi technology allows dynamic discovery of new com-
ponents, to increase the collaboration and to minimize and
manage the coupling among modules. Moreover, the OSGi
Alliance has developed several standard component inter-
faces for common usage patterns, like HTTP servers, con-
figuration, logs, security, management or XML management
among others, whose implementations can be obtained by
third-parties. Nowadays there are some challenges in the
OSGi development [12], but they only affect the creation of
very complex applications.

This advantages are not so costly, as can be thought: the
OSGi framework can be implemented in a jar file1 of 300KB.
Also, and different of the normal usage of Java, each class
pre-charges only the other classes to use, not all. Also is non-
intrusive: the code to be executed in OSGi can be executed
without it. Finally, from its specification in 1998 has been
widely used as base in big projects: the Eclipse IDE (Inte-
grated Development Environment) is built over OSGi, and
also big application servers (Glassfish or IBM Websphere)
or residential gateways [9], among other examples.

4.1 OSGi Architecture
To understand how OSGi [18] works and which capabil-

ities could offer to the OSGiLiath users it is necessary to
understand how OSGi is built. OSGi has a layered model
that is depicted in Figure 2. The terms present in this Figure
are:

• Bundles: Bundles are the OSGi components made by
developers. Is a normal jar file including Java classes
and interfaces with different MANIFEST.MF and ex-
tra files (such as the Service Descriptions).

• Services: This layer connects bundles in a dynamic
way by offering a publish-find-bind model.

• Life-Cycle: The API to install, start, stop, update, and
uninstall bundles.

• Modules: This layer defines how a bundle can import
and export code (using the MANIFEST.MF file).

• Security: Security aspects are handled in this layer.

• Execution Environment: Defines what methods and
classes are available in a specific platform. For ex-
ample, mobile devices have less Java classes due to
performance constraints.

1A jar file is a file that groups the compiled Java files.

1343

Figure 2: OSGi layered architecture. Every layer is
built from the one just below.

4.2 OSGi configuration files
Regarding to explained OSGi layers how to use all OSGi

capabilities is shown next.
OSGi implements a dynamic component model, unlike

normal Java environments. Applications or components (also
called bundles) can be remotely installed, started, stopped,
updated or uninstalled on the fly; moreover, the classes and
packaging management is specified in detail. The OSGi
framework provides APIs for the management of services
that are exposed or used by the bundles.

Java programmers are familiar with the jar concept. The
first difference among a bundle and a jar is that the second
has a MANIFEST.MF file adapted to be used in OSGi. This
file indicates which clases imports or exports the bundle.
An example can be seen in Figure 3. This file shows the
name of the bundle and its version (this is useful to select
specific services), and the execution environment (that is,
the Java Virtual Machine required). Also, this file specifies
the XML files of the declarative services (in section Service-
Component). However, this bundle can be used as a normal
jar outside OSGi.

In normal environments, to create a specific implementa-
tion of an interface (i.e. FitnessCalculator) is as follows:

class EvolutionaryAlgorithm implements Algorithm{
FitnessCalculator fc;

//A new instance is bound to a reference
fc = new ExampleFunction();

}

With Declarative Services, the new ExampleFunction()
part is not used, so if a new implementation is desired no
code recompilation is necessary. Figure 4 shows a declara-
tive service description file, which establish in execution time
which implementation is bound to the interfaces. This ex-
ample indicates that the implementation of service Fitness-
Calculator is VRPFitnessCalculator, but this service is not
activated until all their references (other services, like Trans-
portData) are also activated. The tag cardinality means that
at least one service of that kind must exist (the first 1 repre-
sents optionality) and the second part (the other 1 indicates
the number of different implementations that can be man-
aged: one (1) or many (*). We need to create XML files
for the rest of services to expose (i.e. TransportData). The
file where these capabilities are defined is declared in section

