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ABSTRACT

This paper compares three approaches to evolving ensem-
bles in Genetic Programming (GP) for binary classification
with unbalanced data. The first uses bagging with sampling,
while the other two use Pareto-based multi-objective GP
(MOGP) for the trade-off between the two (unequal) classes.
In MOGP, two ways are compared to build the ensembles:
using the evolved Pareto front alone, and using the whole
evolved population of dominated and non-dominated indi-
viduals alike. Experiments on several benchmark (binary)
unbalanced tasks find that smaller, more diverse ensembles
chosen during ensemble selection perform best due to better
generalisation, particularly when the combined knowledge of
the whole evolved MOGP population forms the ensemble.

Categories and Subject Descriptors

I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods; I.5.2 [Design Methodology]: Classi-
fier design and evaluation

General Terms

Design

Keywords

Genetic Programming, Multi-objective Optimisation, Clas-
sification, Class Imbalance.

1. GOALS
Machine learning algorithms can suffer a performance bias

when at least one class has a small number of training ex-
amples (called the minority class) compared to the other(s)
(called the majority class). Induced classifiers can have high
accuracy on the majority class but poor accuracy on the
important minority class. This paper compares three ap-
proaches for evolving ensembles using Genetic Programming
(GP) which aim to achieve high and balanced accuracy rates
on both classes when data in unbalanced. Multiple classifiers
working together to predict the class labels are known to pro-
vide better generalisation than canonical “single-predictor”
methods if these classifiers are accurate and diverse (do not
make the same errors on the same inputs) [2][3].
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This paper has three main goals. The first compares two
approaches to account for the unequal class sizes during en-
semble learning: traditional bagging where data is sampled
into smaller balanced subsets to train the individual mem-
bers, and multi-objective GP (MOGP) where the minority
and the majority classes are traded-off against each other
during learning to evolve a Pareto front [2]. Unlike bagging,
in MOGP the original (unbalanced) data set is used directly
in training (without sampling), thereby reducing the risk
of over-fitting (some sampling methods can exclude poten-
tially useful data from learning. The second goal compares
two approaches to build the ensembles in MOGP: using the
evolved Pareto front alone, and using the whole evolved pop-
ulation of dominated and non-dominated individuals alike.
We hypothesise that using the combined knowledge of the
full evolved MOGP population can improve performances
compared with using the Pareto front alone. The third goal
uses offline evolutionary ensemble selection (off-EEL) [3] to
find/choose only good individuals for the ensemble to im-
prove ensemble performances.

2. GP ENSEMBLE APPROACHES
In bagging, the training set is sampled into N balanced

subsets (called bootstrap samples) by under-sampling the
majority class with replacement, where N is determined a

priori (in the experiments, N is 25). A GP classifier is then
evolved using a given bootstrap training sample, and this
process is repeated for all bootstrap samples. In the testing
phase, a majority vote of the predicted class labels from
all N bagged GP classifiers determines the final ensemble
output (i.e. class label) for each input. This overall process
returns a single evolved ensemble.

In MOGP, a Pareto front of classifiers is simultaneously
evolved along the objective trade-off surface in a single opti-
misation run. This is accomplished using Pareto dominance
in fitness to rank the solutions in the population according
to their objective performances. Pareto dominance asserts
that one solution will dominate another solution if it is at
least as good as the other solution on all the objectives and
better on at least one [5]. The MOGP objective formula-
tion incorporates a solution’s accuracy and diversity on a
single class, where the minority class objective is traded-off
against the majority class objective. Diversity is measured
using pairwise failure crediting (PFC) and aims to reduce
the overlap of common errors between solutions (see [2] for
details on the objectives and PFC). Once the solutions are
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evaluated on the objectives, the widely-used SPEA2 [5] al-
gorithm is used for Pareto dominance ranking; these values
then represent the final MOGP fitness values used to iden-
tify the Pareto front (see [5] for details on SPEA2). This
paper compares two approaches to building ensembles in
MOGP: using the evolved Pareto front alone, and using the
full evolved population. Similar to GP bagging, in the test-
ing phase a majority vote from ensemble members deter-
mines the ensemble output (class label) for an input.
The offline evolutionary ensemble selection (off-EEL) al-

gorithm [3] is used to choose good individuals for the en-
semble. Given a pool of base classifiers, off-EEL sorts these
classifiers by their fitness values. Each individual is then
iteratively copied into the ensemble where, at each step, the
ensemble is evaluated using a majority vote. Once all base
classifiers are processed, the best-performing intermediate
ensemble is chosen as the final ensemble.
A tree-based structure is used to represent the base GP so-

lutions [4]. Each solution is a mathematical expression that
outputs a (real) number for a given input which is mapped to
the class labels using zero as the threshold. Four standard
arithmetic operators, +,−,×, and % (protected division),
and the conditional operator if are used as functions.