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: VRP

Bundle-SymbolicName: VRP

Bundle-Version: 1.0.0

Bundle-RequiredExecutionEnvironment: JAVA-1.6

Import-Package: es.ugr.osgiliath,

es.ugr.osgiliath.algorithms,

es.ugr.osgiliath.events,

es.ugr.osgiliath.evolutionary,

es.ugr.osgiliath.evolutionary.basiccomponents.genomes,

es.ugr.osgiliath.evolutionary.basiccomponents.individuals,

es.ugr.osgiliath.evolutionary.elements,

es.ugr.osgiliath.evolutionary.individual,

es.ugr.osgiliath.evolutionary.migrator,

es.ugr.osgiliath.geneticalgorithm.distributed,

es.ugr.osgiliath.problem

Export-Package: es.ugr.osgiliath.vrp,

es.ugr.osgiliath.vrp.individual

Service-Component: OSGI-INF/vrpinitializer.xml,

OSGI-INF/vrpfitnesscalculator.xml,

OSGI-INF/vrpcrossover.xml,

OSGI-INF/vrpmutation.xml

Figure 3: Example of MANIFEST.MF. This exam-
ple defines which packages are necessary to activate
the bundle and which packages are exported.

Service-Component of MANIFEST.MF file, as can be seen
in Figure 3.

Next code shows the code for this implementation:

class VRPFitnessCalculator implements FitnessCalculator{

// Other service references ,
TransportData tdata;

// Methods to bind/unbind each reference
public TransportData

setTransportData(TransportData tdata){
this.tdata = tdata;

}

public void
unsetTransportData(TransportData tdata){

this.tdata = null;

}

// Implementation of the interface method
List <Fitness > calculateFitness(List <Individual > inds){

...
}

}

4.3 Event Administration
The Event Administration in OSGi lets the usage of a

blackboard communitacion architecture where bundles can
broadcast or receive events without notice which bundles are
sending or receiving these events.

To send events to other bundles:

• Acquire a reference to the EventAdmin OSGi service
(via Declarative Services, for example).

• Pick a topic name for the event (for example “es/u-
gr/osgiliath/algorithms/endgeneration”)

• Send the event using the postEvent method of Even-
tAdmin, with the topic plus other desired properties

1344

<?xml version="1.0" encoding="UTF-8"?>

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="VRPFitnessCalculator">

<implementation class="es.ugr.osgiliath.vrp.VRPFitnessCalculator"/>
<service>

<provide interface="es.ugr.osgiliath.evolutionary.elements.FitnessCalculator"/>
</service>
<reference bind="setTransportData"

unbind="unsetTransportData"

cardinality="1..1"
interface="es.ugr.osgiliath.vrp.TransportData"
name="TransportData"

policy="static"

/>
<property name="name" type="String" value="vrpfitnesscalculator"/>

</scr:component>

Figure 4: Service Description. This documents indicates that the implementation of the service FitnessCal-

culator is VRPFitnessCalculator, but it can not activate until their references (other services) are activated.

Code to send an event to other bundles is shown be-
low. The programmer specifies the topic String and optional
properties to send to other bundles that are listening. The
eventAdmin variable is a reference to “org.osgi.service.event.
EventAdmin” service, obtained via Declarative Services or by
hand (not showed).

Properties props = new Properties(); // Optional

String topic =
"es/ugr/osgiliath/algorithms/endgeneration";

Event evt = new Event(topic ,props);
eventAdmin.postEvent(evt);

For the other hand, the steps to handle events are:

• Register a service that implements the OSGi Even-
tHandler interface (via Declarative Services or manu-
ally).

• Specify in this service the topics to subscribe to. For
example, the String“es/ugr/osgiliath/algorithms/*” (the
* is a wildcard) inside the <property> tag in the Ser-
vice Description.

• Overwrite the handleEvent method of this interface
with the desired code.

This code shows how to handle events. In this case we
have published the ExampleService with the implementation
ExampleImpl, that is listening under the topic “es/ugr/os-
giliath/algorithms/*”.

class ExmplImpl implements ExmplService ,EventHandler{

public void handleEvent(Event ev){
if(evt.getTopic ().endsWith ("endgeneration")){
// An event with topic

// "es/ugr/ osgiliath/ algorithms
// / endgeneration"

System.out.println ("Generation over");
else{
// Other event with topic starts with

// "es/ugr/ osgiliath/ algorithms/"
System.out.println ("Other event received ");

}
}

}

4.4 Distribution
In a good service-oriented framework for EAs all services

must be capable to be indistinguishable of being a local or a
remote service. Services can be distributed using the OSGi
features. In this case, the distribution is performed using the
service descriptor to set which service is distributable and
which is the distribution technology that provides service
discovering and data transmission.

OSGi allows several implementations for the service dis-
tribution. ECF (Eclipse Communication Framework)2 has
been chosen because it is the most mature and accepted im-
plementation [20], and it also supports the largest number
of transmission protocols, including both synchronous and
asynchronous communication. It provides a modular im-
plementation of the OSGi 4.2 Remote Services standard3.
This specification uses the OSGi service registry to expose
remote services to other machines (being indistinguishable
from the local ones). ECF also separates the source code
from the discovery and transmission mechanism, allowing
users to apply the most adequate technology to their needs,
and providing the integration with existing applications.

ECF includes a number of protocols for service discovery
and service providers:

• Service Discovery API: Includes protocols to announce
and discover remote services: Zeroconf, SLP/RFC 2608,
Zookeeper, file-based and others 4.

• Remote Service API: Includes protocols to establish
the communication (data streams, formats and oth-
ers): R-OSGi, ActiveMQ/JMS, REST, SOAP, XMPP,
ECF Generic 5. This allow to communicate to systems
that do not use OSGi or Java.

5. OSGILIATH
All previous elements can be combined to create a service

oriented environment. This section explains the function-

2http://www.eclipse.org/ecf/
3http://www.osgi.org/Release4/Download
4http://wiki.eclipse.org/ECF_API_Docs#Discovery_
API
5http://wiki.eclipse.org/ECF_API_Docs#Remote_
Services_API

1345

ality and design of the proposed environment, called OS-
GiLiath, presented in [7]. This environment is a framework
for the development of heuristic optimization applications,
not centered on a concrete paradigm, and whose main ob-
jective is to promote the OSGi and SOA usage and offer to
programmers the next features:

• Easy interfaces. After a study of the previous frame-
works a complete interface hierachy has been devel-
oped.

• Asynchronous data sending/receiving. Thanks to ECF
distributed capabilities, the framework has easy distri-
bution of services, without implementing specific source
functions, like MPI or other distribution frameworks.
Programmers do not need to write communication code.

• Component Oriented Programming. The framework is
plug-in oriented, so new improvements can be added
in easy way without modification of existent modules.
Adding o modifying implementations of services can be
performed without re-compilation of the source code.

• Client/Server or Distributed Model. All components
of the framework can communicate in a bi-directional
way, so a central broker is not necessary if it is not
required.

• Paradigm independent. The framework is not focused
in a type of metaheuristic.

• Declarative Services. Bind interfaces to specific im-
plementations can be done without modifying existent
source code. Programmers do not need to instantiate
implementations of the services.

• Remote event handling: Using the OSGi advantages,
users can use a powerful tool to synchronize or share
data among services.

A comparison of this environment with other frameworks
was also presented in [8]. OSGiLiath attained lower num-
ber of lines of code than other frameworks for combining
existent services, attaining similar times than other frame-
works in Java, such as ECJ. However, no required code for
distribution was added.

The source code is available at http://www.osgiliath.

org, under a LGPL license.

5.1 OSGiLiath organization
By now, OSGiLiath counts with the next bundles:

• osgiliath: This is the core bundle. It includes all the in-
terfaces common to the algorithms such as Algorithm,
AlgorithmParameters or Problem.

• Evolutionary Algorithm: Includes the EvolutionaryAl-
gorithm implementation and interfaces to create the
rest of the services that form an EA: Recombinator
and Crossover, Mutator and Mutation, StopCriterion
or FitnessCalculator. It also provides interfaces for the
creation of individuals: Individual, Fitness, Gene, and
Genome.