3. EXPERIMENTAL FINDINGS
The experiments use eight benchmark binary classifica-

tion problems. A 50/50% split is used to divide each data
set into the training and test sets where both sets pre-
serve the same class imbalance ratio. Seven tasks from
the UCI Repository [1] are used: Ionosphere (Io), SPECT
heart (Sp), Balance (Bal), Ecoli (using classes im and pp

against the rest as E1 and E2, respectively), and Yeast (us-
ing classes mit and me3 against the rest as Y1 and Y2,
respectively). The eighth task, Pd, is an image classifi-
cation task from http://www.science.uva.nl/research/

isla/downloads/pedestrians. Io has a class imbalance ra-
tio of 1:3; Sp, Pd and E1 of 1:4; E2 and Y1 of 1:6; Y2 of 1:9;
and Bal of 1:12.
Table 1 shows the ensemble sizes and geometric mean ac-

curacies with and without off-EEL [3] ensemble selection
over 50 independant GP runs. Here Full and PF are the
MOGP approaches using the full evolved population and
Pareto front, respectively, and Bag uses bagging. Results in
bold denote whether performance is statistically significantly
better with or without ensemble selection, and the super-
script identifies which ensemble approach in a given group
has a significantly better performance (95% confidence).
Table 1 shows that all three GP approaches using off-

EEL perform as well as, or significantly better than using
no ensemble selection on tasks. The off-EEL ensembles are
also much smaller in size compared to without, showing that
choosing fewer, more diverse members for the ensemble im-
proves generalisation. The relatively high geometric mean
accuracies, particularly for off-EEL, show that balanced ac-
curacy rates are achieved on both classes. Bag shows the
most improvement in performance using off-EEL, suggest-
ing that MOGP already has good diversity due to the PFC
objective in fitness. Table 1 also shows that Full gener-
ally performs better than PF but only when off-EEL is also
used (without ensemble selection, Full is not better than
PF in any task). This suggests that as hypothesised, using
the combined knowledge of the whole MOGP population of
dominated and non-dominated individuals alike can improve

Table 1: Ensemble sizes and geometric mean accu-
racies for the GP approaches with and without off-
EEL [3] ensemble selection over 50 runs. Bold text
denotes whether performance is statistically signif-
icantly better with or without ensemble selection,
and the superscript identifies which approach has
significantly better performances (95% confidence).

Set Appr. No Ens. Sel. Off-EEL[3]
Size Geomean % Size Geomean %

Fulla 487.3 90.1 ± 2.6 370.9 91.3 ± 2.6
Io PFb 28.1 87.5 ± 3.8 22.6 90.0 ± 2.7

Bagc 25.0 91.7 ± 2.3b 17.0 92.4 ± 1.9b

Fulla 430.7 68.1 ± 3.8 111.5 74.5 ± 2.7b

Sp PFb 27.3 68.3 ± 2.5 11.0 72.3 ± 3.1
Bagc 25.0 72.7 ± 2.2a 15.7 74.0 ± 2.0
Fulla 491.7 89.5 ± 0.7c 434.7 89.7 ± 0.6c

Pd PFb 71.6 88.2 ± 1.3c 31.2 88.6 ± 1.1c

Bagc 25.0 58.6 ± 7.7 11.9 74.1 ± 4.8
Fulla 349.4 77.9 ± 2.4c 134.0 77.8 ± 3.4b

E1 PFb 8.3 75.6 ± 4.2 5.9 75.0 ± 4.4
Bagc 25.0 73.3 ± 5.4 16.8 77.4 ± 3.1b

Fulla 492.7 99.7 ± 0.5c 483.2 99.9 ± 0.2c

E2 PFb 15.4 98.9 ± 0.7c 10.6 99.8 ± 0.2c

Bagc 25.0 95.2 ± 1.5 8.4 97.0 ± 0.9
Fulla 374.4 73.8 ± 1.3 263.7 74.8 ± 1.2

Y1 PFb 39.7 73.3 ± 1.4 30.2 74.4 ± 1.1
Bagc 25.0 74.0 ± 1.2 18.3 74.8 ± 1.1
Fulla 374.4 90.9 ± 1.0 261.0 92.3 ± 0.7

Y2 PFb 27.9 90.8 ± 1.4 17.2 91.9 ± 0.9
Bagc 25.0 92.5 ± 0.8a,b 19.8 93.1 ± 0.5b

Fulla 361.9 83.6 ± 7.5 179.9 86.7 ± 5.9
Bal PFb 20.8 78.9 ± 13.4 10.4 84.1 ± 6.9

Bagc 25.0 85.4 ± 7.1 10.3 92.3 ± 4.9a,b

performances compared to using the Pareto front alone. Bag
and Full with off-EEL generally achieve competitive perfor-
mances compared to each other (each shows no significant
differences in performance in five tasks), but the former ac-
complishes this using smaller ensemble sizes than MOGP on
these tasks.

4. REFERENCES
[1] Asuncion, A., and Newman, D. UCI Machine

Learning Repository, 2007. University of California,
Irvine, School of Information and Computer Sciences.

[2] Bhowan, U., Johnston, M., Zhang, M., and Yao,

X. Evolving diverse ensembles using genetic
programming for classification with unbalanced data.
IEEE Transactions on Evolutionary Computation.
(Accepted, April 2012).

[3] Gagné, C., Sebag, M., Schoenauer, M., and

Tomassini, M. Ensemble learning for free with
evolutionary algorithms? In Proceedings of Genetic and

Evolutionary Computation Conference (2007), ACM
Press, pp. 1782–1789.

[4] Koza, J. R. Genetic Programming: On the

Programming of Computers by Means of Natural

Selection. MIT Press, 1992.

[5] Zitzler, E., Laumanns, M., and Thiele, L. SPEA2:
Improving the strength pareto evolutionary algorithm
for multiobjective optimization. Tech. rep., 2001.
TIK-Report 103, Department of Electrical Engineering,
Swiss Federal Institute of Technology.

136



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20130423173936
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Left
     7.2000
     0.0000
            
                
         Both
         AllDoc
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move down by 23.83 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20130423173936
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Down
     23.8320
     0.0000
            
                
         Both
         AllDoc
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     2
     1
     2
      

   1
  

 HistoryList_V1
 qi2base