• Basic Evolutionary Components: Includes several im-
plementations (the most common ones) of the previous

interfaces: ListPopulation, ListIndividual, DoubleFit-
ness, NGenerationStopCriterion, BasicOrderRecombi-
nator, UPXListCrossover and others.

• Binary Problems: Includes implementation of well-
known problems, such as OneMax and MMDP: One-
MaxFitnessCalculator, MMDPFitnessCalculator or Bi-
naryProblemRandomInitializer.

• Function Problems: Multi-dimensional optimization
functions, such as Griegwank or Rastrigin are imple-
mented in this bundle, with their associate Initializers
or Fitness Calculators.

• NSGA2: Interfaces and implementations of services for
the NSGA2 algorithm.

• OSGiLiART: Service implementation for the creation
of Evolutionary Art: ArtisticIndividual or Histogram-
FitnessCalculator are examples.

• NoOSGi: Because OSGi allows the separation of source
code with the OSGi framework capabilities, this bun-
dle includes Java code to integrate the services with-
out any specific technology (just using basic Object
Oriented programming).

• IntelligentManager: An example of how the services
can be bound/unbound in real-time. By now, in each
step the IntelligentRandomManager selects randomly
from the available Crossovers, Mutators and Replacers
implementations.

6. DEVELOPMENT OF SERVICES IN OS-

GILIATH
This section presents the steps to add services to the ex-

istent OSGiLiath core. In this section the implementation
to add the Vehicle Routing Problem (VRP) are explained.

6.1 Bundle creation
In OSGiLiath Services can be added to existent bundles or

new bundles can be created. Each bundle includes a MAN-
IFEST.MF file (as depicted in Figure 3). In this case, we
have selected the packages to import (including interfaces
and classed from the Osgiliath core) and to export. The
section Service-Description shows the location of the compo-
nent definitions that describe the services. In this case, two
interfaces will be implemented: TransportData and Fitness-
Calculator. Other classes related with the VRP are added,
such as Route or Shop.

6.2 Implementing services
To implement a service, a class must be created imple-

menting an interface. For example, VRPFitnessCalculator
implements the interface FitnessCalculator. The relation
between these two elements is made in the Component Def-
inition of the Figure 4. This way, the implementation is
announced to the other services in the environment, that
can bind or unbind. For example, the implementation VR-
PInitializer (implementing Initializer) requires this imple-
mentation to create the individuals. Services can automati-
cally bind other services with the set/unset methods in the
component definition. Also, other services appart from the
EA can be added (for example, in this bundle the service

1346

TransportData, who includes information about distances
and time of the nodes has been included). Finally, VRPMu-
tation and VRPCrossover are added, following the sugges-
tions of Section 3.

6.3 Adding communication
Thanks to the OSGi 4.2 specification, services must be

indistinguishable from the ones in the local OSGi environ-
ment or in other OSGi environment (in the same machine
or even in the same network). To achieve this, the ECF is
used to export services. In this case, the Migration service
is used. This service has two operations: send and read.
The first one is used to send the individuals to the migra-
tor, and the other is used to read the individuals of that
migrator. Usually, each node (island) has one migrator to
receive individuals, and references to the other nodes’ migra-
tors. In our case, the implementation of Replacer binds the
local Migrator to write in it the individual(s) to sent. One
example of Migrator implementation is the MigratorRing-
Buffer: this class implements that interface and automat-
ically binds all the Migrators available in the environment
(in a vector of references) thanks to the bind/unbind meth-
ods of declarative services and ECF. So, the migrators can
be added during runtime, and no stop the algorithm if one
node fails. The MigratorRingBuffer sends the individuals to
the remote Migrator whose id is inmediatelly higher than
the local id (or the smaller, if it not exist) following a ring
topology. Figure 5 shows this configuration. The Replacer
implementation, a reference to the local Migrator interface
just send and read the individuasl. The MigratorRingBuffer
implementation binds an unbinds other migrators in other
nodes, keeping a reference to these remote service interfaces.
Several properties can added to the service allows to ECF
automatically announce the implementation to all nodes in
the network and no specific code is required to change from
one distribution mechanism to another.

7. CONCLUSIONS
This work shows the requirements to create a service ori-

ented evolutionary framework and the technology used to
accomplish these requirements. Service Oriented Architec-
ture (SOA) offers independence of language, distribution or
even operating systems, allowing the integration of different
elements. However, some issues have to be considered in the
development: the services are stateless input/output func-
tions, services can appear or disappear in real time and the
order of execution could not be fixed. In the Evolutionary
Algorithms (EAs) area, services must be developed taking
into account these issues, so the abstract design of elements
for EAs has been explained. Technological requirements are
also solved using an existent service oriented technology:
OSGi. The elements to create a service oriented architecture
for EAs using this technology have been described, and an
example of development has been shown.

As future work a study about scalability using other algo-
rithms (such as GRASP, Scatter Search, Ant Colony Opti-
mization and others) will be performed. In addition, we are
going to increase the usage of the OSGi capabilities, like the
Event Administration or automatic service management in a
deeper way. Additionally we intend to create a web portal or
a Maven6 repository to centralize all new implementations

6http://maven.apache.org

of problems and algorithms to let the distribution within the
base platform. A study of porting existing software to our
framework (especially those works that are written in Java,
like DREAM or ECJ) will be performed. Moreover, due to
the ease of implementations binding with their interfaces, it
is planned to develop the functionality of choosing one im-
plementation or another depending on several parameters
or, for example, using Genetic Programming to evolve and
hybridize algorithms.

8. ACKNOWLEDGMENTS
This work has been supported in part by FPU research

grant AP2009-2942 and projects EvOrq (P08-TIC-03903),
Project 83 (CANUBE) awarded by the CEI-BioTIC UGR,
and TIN2011-28627-C04-02 (ANYSELF).

9. REFERENCES
[1] E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Dı́az,

I. Dorta, J. Gabarró, C. León, G. Luque, J. Petit,
C. Rodŕıguez, A. Rojas, and F. Xhafa. Efficient
parallel LAN/WAN algorithms for optimization. the
MALLBA project. Parallel Computing,
32(5-6):415–440, 2006.

[2] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. J. del Jesús,
S. Ventura, J. M. Garrell i Guiu, J. Otero, C. Romero,
J. Bacardit, V. M. Rivas, J. C. Fernández, and
F. Herrera. KEEL: a software tool to assess
evolutionary algorithms for data mining problems.
Soft Computing, 13(3):307–318, 2009.

[3] M. Altunay, P. Avery, K. Blackburn, B. Bockelman,
M. Ernst, D. Fraser, R. Quick, R. Gardner,
S. Goasguen, T. Levshina, M. Livny, J. McGee,
D. Olson, R. Pordes, M. Potekhin, A. Rana, A. Roy,
C. Sehgal, I. Sfiligoi, F. Wuerthwein, and Open Sci
Grid Executive Board. A Science Driven Production
Cyberinfrastructure-the Open Science Grid. Journal of
GRID Computing, 9(2, Sp. Iss. SI):201–218, JUN 2011.

[4] M.G. Arenas, Pierre Collet, A.E. Eiben, Márk
Jelasity, J. J. Merelo, Ben Paechter, Mike Preuß, and
Marc Schoenauer. A framework for distributed
evolutionary algorithms. In Parallel Problem Solving
from Nature, PPSN VII, pages 665–675, 2002.

[5] J. J. Durillo, A. J. Nebro, and E. Alba. The jmetal
framework for multi-objective optimization: Design
and architecture. In IEEE Congress on Evolutionary
Computation, pages 1–8, 2010.

[6] C. Gagné and M. Parizeau. Genericity in evolutionary
computation software tools: Principles and case-study.
International Journal on Artificial Intelligence Tools,
15(2):173, 2006.

[7] P. Garćıa-Sánchez, J. González, P. Castillo, J. Merelo,
A. Mora, J. Laredo, and M. Arenas. A Distributed
Service Oriented Framework for Metaheuristics Using
a Public Standard. Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010), pages
211–222, 2010.

[8] P. Garćıa-Sánchez, J. González, P.A. Castillo, M.G.
Arenas, and J.J. Merelo-Guervós. Service oriented
evolutionary algorithms. Soft Computing, pages 1–17,
2013. In press.

[9] P. Garćıa-Sánchez, J. González, A. Miguel Mora, and
A. Prieto. Deploying intelligent e-health services in a

1347

Figure 5: Using the Migrator service to create a distributed island EA with a ring topology (white boxes are
service interfaces and grey boxes are implementations).

mobile gateway. Expert Syst. Appl., 40(4):1231–1239,
2013.

[10] L.D. Gaspero and A. Schaerf. Easylocal++: an
object-oriented framework for the flexible desgin of
local search algorithms and metaheuristics. In
Proceedings of 4th Metaheuristics International
Conference (MIC’2001), pages 287–292, 2001.

[11] J. R. González, D. A. Pelta, and A. D. Masegosa. A
framework for developing optimization-based decision
support systems. Expert Systems with Applications,
36(3, Part 1):4581 – 4588, 2009.

[12] P. Kriens. Research challenges for OSGi. 2008.
Available at: http://www.osgi.org/blog/2008/02/
research-challenges-for-osgi.html.

[13] C. León, G. Miranda, and C. Segura. Metco: A
parallel plugin-based framework for multi-objective
optimization. International Journal on Artificial
Intelligence Tools, 18(4):569–588, 2009.

[14] A. Liefooghe, L. Jourdan, and E.G. Talbi. A software
framework based on a conceptual unified model for
evolutionary multiobjective optimization:
ParadisEO-MOEO. European Journal of Operational
Research, 2010.

[15] S. Luke et al. ECJ: A Java-based Evolutionary
Computation and Genetic Programming Research
System, 2009. Available at
http://www.cs.umd.edu/projects/plus/ec/ecj.

[16] J.J. Merelo Guervós, P. Castillo, and E. Alba.
Algorithm::evolutionary, a flexible Perl module for
evolutionary computation. Soft Computing - A Fusion
of Foundations, Methodologies and Applications,
14:1091–1109, 2010.

[17] A. Munawar, M. Wahib, M. Munetomo, and
K. Akama. The design, usage, and performance of
gridufo: A grid based unified framework for
optimization. Future Generation Computer Systems,
26(4):633 – 644, 2010.

[18] OSGi Alliance. OSGi service platform release 4.2,
2010. Available at:
http://www.osgi.org/Release4/Download.

[19] M. Papazoglou and W.-J. van den Heuvel. Service
oriented architectures: approaches, technologies and
research issues. The VLDB Journal, 16:389–415, 2007.
10.1007/s00778-007-0044-3.

[20] M. Petzold, O. Ullrich, and E. Speckenmeyer.
Dynamic distributed simulation of DEVS models on
the OSGi service platform. Proceedings of ASIM 2011,
2011.

[21] S. Wagner and M. Affenzeller. HeuristicLab: A generic
and extensible optimization environment. In Ribeiro,
B. and Albrecht, R.F. and Dobnikar, A. and Pearson,
D.W. and Steele, N.C., editor, Adaptive and Natural
Computing Algorithms, Springer Computer Science,
pages 538–541, 2005. 7th International Conference on
Adaptive and Natural Computing Algorithms
(ICANNGA), Coimbra, Portugal, MAR 21-23, 2005.

[22] S. Wagner, S. Winkler, E. Pitzer, G. Kronberger,
A. Beham, R. Braune, and M. Affenzeller. Benefits of
plugin-based heuristic optimization software systems.
In Roberto Moreno Dı́az, Franz Pichler, and Alexis
Quesada Arencibia, editors, Computer Aided Systems
Theory - EUROCAST 2007, volume 4739 of Lecture
Notes in Computer Science, pages 747–754. Springer
Berlin / Heidelberg, 2007.

[23] B. M. Wall. A genetic algorithm for
resource-constrained scheduling, Ph.D. thesis, MIT.
1996. Available at: http://lancet.mit.edu/ga.

1348

